
314                                                             The International Arab Journal of Information Technology, Vol. 19, No. 3, May 2022 

A Heuristic Tool for Measuring Software Quality 

Using Program Language Standards  

Mohammad Abdallah 

Faculty of Science and Information Technology, Al-

Zaytoonah University of Jordan, Jordan 

m.abdallah@zuj.edu.jo 

Mustafa Alrifaee 

Faculty of Science and Information Technology, Al-

Zaytoonah University of Jordan, Jordan 

m.rifaee@zuj.edu.jo 

Abstract: Quality is a critical aspect of any software system. Indeed, it is a key factor for the competitiveness, longevity, and 

effectiveness of software products. Code review facilitates the discovery of programming errors and defects, and using 

programming language standards is such a technique. In this study, we developed a code review technique for achieving 

maximum software quality by using programming language standards. A Java Code Quality Reviewer tool (JCQR) was 

proposed as a practical technique. It is an automated Java code reviewer that uses SUN and other customized Java standards. 

The JCQR tool produces new quality-measurement information that indicates applied, satisfied, and violated rules in a piece 

of code. It also suggests whether code quality should be improved. Accordingly, it can aid junior developers and students in 

establishing a successful programming attitude. JCQR uses customized SUN-based Java programming language standards. 

Therefore, it fails to cover certain features of Java. 

Keywords: Java, code review, code inspection, quality. 

Received August 28, 2020; accepted July 12, 2021 

https://doi.org/10.34028/iajit/19/3/4 
 

1. Introduction 

Quality ascertainment is essential in software 

development. Software quality is “the degree to which 

a software product meets established requirements; 

however, quality depends upon the degree to which 

those established requirements accurately represent 

stakeholder needs, wants, and expectations.” [33] 

According to the IEEE definition, software quality is 

pertinent throughout the software life cycle: from the 

early stages to the operational phase and, of course, 

maintenance and subesequent evolution [52]. Thus, it 

is quite important to measure software quality. 

According to [27], software quality measurement is 

“the process by which numbers or symbols are 

assigned to attributes of entities in the real world is 

such a way as to describe them according to clearly 

defined rules.” Therefore, software-quality 

measurement techniques depend on the stage of the life 

cycle. For example, code quality can be measured 

using code inspection tools such as Checkstyle [53] 

and PMD [47], whereas other aspects, such as 

requirements and usability, can be measured using 

different models and tools. Even though several 

models have been developed to measure software 

quality, only few use programming-language standards 

[1]. 

Programming-language standards represent the best 

practices for writing a program. Each programming 

language has its own standards. For example, for Java, 

there are the SUN standards and the Google Java style 

[1, 2]. The rules set forth in these standards should be  

 
followed to produce high-quality code with minimum 

ambiguity and misunderstanding [46].  

Code-quality measurement and assessment is a 

crucial problem for software developers stakeholders. 

However, most software quality issues are discussed 

using quality-measurement techniques. Accordingly, 

there is a need to inspect code quality [35]. 

Quality measurement is predictive and does not 

focus on the complete system but on the development 

phase. In previous models, quality measurement was 

primarily conducted at two levels: management and 

quality assurance [41]. 

Static analysis can reduce manual effort by 

automatically checking for standard coding and style 

infringements so that code reviewers can focus on 

more critical tasks, such as identifying logical 

problems. Even when using static analysis, coders 

should examine static analytics to determine important 

issues and to provide feedback on matters that have 

never been identified by static analysis [51]. 

In this study, a model for measuring the quality of 

Java code is proposed. Specifically, it is used to 

determine the quality level of a piece of Java code 

according to SUN programming-language standards. A 

new feature in this model is that it not only measures 

code quality but also suggests the best practices for 

rewriting the code following the standards. 

The peoposed Java Code Quality Reviewer (JCQR) 

is an inspection tool that reads a piece of Java code, 

checks every line using customized Java language 

standards, and then delivers a report indicating 

https://doi.org/10.34028/iajit/19/3/4


A Heuristic Tool for Measuring Software Quality Using Program Language Standards                                                          315 

satisfied and violated rules, with suggestions for 

improving code quality. These features represent the 

novelity of the proposed method. Moreover, JCQR is 

executed in less time; it is a standalone program, not a 

plugin. Therefore, it can be used more widely and does 

not require a Java compiler. Moreover, any piece of 

Java code, even if it is not a complete program, can be 

checked. Therefore, it can help in regiression testing or 

preserving the copyright on the program. 

The remainder of the paper is organized as follows. 

In section 2, related work is reviewed, and current 

issues addressed by the proposed techniques are 

discussed. In section 3, the proposed technique and the 

JCQR tool are introduced, explained, and discussed. In 

section 4, JCQR is evaluated using a small case study 

and a comparison with similar tools. Section 5 

concludes the paper. 

2. Related Work 

In previous studies, the software quality was 

considered whether (and how) it can be quantitatively 

measured [17]. The present study answers this question 

in the affirmative: There is a quantitative method that 

can be used to measure software quality. This method, 

which is proposed in this paper, uses programming-

language conventions and standards and provides a 

numerical value (percentage) to describe the overall 

quality level. 

The most widely accepted quality factors are 

maintainability, reliability, portability, flexibility, 

correctness, testability, reusability, efficiency, 

usability, integrity, readability, and interoperability [4, 

14]. 

In [34], a quality metric was introduced to weight 

software-quality attributes based on a set of quality, 

specialized, and application-oriented characteristics. 

The Thongtanunam et al. [56] proposed an algorithm 

that uses file path similarity between code reviewers to 

prevent review redundancy.  

Code smells [40], which indicate a deeper code 

problem, were inspected and automatically visualized 

in (Emden and Moonen [24]). jCOSMO is a 

framework used to detect and remove code smells in 

Java. 

Code review and inspection is not a new research 

area. In [25, 26, 45] code inspections for quality 

measurement were introduced. Code defects and errors 

are organized, and understandability and 

maintainability are improved. Code review is a 

systematic examination that can detect code defects, 

which can be removed or reported and fixed later. A 

piece of code is usually reviewed by peers and 

technical experts, but not by the code developer or 

author. After the review process, a list of findings is 

prepared and is formally or informally reported to 

decision makers that take appropriate action. 

Code review is used in various software 

development projects to improve software quality 

based on static code analysis. Peer code review is the 

most commonly used method. It has been 

demonstrated in several studies that, in most cases, 

peer review is a useful technique to achieve a 

satisfactory code quality level [43]. Peer code review is 

primarily conducted by humans and is affected by their 

experience and effort. Moreover, code review can 

foster knowledge sharing that benefits authors as well 

as reviewers, and improves team collaboration [21]. 

The Belli and Crisan [12] introduced a semi-

automated approach, in which a checklist that 

facilitates the individual review process is generated. 

The principle of this approach is the use of a rule-based 

system by adapting concepts from compiler theory and 

knowledge engineering for acquisition and 

representation of knowledge about the program. An 

important feature of this method is that the checklist 

can be used to obtain fault classification rules. 

However, this approach can be applied only to C 

programs. 

Code comments and their effect on the code review 

process were investigated in [15]. It was demonstrated 

that more code changes resulted in fewer comments. 

This has a negative effect on the code review process 

over time. According to IEEE Std 1028-2008 [32] 

inspection is “a visual examination of a software 

product to detect and identify software anomalies, 

including errors and deviations from standards and 

specifications.” 

Code inspection is the most formal type of code 

review. It is static testing and is usually based on rules 

and checklists to avoid defect multiplication at a later 

stage. Code inspection is aimed at detecting code 

defects and suggesting possible corrections; it produces 

reports that can be used to measure and subsequently 

improve code quality. The report in [13] indicates the 

successful application of continuous, asynchronous, 

and distributed code reviews in any context. Inspectors 

of a piece of code are usually trained moderators, who 

are not the authors of the code and are expert in the 

programming language in which the code was written a 

follow-up meeting, and reviews. 

Code inspection is most easily performed through 

checklists [22], These lists can be designed for a 

particular development environment using historical 

error data, contain questions that target specific 

features, and encourage code understanding. 

Accordingly, they can aid code inspectors. They are 

aimed at improving fault-avoiding efficiency by 

highlighting public areas of previous failures. In 

practice, although the benefits of using checklists have 

been quantified in some studies, the statistical 

robustness of the conclusions has not been 

satisfactorily demonstrated [44]. However, according 

to [30] there is no evidence that using numbered 

checklists significantly improve inspections. 



316                                                             The International Arab Journal of Information Technology, Vol. 19, No. 3, May 2022 

Infrastructure-as-Code (IaC) is a method of 

introducing continuous delivery by allowing 

management and supply of code infrastructure by 

specifying and automating machine-readable files 

instead of specific hardware configurations or virtual 

setup software. This methodology can reduce the 

number of faults and errors when a piece of code is 

reused. However, it is not clear how the code behind 

IaC can be preserved, rapidly established, and 

constantly improved in a measurable manner [19]. 

Orthogonal Defect Classification (ODC) [28] was 

introduced to categorize code defects and accordingly 

generate a checklist that can be used for further 

investigation. The ODC technique has been 

demonstrated to reduce resource consumption and 

improve code inspection performance.  

Taba and Ow [55] proposed a scenario-based 

system that contrasted it to conventional methods. The 

proposed models are a systematic approach that fulfills 

the program verification process with several 

consistency attributes. This study does not include a 

comparative examination, as testing cannot typically 

be performed in large-scale enterprises. However, it 

has been concluded that there is no clear association 

between software fault severity and frequency [20, 62]. 

Code inspection is quite useful for improving 

developer knowledge and skills [38]. It facilitates the 

generation of code that is easier to understand and 

modify, as demonstrated in [42]. Moreover, it increases 

trust in safety-critical software. 

However, manual code-inspection techniques have 

certain drawbacks: They are not attractive to reviewers, 

are usually not discussed, and do not allow prompt 

feedback [9, 57]. In [3], a group of software quality 

measurement models for open-source programs were 

studied. The programs were written by several 

unrelated developers. However, different types of 

models were sought, and the use of programming 

language standards was not considered. This would aid 

open-source developers in following common 

guidelines. 

The Ala-Mutka [5] considered various tools that 

measure the quality of student programs in several 

different ways. One of them is code style, which can be 

added to the evaluation section. In [18], properties or 

factors that affect software quality were discussed from 

a Chief Information Officers (CIO) perspective. 

However, the code style was not clearly and directly 

mentioned. It was only implied from some of the 

factors addressed. It can be embedded in some of the 

factors addressed. 

The relation between software quality, code-review 

coverage, and code-review participation was studied in 

[43]. It was demonstrated that both code-review 

coverage and assistance are intimately associated with 

software quality. Low code-review coverage and 

participation are estimated to produce components with 

up to two and five additional post-release defects, 

respectively. In another framework, quality-in-use is 

adopted. The proposed topic prediction is based on a 

semantic-similarity technique that determines the 

resemblance between related quality-review features 

[7]. 

The source audit tool [10] introduced a high-level 

software quality audit. In this technique, the technical 

quality level is calculated according to The 

International Organization for Standardization) and 

The International Electrotechnical Commission 

(ISO/IEC) 25010, and it is integrated with a derived 

cost model. The source audit tool is quite useful for 

managers, who can also interact with their team using 

the Eclipse plugin to comment on the code. In [39], the 

effect of source-code quality on business process 

quality is discussed. Another domain-specific tool is 

Metaprogramming Language (RASCAL) [37], which 

is a high-level tool designed to combine different 

quality factors to measure source-code quality and 

related technical issues that may affect program 

quality. The FindBugs tool [8] uses static code analysis 

to detect code defects. Other than code inspection and 

code review. Other techniques and tools have been 

introduced that focus on code reviewer teamwork. The 

Intelligent Code Inspection in a C Language 

Environment (ICICLE) tool [16] was developed to 

inspect code that was written, modified, and tested by a 

group or team of developers to ensure that all members 

have the same updated version of the code. Moreover, 

it records those who write or modify the code. In 

addition, a crowdsourcing tool [61] was developed to 

facilitate team code inspection. EduPCR [60] is a tool 

for code peer-reviewing. It is primarily aimed at 

students. JFreeChart [49] is an open-source project that 

uses static analysis of unit tests, which may also 

contain defects or errors. This tool detects problems in 

test code and improves its quality. Other code review 

and inspection tools are presented and analyzed in 

[58]. In addition, graphs have been used for code 

understanding and evaluation [50]. 

As an overall critic of the literature, the authors 

discovered that the program code analysis and 

measurement tools, mentioned earlier, does not 

declaim the junior programmer or the students. 

Moreover, they address the code style rules violations 

and mistakes with no guidelines or recommendations 

for their best practices. 

3. Proposed Technique 

It was demonstrated in [25, 26] that 54% of the 

reviewed changes introduced bugs in the code. 

Moreover, both code-reviewer personal metrics, such 

as workload and experience, and participation metrics, 

such as the number of involved developers, have a 

significant effect on the quality of the code review 

process. Another empirical Suma and Nair [54] 

demonstrated that more than 80% of defects can be 



A Heuristic Tool for Measuring Software Quality Using Program Language Standards                                                          317 

removed and programmer time can be saved by 

implementing software inspections. This facilitates the 

identification and analysis of factors that can 

complicate the reviewing process. Accordingly, it is 

essential to use standards to ensure that the best metric 

is selected for inspecting a piece of code [21, 23] and 

to support continuous integration, where further code 

reviews may be requested [48]. 

Therefore, it becomes essential to have a tool that 

review, check, and discover the bugs and code style 

violation not only in the added and fixed code made 

after code maintenance. 

In this study, we developed the automatic code 

reviewer JCQR, which is a Java code review tool that 

reads a piece of Java code, tests it using specific Java 

language standards, and then submits a report 

indicating the rules that have been followed or 

violated, and providing recommendations to improve 

the quality of the code. Previous methods do not have 

these features. Furthermore, JCQR is run as a 

standalone program, rather than a plugin, and has short 

execution time. Consequently, it can be used more 

widely and does not require a Java compiler. 

Moreover, any piece of Java code, even if it is not a 

complete program or if it has not been compiled, can 

be checked. 

The proposed tool is limited to Java code, since the 

Java is one of the most used programming language 

and Java style is supported by big companies like SUN 

and Google. 

The proposed tool is primarily aimed at students and 

jounior developers. It can provide suggestions 

regarding the proper application of standards to a piece 

of code. 

In JCQR, a Java program will be assessed using 

different groups of code standards. Each of these 

groups has multiple quality rules that the code syntax 

should satisfy. After JCQR reads the code, and makes 

an evaluation using the standards, it outputs a report 

indicating all applied regulations and, among them, 

those that are satisfied or violated. Moreover, it 

provides guidelines regarding possible corrections. 

The flowchart in Figure 1 shows the process of the 

JCQR algorithm, which is summarized as follows: 

1. Read the Java source code from the UTF-8 text file. 

Where the code can be written in any style. 

2. Store each line in an array list to simplify the search 

process and enable comparison. 

3. Search for style violations. The styles used in this 

study were selected, from SUN Java style, based on 

self-learning experience and feedback from four 

experienced courses Java programming courses 

offered at three accredited Jordanian universities. 

Furthermore, we used rules appearing in related 

literature on software engineering education [29]. 

4. Classify style violations into groups. The algorithm 

searches the code line-by-line for rule violations, 

and if a violation is detected, it is classified into one 

out of five predefined groups. 

5. Display a warning message according to the 

violated rule. The Java source code is described as 

violation-free if and only if it adheres to the rules in 

the groups.  

 Group 1 (header and comment): as commenting 

affects code quality [6], the “header and 

comment group” was formed. This group 

contains the rules for writing copyright notices 

along with programmer name (student name and 

enrollment number), package statement, and 

class declaration. Here, the copyright and name 

information should be surrounded with multiline 

comments, whereas package and class names 

should start with uppercase letters to indicate the 

contributions. 

 Group 2 (indentation and white spaces): after the 

beginning of each block, the indentation should 

be increased by four spaces and return to the 

previous level after the block closes. In addition, 

each block end should be followed by only one 

white line. Finally, each variable, value, 

keyword, brace, operation, colon, or semicolon 

should be followed by one space for better 

reading (give examples). 
 Group 3 (line length): the rules in this group limit 

the number of line length to 80 characters, and 

any line exceeding this limit should be wrapped. 

No wrapping for short routines is permitted. 

Furthermore, this group forces one statement per 

line followed by programmer comments even if 

the comment is empty (screenshot). 

 Group 4 (class, method, and variable names): in 

this group, the names for variables, methods, 

classes, and predefined class objects are checked. 

The related constraints are applied to all user-

defined data; names must be at least six 

characters in length. Moreover, method, variable, 

and object names should start with lowercase 

characters; uppercase characters are reserved for 

class names. Finally, this group forces the user to 

follow the usual naming standards for variable, 

and predefined class object names. For example, 

(i) for loop counter variables, (i,j,….) for nested 

loop counter variables, and (ɡ,e) for graphics and 

exception class objects, respectively. 

 Group 5 (control structures, arrays, and 

exceptions): the style rules in this group check 

the Java source for basic programming control 

(if, else if, for, while, … etc.) blocks, where each 

control statement must be followed by block-

begin and block-end braces, even in a single-

statement control. In addition, each brace should 

be followed by a whitespace line. Moreover, 

array brackets should be declared after the 

variable name with a single space between 



318                                                             The International Arab Journal of Information Technology, Vol. 19, No. 3, May 2022 

brackets in two-dimensional arrays. Regarding 

exception handlers, each exception must consist 

of three blocks (try, catch, and finally) even if 

some blocks are empty.  

6. In the last step, all warning messages are stored in a 

database and displayed in table format. 

 

Figure 1. Process of JCQR algorithm.

4. Evaluations 

Herein, the JCQR tool was evaluated and compared 

with other tools using a Java test program [36] stored 

as a text file in UTF-8 encoding. The program has 

3103 lines of code. It was checked using our tool by 

considering its functionality, classes, packages, and 

whether it was correctly compiled and run on Java 

platforms. This piece of code was input to JCQR, 

which read the code, performed an evaluation using the 

predefined quality standards, and detected any defects. 

Moreover, the tool provided advice regarding possible 

corrections. Additionally, the Java code was tested by 

other code reviewer tools, namely, PMD and Bug 

Finder, for comparison. Once the target program file 

has been imported to JCQR, the code quality reviewer 

can select any rule groups (discussed earlier) to 

examine the code. In this study, JCQR was run with all 

the rule categories. The output summary is shown in 

Table 1. 

Table 1. JCQR test program output summary. 

Error Name Incidence 

No rule violation 19 

Class names must start with a capital letter. 1 

If, for, while, switch must be followed by a “{“in the 

next line. 
852 

Line length must be less than 80 characters, the line 

should be wrapped 
40 

The second for loop counter must be int j 1 

The third for loop counter must be int k 1 

As seen in the table below (Table 1), there are 

various error types. However, some errors appear 

quite often. All applicable rules, whether satisfied or 

violated, are shown with the corresponding line 

number. If a rule is satisfied, this is indicated by the 

message “No violation detected” or “No ‘rule category 

name’ violations”, whereas if a rule is violated, the 

corresponding line number is output along with two 

messages. The first describes the violation, and the 

second message suggests a correction. Figure 2 shows 

an output sample. 

High-incidence errors may indicate programmer 

weaknesses or pieces of code that require practice. 

This type of code inspection is quite useful for junior 

developers and programming students. It can increase 

their awareness of coding standards and can assist in 

establishing a successful programing culture. Code 

inspection tools such as JCQR and PMD can aid 

developers in reducing the defects in their code, as well 

as the bugs detected by testers and the quality 

assurance department. The proposed tool provides 

students with the opportunity to practice quality 

inspection of Java code at the early stages of 

programming learning, as it offers advice and 

suggestions regarding code defects, thereby assisting in 

incorporating coding standards. This has also been 

discussed and proposed as a Pedagogical Code 

Reviews (PCR) tool [31]. 

In addition, JCQR facilitates code acceptance in the 

industry, where change-based code review is gaining 



A Heuristic Tool for Measuring Software Quality Using Program Language Standards                                                          319 

support, demonstrating that the present tool is well 

aligned with current code reviews [11].  

Writing code without following standards is 

correlated with the number of defects discovered in the 

reviewing process. Therefore, JCQR, which is based 

on code standards, may be beneficial in this regard. 

However, JCQR has certain limitations with 

medium and large programs, and it is more useful for 

simple programs that are used to train and teach 

students and beginner developers, as it can detect 

fewer errors than PMD.  

 

Figure 2. JCQR output sample. 

Unlike PMD and Bug Finder, JCQR is a standalone, 

platform-independent tool, and therefore it can be used 

in different computers with different platforms. Table 2 

shows a comparison between JCQR, PMD, and Bug 

Finder. 

 Table 2. Comparison between JCQR, PMD, and bug finder. 

Example Statistics 

 JCQR PMD Bug Finder 

Rule applications 914 Not available Not available 

Rule-satisfaction incidents 19 Not available Not available 

Rule-violation incidents 895 22 22 

 

It can be seen that only JCQR indicates the rules 

that were applied and, among them, those that were 

satisfied. This facilitates the identification of code 

strength areas.  

It should be noted that the number of violations is 

significantly higher in PMD and Bug Finder than in 

JCOR because JCQR uses only a few code writing 

standards. Therefore, when these standards are not 

applicable, a rule-violation incident occurs. However, 

this can be an advantage of JCQR because it focuses 

on students and junior developers, and it can assist this 

group in effectively learning programming standards. 

In Table 3, the three tools are compared in terms 

general specifications, providing a general overview. 

Thus, developers and inspectors may select the best 

tool. Moreover, the differences of JCQR are pointed 

out. 

Table 3. Inspection tools comparison using general specifications. 

General Tool Specifications 

 JCQR PMD Bug Finder 

Platform independent/plugin Platform independent Plugin Plugin 

IDE Independent Dependent Dependent 

Number of available rules 56 332 (PMD Doc) 424 (Doc V 3.0.1) 

Shows applied rules (both satisfied and violated) Yes No No 

Shows code line of applied rules Yes Not Available Not Available 

Input type Any text file with UTF-8 encoding Only .java file Only .java file 

User friendly 
Suitable for junior developers and 

students 
Not suitable for students. Not suitable for students 

Standards used Sun rules and customized rules Sun rules and customized rules 
Sun rules and 

customized rules 

Rules Covers Five groups All Java features All Java feature 

Code is tested against all rules Yes Selected Roles Selected Roles 

Number of supported languages All Java-like syntax languages Six languages Only Java 

Version All Specific Specific 

Target Academic (students) General General 

Naming rules Multilevel naming rules (I, J, K) Single Single 

Operating system Windows/Mac Windows/Mac Windows/Mac 

5. Conclusions and Future Work 

In this paper, the Java code reviewer tool JCQR was 

proposed. It was developed as a free IDE, offering 

more dynamic options to developers. It is based on 

Java code standards and can check any piece of Java 

code saved as a text file. 

It uses five categories of code rules. Once the Java 

code is entered, it is checked using all the rules of each 

category. Subsequently, a table indicating all  

 
applied rules and, among them, those satisfied or 

violated is output. In addition, for violated rules, JCQR 

suggests a correction. 

This tool can help students, junior developers, and 

perhaps senior developers to produce high-quality code 

and learn how to apply Java rules in their code. 

In addition, the JCQR can help researchers who are 

interested in program analysis, code quality, and 

regression testing to discover the errors and code style 

mistakes introduced after maintenance. Moreover, it 



320                                                             The International Arab Journal of Information Technology, Vol. 19, No. 3, May 2022 

can help in defined how different developers who work 

in the same program are using different code styles. 

In future work, JCQR will be updated with more 

rules that cover the remaining Java features. In 

addition, we intend to apply it extensively in IT 

colleges and companies to determine its effectiveness. 

Moreover, we may introduce machine-learning 

algorithms and techniques, as suggested in [59], and 

use programming language standards as training data 

to detect code defects and regenerate the code so that it 

fulfills the standards. 

References 

[1] Abdallah M. and Al-Rifaee M., “Java Standards: 

A Comparative Study,” International Journal of 

Computer Science and Software Engineering, 

vol. 6, no. 6, pp. 146-151, 2017. 

[2] Abdallah M. and Al-Rifaee M., “Towards A New 

Framework of Program Quality Measurement 

Based on Programming Language Standards,” 

International Journal of Engineering and 

Technology, vol. 7, no. 2-3, pp. 1-3, 2018. 

[3] Adewumi A., Misra S., and Omoregbe N., “A 

Review of Models for Evaluating Quality in 

Open Source Software,” IERI Procedia, vol. 4, 

pp. 88-92, 2013. 

[4] Ahmed B., Gargantini A., Zamli K., Yilmaz C., 

Bures M., and Miroslav S., “Code-Aware 

Combinatorial Interaction Testing,” IET 

Software, vol. 13, no. 6, pp. 600-609, 2019. 

[5] Ala-Mutka K., “A Survey of Automated 

Assessment Approaches for Programming 

Assignments,,” Computer Science Education, 

vol. 15, no. 2, pp. 83-102, 2005. 

[6] Arafati O. and Riehle D., “The Comment Density 

of Open Source Software Code,” in Proceedings 

of 31st International Conference on Software 

Engineering-Companion Volume, Vancouver, pp. 

195-198, 2009. 

[7] Atoum I., “A Novel Framework for Measuring 

Software Quality-In-Use Based on Semantic 

Similarity and Sentiment Analysis of Software 

Reviews,” Journal of King Saud University-

Computer and Information Sciences, vol. 32, no. 

1, pp. 113-125, 2020. 

[8] Ayewah N., Pugh W., Hovemeyer D., 

Morgenthaler J., and Penix J., “Using Static 

Analysis to Find Bugs,” IEEE Software, vol. 25, 

no. 5, pp. 22-29, 2008. 

[9] Bader R., Alokush B., Abdallah M., Awad K., 

and Ngah A., “A Proposed Java Forward Slicing 

Approach,” Telkomnika, vol. 18, no. 1, pp. 311-

316, 2020. 

[10] Bakota T., Hegedüs P., Siket I., Ladányi G., and 

Ferenc R., “Qualitygate Sourceaudit: A Tool for 

Assessing the Technical Quality of Software,” in 

Proceedings of Software Evolution Week-IEEE 

Conference on Software Maintenance, 

Reengineering, and Reverse Engineering, 

Antwerp, pp. 440-445, 2014. 

[11] BaumT., Leßmann H., and Schneider K., “The 

Choice of Code Review Process: A Survey on the 

State of the Practice,” in Proceedings of 

International Conference on Product-Focused 

Software Process, Improvement, pp. 111-127 

2017. 

[12] Belli F. and Crisan R., “Towards Automation of 

Checklist-Based Code-Reviews,” in Proceedings 

of ISSRE '96: 7th International Symposium on 

Software Reliability Engineering, White Plains, 

1996. 

[13] Bernhart M. and Grechenig T., “on The 

Understanding of Programs With Continuous 

Code Reviews,” in Proceedings of 21st 

International Conference on Program 

Comprehension, San Francisco, pp. 192-198, 

2013. 

[14] Boehm B., Characteristics of Software Quality, 

North-Holland, 1978. 

[15] Bosu A., Greiler M., and Bird C., 

“Characteristics of Useful Code Reviews: An 

Empirical Study At Microsoft,” in Proceedings of 

the 12th Working Conference on Mining Software 

Repositories, Florence, pp. 146-156, 2015. 

[16] Brothers L., Sembugamoorthy V., and Muller M., 

“ICICLE: Groupware for Code Inspection,” in 

Proceedings of the ACM Conference on 

Computer-Supported Cooperative Work, Los 

Angeles, pp. 169-181, 1990. 

[17] Cavano J. and McCall J., “A Framework for The 

Measurement of Software Quality,” SIGSOFT 

ACM SIGSOFT Software Engineering Notes, vol. 

3, no. 5, pp. 133-139, 1978. 

[18] Curcio K., Malucelli A., Reinehr S., and Paludo 

M., “An Analysis of The Factors Determining 

Software Product Quality: A Comparative 

Study,” Computer Standards and Interfaces, vol. 

48, pp. 10-18, 2016. 

[19] Dalla-Palma S., Di-Nucci D., Palomba F., and 

AndrewTamburri D., “Toward A Catalog of 

Software Quality Metrics for Infrastructure 

Code,” Journal of Systems and Software, vol. 

170, pp. 110726, 2020. 

[20] Dey T. and Mockus A., “Deriving A Usage-

Independent Software Quality Metric,” Empirical 

Software Engineering, vol. 25, no. 2, pp. 1596-

1641, 2020. 

[21] Dos-Santos E. and Nunes I., “Investigating The 

Effectiveness of Peer Code Review in Distributed 

Software Development Based on Objective and 

Subjective Data,” Journal of Software 

Engineering Research and Development, vol. 6, 

no. 1, pp. 14, 2018. 

[22] Dunsmore A., Roper M., and Wood M., “The 

Development and Evaluation of Three Diverse 



A Heuristic Tool for Measuring Software Quality Using Program Language Standards                                                          321 

Techniques for Object-Oriented Code 

Inspection,” IEEE Transactions on Software 

Engineering, vol. 29, no. 8, pp. 677-686, 2003. 

[23] Ebert F., Castor F., Novielli N., and Serebrenik 

A., “Confusion Detection in Code Reviews,” in 

Proceedings of IEEE International Conference 

on Software Maintenance and Evolution, 

Shanghai, pp. 549-553, 2017. 

[24] Emden E. and Moonen L., “Java Quality 

Assurance By Detecting Code Smells,” in 

Proceedings of 9th Working Conference on 

Reverse Engineering Proceedings, Richmond, 

pp. 97-106, 2002. 

[25] Fagan M., “Design and Code Inspections To 

Reduce Errors in Program Development,” IBM 

Systems Journal, vol. 15, no. 3, pp. 182-211, 

1976. 

[26] Fagan M., “Advances in Software Inspections,” 

IEEE Transactions on Software Engineering, vol. 

SE-12, no. 7, pp. 744-751, 1986. 

[27] Fenton N. and Bieman J., Software Metrics: A 

Rigorous and Practical Approach, CRC Press, 

2014. 

[28] Fisher M. and Cukic B., “Automating Techniques 

for Inspecting High Assurance Systems,” in 

Proceedings of 6th IEEE International 

Symposium on High Assurance Systems 

Engineering. Special Topic: Impact of 

Networking, Boco Raton, pp. 117-126, 2001. 

[29] Hanna S., Jaber H., Abu-Jaber F., Al Shalaby T., 

and Almasalmeh A., “Enhancing The Software 

Engineering Curriculums: A Case Study of The 

Jordanian Universities,” in Proceedings of IEEE 

27th Conference on Software Engineering 

Education and Training, Klagenfurt, pp. 84-93, 

2014. 

[30] Hatton L., “Testing the Value of Checklists in 

Code Inspections,” IEEE Software, vol. 25, no. 4, 

pp. 82-88, 2008. 

[31] Hundhausen C., Agrawal A., and Agarwal P., 

“Talking About Code: Integrating Pedagogical 

Code Reviews into Early Computing Courses,” 

ACM Transactions on Computing Education, vol. 

13, no. 3, pp. 1-28, 2013. 

[32] IEEE: IEEE Standard for Software Reviews and 

Audits. IEEE Std 1028-2008, 2008. 

[33] IEEE, 730-2014, IEEE Standard for Software 

Quality Assurance Processes, 2014. 

[34] Ivan I., Zamfiroiu A., Doineaa M., and Despa M., 

“Assigning Weights for Quality Software Metrics 

Aggregation,” Procedia Computer Science, vol. 

55, pp. 586-592, 2015. 

[35] Jubilson E. and Sangam R., “Software Metrics 

for Computing Quality of Software Agents,” 

Journal of Computational and Theoretical 

Nanoscience, vol. 17, no. 5, pp. 2035-2038, 

2020. 

[36] Katleman., Added tag jdk7u6-b30 for changeset 

4bd052837497”. Version 1. 

http://hg.openjdk.java.net/jdk7u/jdk7u6/jdk/file/8

c2c5d63a17e/src/share/classes/java/lang/String.ja

va, Last Visited, 2021. 

[37] Klint P., Storm T., and Vinju J., “RASCAL: A 

Domain Specific Language for Source Code 

Analysis and Manipulation,” in Proceedings of 

9th IEEE International Working Conference on 

Source Code Analysis and Manipulation, 

Edmonton, pp. 168-177, 2009. 

[38] Kononenko O., Baysal O., and Godfrey M., 

“Code Review Quality: How Developers See It,” 

in Proceedings of IEEE/ACM 38th International 

Conference on Software Engineering, Austin, pp. 

1028-1038, 2016. 

[39] Lad´anyi G., “Business Process Quality 

Measurement using Advances in Static Code 

Analysis,” Acta Cybernetica, vol. 22, pp. 135-

150, 2015. 

[40] Lafi M., Botros J., Kafaween H., Al-Dasoqi A., 

and Al-Tamimi A., “Code Smells Analysis 

Mechanisms, Detection Issues, and Effect on 

Software Maintainability,” in Proceedings of 

IEEE Jordan International Joint Conference on 

Electrical Engineering and Information 

Technology, Amman, pp. 663-666, 2019. 

[41] Li Z., Jing X., and Zhu X., “Progress on 

Approaches to Software Defect Prediction,” IET 

Software, vol. 12, no. 3, pp. 161-175, 2018. 

[42] Mántylá, M., “Empirical Software Evolvability-

Code Smells and Human Evaluations,” in 

Proceedings of IEEE International Conference 

on Software Maintenance, Timisoara, pp. 1-6, 

2010. 

[43] McIntosh S., Kamei Y., Adams B., and Hassan 

A., “The Impact of Code Review Coverage and 

Code Review Participation on Software Quality: 

A Case Study of The Qt, VTK, and ITK 

Projects,” in Proceedings of Proceedings of the 

11th Working Conference on Mining Software 

Repositories, India, pp. 192-201, 2014. 

[44] McMeekin D., Von-Konsky B., Chang E., and 

Cooper D., “Checklist Inspections and 

Modifications: Applying Bloom's Taxonomy to 

Categorise Developer Comprehension,” in 

Proceedings of 16th IEEE International 

Conference on Program Comprehension, 

Amsterdam, pp. 224-229, 2008. 

[45] Parnas D. and Weiss D., “Active Design 

Reviews: Principles And Practices,” Journal of 

Systems and Software, vol. 7, no. 4, pp. 259-265, 

1987. 

[46] Pecka P., Nowak M., Rataj A., and Nowak S., 

“Solving Large Markov Models Described with 

Standard Programming Language,” in 

Proceedings of International Symposium on 

Computer and Information Sciences, pp. 57-67, 

2018. 



322                                                             The International Arab Journal of Information Technology, Vol. 19, No. 3, May 2022 

[47] PMD Software 2020; Available from: 

https://pmd.github.io/, Last Visited, 2021. 

[48] Rahman M. and Roy C., “Impact of Continuous 

Integration on Code Reviews,” in Proceedings of 

IEEE/ACM 14th International Conference on 

Mining Software Repositories, Buenos Aires, pp. 

499-502, 2017. 

[49] Ramler R., Moser M., and Pichler J., “Automated 

Static Analysis of Unit Test Code,” in 

Proceedings of IEEE 23rd International 

Conference on Software Analysis, Evolution, and 

Reengineering, Osaka, 2016. 

[50] Rodriguez-Prieto O., Mycroft A., and Ortin F., 

“An Efficient and Scalable Platform for Java 

Source Code Analysis Using Overlaid Graph 

Representations,” IEEE Access, vol. 8, pp. 

72239-72260, 2020. 

[51] Schnoor H. and Hasselbring W., “Comparing 

Static and Dynamic Weighted Software Coupling 

Metrics,” Computers, vol. 9, no. 2, pp. 24, 2020. 

[52] Singh D., Sekar V., Stolee K., and Johnson B., 

“Evaluating How Static Analysis Tools Can 

Reduce Code Review Effort,” in Proceedings of 

IEEE Symposium on Visual Languages and 

Human-Centric Computing, Raleigh, pp. 101-

105, 2017. 

[53] Style C., Software, Available from: 

http://checkstyle.sourceforge.net/, Last   Visited, 

2020. 

[54] Suma V. and Nair T., “Defect Management 

Strategies In Software Development,” arXiv 

preprint arXiv, 2012. 

[55] Taba N. and Ow S., “A Scenario-Based Model to 

Improve the Quality of Software Inspection 

Process,” in Proceedings of 4th International 

Conference on Computational Intelligence, 

Modelling and Simulation, Kuantan, pp. 194-198, 

2012. 

[56] Thongtanunam P., Kula R., Cruz A., Yoshida N., 

and Iida H., “Improving Code Review 

Effectiveness Through Reviewer 

Recommendations,” in Proceedings of the 7th 

International Workshop on Cooperative and 

Human Aspects of Software Engineering, 

Hyderabad, pp. 119-122, 2014. 

[57] Thongtanunam P., McIntosh S., Hassan A., and 

Iida H., “Review Participation in Modern Code 

Review,” Empirical Software Engineering, vol. 

22, no. 2, pp. 768-817, 2017. 

[58] Tomas P., Escalona M., and Mejias M., “Open 

Source Tools for Measuring the Internal Quality 

of Java Software Products. A Survey,” Computer 

Standards and Interfaces, vol. 36, no. 1, pp. 244-

255, 2013. 

[59] Tsuda N., Washizaki H., Fukazawa Y., YasudaY., 

and Sugimura S., “Machine Learning to Evaluate 

Evolvability Defects: Code Metrics Thresholds 

for a Given Context,” in Proceedings of IEEE 

International Conference on Software Quality, 

Reliability and Security (QRS), Lisbon, pp. 83-

94, 2018. 

[60] Wang Y., Li H., Feng Y., Jiang Y., and Liu Y., 

“Assessment Of Programming Language 

Learning Based On Peer Code Review Model: 

Implementation and Experience Report,” 

Computers and Education, vol. 59, no. 2, pp. 

412-422, 2012. 

[61] Winkler D., Sabou M., Petrovic S., Carneiro G., 

Kalinowski M., and Biffl S., “Improving Model 

Inspection with Crowdsourcing,” in Proceedings 

of the 4th International Workshop on 

CrowdSourcing in Software Engineering, Buenos 

Aires, pp. 30-34, 2017. 

[62] Ziade H., Ayoubi R., Velazco R., “A Survey on 

Fault Injection Techniques,” The International 

Arab Journal of Information Technology, vol. 1, 

no. 2, pp. 171-186, 2004. 

Mohammad Abdallah Received the 

Ph.D. degree in Software 

Engineering from Durham 

University, UK in 2012. The M.Sc. 

degree in Software Engineering 

from Bradford University, UK in 

2008. BSc in Computer Science 

from Al-Zaytoonah University of Jordan in 2007. 

Currently, he is the Director of Technology Transfer 

Office and an Assistant Professor of Software 

Engineering Department in Al-Zaytoonah University. 

His research interests in Quality Engineering. 

Mustafa Alrifaee Received the 

B.Sc. and M.Sc. degrees in 

information technology from the 

University of Sindh, Pakistan, in 

2001. He received the Ph.D. degree 

in Computer Science\Multimedia 

from University of De Montfort, 

UK, in 2015. Currently he is a member in the 

Computer Science Department in Al-Zaytoonah. 

 

https://pmd.github.io/
http://checkstyle.sourceforge.net/

