
102 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

Virtual Rule Partitioning Method for Maintaining

Database Integrity
Feras Hanandeh, Hamidah Ibrahim, Ali Mamat, and Rozita Johari

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Malaysia

Abstract: The variant execution time of the update operation repair rules in a parallel and distributed environment is highly
affected by the way the rules and tables settled in a database in according to whether they were partitioned or not. The well-
known partitioning methods in the database were succeeded to reduce the response time of update operations since they
expeditiously execute the update operation affecting different sites of partitions. These methods are mortgaged by the
determination of the type of partitioning during the design state of the system fixing all sites of the partitioned tables and
distributed rules to different nodes. Although distribution and partitioning have these merits, it still face some restrictions since
it may be time consuming for the distributed system to locate the proper rule and the partition of data, which fulfill the
requirement of repair update operation. This paper proposes virtual rule partition method. This method has more advantages
over the classical methods because it allows us to reduce the total cost or the total response time consumed by repair update
operations using horizontal partitioned tables.

Keywords: Active database systems, database partitioning, symantec integrity maintenance.

Received April 2, 2003; accepted August 10, 2003

1. Introduction
The reliability of information systems is a major
concern for today’s society and enterprises. The
correctness or maintaining database integrity of
databases is one of the main reliability issues.
Consequently procedures asserting correct databases
are a chief focus of research. Today the prime
obstacles applying these procedures are their high
computational costs. Integrity maintenance is
considered one of the major application fields of rule
triggering systems. In the case of a given integrity
constraint being violated by a database transition these
systems trigger update operation (action) to maintain
database integrity. The variant execution time of an
action (update operation) in a parallel and distributed
environment is highly affected by the way the rules
and tables settled in a database. Parallel execution of
the update operations implies the distribution of the
execution of these actions into different partitions.
Rule triggering systems will then initiate for each
location specific sub process through a request from
the demander (the generator of the update operation)
towards the subscribers (the processing units) and vice
versa. The total time by a given update operation to
answer a given query applied to a parallel database
system is greatly affected by some events [9]. One of
the events is the physical location of tuples that could
satisfy the conditions emitted by the query. Another
event is the number of participants or quorum size.

The main idea of distributed database is to partition
all database entities like tables and rules having certain

homogeneity criteria and locate each coherent group of
information in different sites. This will simplify
dealing with its subgroups containing homogeneity
data avoiding dealing with the whole data, which may
contain great amount of data.

This paper is organized as follows. In section 2, we
provide some related work on the partitioning and
fragmentation. In section 3, we define some
terminologies related to the time required to satisfy a
given action, the term Update Operation Repair Rule
(UORRs) is used in our work. Section 4 discusses the
physical partitioning with examples. Section 5 presents
our proposed virtual rule partitioning method. Section
6 presents the results of our proposed method. Finally,
in section 7 the conclusion of this work is addressed.

2. Related Work
Semantic Integrity Maintenance Systems and database
partitioning are a very closed area of research, since
many researchers have proposed building Integrity
Maintenance Systems exploiting the advantage of
database partitioning to ease the process by reducing
both time and cost. Partitioning strategies should be
included in the definition of tables and need algorithms
to locate such partitions [5, 7]. On the other hand
Semantic Integrity Constraints declarations specify
additional properties or relationships of attributes and
relations, which cannot be included in the definition of
tables [2].

In parallel database systems the need for
partitioning the relations become so essential since a

Virtual Rule Partitioning Method for Maintaining Database Integrity 103

great amount of data need to be accessed during the
execution of a query. Different processors access
different partitions of the relation at the same time.
Various forms of data partitioning are described in the
literature. Hash-based horizontal fragmentation [1],
since this form enables parallel query. Logical notation
[5] specifies the way in which a database is partitioned.
This notation is first used to specify how relations are
partitioned in one or more dimensions. [5] introduced
the concept of region. A region is a collection of
partitions taken from database relations. The partitions
that are gathered into a region will contain data, which
is semantically interrelated in some way. When
complex partitioning strategies are applied to a
relation, tuples may be required to migrate between
partitions even if they remain unchanged by an update.
As partitioning strategies become more complex, the
costs of managing tuple migration rise.

In order to achieve database fragments in distributed
database, researchers have proposed a number of
different and diverse mechanisms [4, 5, 8, 9] the most
successful being the horizontal, vertical, and mixed
fragmentation methods. These fragmentation methods
can be used in parallel database systems [5] where no
centralization for the relations is expected. Different
processors access more than one fragment the same
time.

3. Preliminaries
A relational database is a collection of relations, each
corresponding to a database predicate. Each relation R
is a collection of tuples Ti satisfying the corresponding
predicate R, i.e., R(Ti) is TRUE. An intentional
(derived) predicate is a predicate defined in terms of
the database predicates. Let V be an intentional
predicate that denotes a violation of the database
Integrity Constraint IC, (i.e., V is the negation of IC).
Efficient computation of V is critical in detecting
semantic violations caused by erroneous database
update operations. An integrity constraint is the
primary tool of integrity maintenance system
specifying a condition that should be satisfied by the
database. A database update transaction is defined as a
collection of insertions into and deletions from the
database. Update Operation Repair Rules (UORRs) are
defined as the rules that response to constraint
violations. These rules have to take repair actions in
the case of exploring errors. Update Operation Repair
Rules have the following elements:

• The event is a set of pairs (u,r) with u ∈{INS, DEL,
UPD} and r a relation name. The event specifies the
update operations that may violate the constraint.

• The condition is a declarative specification of the
integrity constraint. It describes the condition that
should be met by the database in the formalism used
for integrity constraints.

• The repair action is an extended relational algebra
program, which specifies the actions to be taken if
the condition of the rule is not satisfied by the
database.

The following definitions which are related to the time
spent in satisfying a given UORRs are used in the rest
of this paper.

Definition 1: The total processing time to fire a rule
(FT) is the total time of each processing unit
participating in executing the rule.

Definition 2: (FC) is the total communications time
between the demander and all the related subscribers
participating in executing an update operation that fires

the appropriate rules i.e. F C =∑
=

n

x

tx
0

, where tx is the

required time for the demander to send the request to
subscriber x.

Definition 3: Total Rule Execution Time (FTRET) is
the total of both processing time (FT) and
communication time (FC) i.e. FTRET= FT+ FC.

Definition 4: Quorum (Q) is the number of partitions
accessed during the execution of a rule.

Lemma 1: Let a relation P with n attributes a1, a2, …,
an is partitioned into m partitions according to attribute
a2. Assume that an UORR with condition c requires
accessing some attributes from relation P then:

1. if the repair action is based on attribute a2, this will
reduce FT, F C and consequently FTRET compared
to the repair action which is based on attributes
other than a2 .

2. if the repair action is based on attribute other than
a2, this will increase FT, F C and consequently
FTRET compared to the repair action which is
based on attribute a2 .

Proof: In the first condition the requested tuple for
repairing is directly located since the condition is
based on a2 and therefore Q is 1. So the process time
FT will not have delay time since there will be only
one subscriber replying to the demander. Therefore
F C will be low and consequently FTRET. In the
second condition the requested tuple for repairing is
not directly located since the condition is not based on
attribute a2 and therefore Q >1. The process time FT
will have delay time since more than one subscriber
will have to reply to the demander. Therefore F C will
be high and consequently FTRET.

Throughout this paper the same example Job
Agency database is used, as given below. This
example is taken from [10] and used in [3].

Person (pid, pname, placed, area_code, state)
Company (cid, cname, totsal)
Job (jid, jdescr)
Placement (pid, cid, jid, sal)

104 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

Application (pid, jid)
Offering (cid, jid, no_of_places, qid)

4. Physical Partitioning
Traditionally, the physical partitioning methods such
as horizontal partitioning have been used to partition
relations into separated subgroups of tuples, which
have similar domains in a determined attribute group,
each subgroup called partition. Once the tables are
partitioned into fragments, it is important that the given
algorithms are applied to the mechanisms that recover
the information [5, 7]; that is to say, that the UORRs
would know where to locate the target partition, once
the condition implied in the rule is satisfied. In
physical partitioning, locating the set of group of tuples
should be requested according to the field which the
table was partitioned, otherwise the locating algorithm
will fail to reduce the time for locating the information
required for executing the update operation and
consequently firing the appropriate rules. The main
partitioning objective is to reduce the time by applying
an operation on specific tuples instead by applying of
all tuples in a relation. One restriction of such kind of
partitioning is that specifying the partitioning policy
must be taken when the table is created. This includes
the selection of attribute(s) as the criteria to partition
the table. This means that once an attribute(s) has been
selected and the table has been partitioned, no other
partition policy can be applied to the table.

Example 1
Suppose Person relation is horizontal partitioned into
n partitions according to area_code attribute. If we
have the following update operation:

when UPD (personi (pad, pname, placed,
 area_code, state))
 if area_code=211 then
 state = "Selangor"

where personi (pid, pname, placed, area_code, state) is
the partition created with the condition area_code=
211. Any attempt to update (UPD) the person table
with area_code=211, will execute the above update
operation. The quorum for this update operation is 1.
Therefore, the lowest quorum is obtained for this
example.
 If the update operation is stated as follows:

when UPD (personi (pid, pname, placed,
 area_code, state))
 if state = "Selangor" then
 area_code = 211

where i =1 to n and the same condition as the above
example is used to partition the person relation. Any
attempt to update (UPD) the person table with the
condition state = "Selangor" will execute the above

update operation to all of the partitions and therefore
the quorum for this update operation is n.

Theorem: Let R (a1, a2, …, an) denotes a relation
partitioned horizontally by the attribute a1 into
different partitions r1, r2, …, rm. Execution of an update
operation UO firing a rule Rule1 using attributes (a2,
a3, …, an) will cause a high FTRET which negatively
effect the execution of the update operation by leading
to more extra response time and cost.

Proof: Executing an update operation UO on a relation
R (a1, a2,…, an) firing the rule Rule1 causes the rule
parser to scan Q partitions r1, r2, …, rm of the relation
where Q >1. The requested tuple for checking whether
the condition of the rule is satisfied or not is not
directly located since the condition is not based on
attribute a1 and therefore Q >1. This will lead to more
extra response time and cost as shown in Figure 1.

 R1 R2 R3 ... Rn

Figure 1. Physical partitioning method.

5. Virtual Rule Partitioning Method
Virtual Rule Partitioning (VRP) concentrates in
generating, as solicited by the user at any time t1, a
Virtual Partition (VP) of tuples Ti satisfying one or
several conditions specified in UORR. VP will be
emitted in different times t2 (∀t2)(t2>t1). VRP is
applicable to parallel database systems that work in
architecture of type nothing share. VRP main objective
is to reduce the FTRET used to repair erroneous
database state.

The set of UORR specifications in our approach is
defined as follows. event is a specific update operation.
condition is an integrity constraint specification, and
repair action is an extended relational algebra repair
action. Then the following construct is a UORRs
specification:

 WHEN event
 CREATE VIRTUAL PARTITION
 Vpname
 ON predicate

Physical
Partition
Dictiona

ry

Demander

Update Operation

Rule parser

Scan

Virtual Rule Partitioning Method for Maintaining Database Integrity 105

 attributes (X1, X2, …, Xn)
(RANK (Xi)
Between (‘cv1’, ‘cv2’ partition: 0),
Between (‘cv3’, ‘cv4’ partition: 1),
.
.
.
Between (‘cvn-1’, ‘cvn’ partition: n-1),
Default (partition: n))

 if not condition
 then repair action

 where event={INS, DEL, UPD}
 cv1, cv2, …, cvn are constant values.
 repair action={INS, DEL, UPD}

Example 2

CREATE VIRTUAL PARTITION
Vp_no_of_places ON offering
ATTRIBUTES (no_of_places)
(RANK (no_of_places)
Between (‘1’, ‘10’ partition: 1),
Between (‘11’, ‘20’ partition: 2),
Default (partition: 3))

CREATE VIRTUAL PARTITION
Vp_jid ON offering
ATTRIBUTES (jid)
(RANK (jid)
Between (‘1’, ‘5’ partition: 1),
Between (‘6’, ‘10’ partition: 2),
Default (partition: 3))

Based on the above example the system will create six
virtual partitions. These partitions will contain an
organization strategy according to the values of the
no_of_places and jid attributes.

when UPD (offering (cid, jid, no_of_places, qid))
if not (∀X)(X∈(offering)⇒ X.no_of_places= 0)
 then
 delete (offering (cid, jid, no_of_places, qid),
 σ no_of_places<0(offering));

 when UPD (offering (cid, jid, no_of_places, qid))
 if not (∀X)(X∈(offering)⇒X.jid=3)
 then
 UPD (X.jid=3);

Such that in both rules Q =1. The virtual Update
Operation Repair Rule partitioning mechanism will
result in Q =1, where n is the number of nodes,
reducing FT and F C and consequently FTRET.

The flexibility of creating or eliminating the VRP at
any time depends on the user request is one of the
major benefits of the proposed methodology. The
proposed method concentrates on locating the nodes to

the rules where the desired partition requested by the
rules for repairing the erroneous state. So the
mechanism is not restricted to a specific physical
partitioning.

Example 3
Following the intentional rule:

when INS (Application (pid, jid))
if not ∀(X)(X∈Application ⇒ ∃(Y)(Y∈ Person and
X.pid=Y. pid))
 then INS (Person (pid, pname, placed, area_code,
state))

which implies that when a person pid applies for a job
(insert into application table) and the information of
the person is not in the person relation then one of the
repair action that can be performed is to insert the
information of the person into the person relation.

Giving the constraint C:
“Preventing person pid to apply for a job without
being inserted in the person relation”

Consider an update operation:
T=INS (Application (Pid, Jid))

Supposing that person who has the number Pid has no
tuple in person relation, the update operation will
violate the constraint C and can be repaired by:

WHEN INS (Application (Pid, Jid))
CREATE VIRTUAL PARTITION
Vpname
ON Person
ATTRIBUTES (Pid)
(RANK (Pid)
Between (‘1’, ‘100’ partition: 1),
Between (‘101’, ‘200’ partition: 2),
Between (‘201’, ‘300’ partition: 3),
Between (‘301’, ‘400’ partition: 4),
Between (‘401’, ‘500’ partition: 5),
Default (partition: 6))
if not ∀(X)(X∈application⇒ ∃(Y)(Y∈ Vpname and
X.pid=Y.pid)
 then INS (Person (pid, pname, placed, area_code,
state))

The lowest quorum is the most important request for
the demander update operation to be executed
properly. Referring to the example in section 4, the
first update operation insure that accessing the physical
partitioning of the table will result in reducing the total
rule execution time since the person table physically
partitioned using the area_code attribute. When the
table also has VPs according to some attributes, all of
VPs will be evaluated to choose the best strategy by
comparing the quorum of each of the VP to select the
lowest one. On the other hand, if the rule fired through
an update operation affecting the person table using
attribute other than state to locate a part of data for
updating, then accessing the physical partitioning will

106 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

be excluded and substituted by the virtual partitioning
strategy.

Virtual rule partitioning strategy has advantages
over physical partitioning and parallel processing is a
proper environment to execute update operations with
repair rules. There are some constraints, which restrict
using such strategy. The idea of demander and
subscribers is recommended to update operation with a
very maximum workload. There is a communication
between the demander and other subscribers to execute
the global operation. This update operation with the
fired rules will take more time when there is just little
data affected by the update operation. This is because
every subscriber will have to communicate with the
demander informing it that it hasn’t find tuples, which
accommodate the condition. So centralization with no
partitioning strategy either physical or virtual will be
more advisable in such cases.

6. Results
We have run different experiments using simulation
system with the following parameter settings:

N: Number of Processors.
MIT: Mean Interarrival Time.
MET: Mean Execution Time.
MRDT: Mean Repair Data Time.
NUO: Number of Update Operation.

where Mean Interarrival Time is the average time of
sending update operations to the system. The Mean
Execution Time is the average time of executing every
update operation, while Mean Repair Data Time is the
average time of repairing the erroneous state, which
occurs when an update operation is executed.

Three experiments run 1000 update operations on 5
processors (see Tables 1, 2, 3 and Figures 2, 3, 4). As
we can see the proposed method has reduced the
update operation delay in the queue. This result is due
to the fact that the demander could not determine
where the tuples with the specified condition are
located in the physical partitions. This state occurs
when the tuple is partitioned according to an attribute
other than the attribute in the specified condition.

Table 1. First experiment.

INPUTS OUTPUTS
 VRP PhRP

MIT 1 second ADQ 0.869 2.565

MET 2 seconds ANQ 0.78 2.224

MRDT 4 seconds SU 3.899 4.401

NUO 1000 TSE 1113.092 1163.126

VRP: Virtual Rule Partitioning, PhRP: Physical Rule Partitioning, ADQ:
Average Delay in Queue, ANQ: Average Number in Queue, SU: Server
Utilization, TSE: Time Simulation Ended.

0

1
2

3
4

5
6

7
8

9
10

physical partition virtual partition
PARTITION TYPE

TI
M

E

SU

ANQ

ADQ

Figure 2. Repair times used for a specific UORR (1st experiment).

Table 2. Second experiment.

0

2

4

6

8

10

12

physical partition virtual partition
PARTITION TYPE

TI
M

E

SU

ANQ
ADQ

Figure 3. Repair times used for a specific UORR (2nd experiment).

Table 3. Third experiment.

INPUTS OUTPUTS
 VRP PhRP

MIT 1 minute ADQ 2.759 3.415

MET 4 minutes ANQ 2.288 3.093

MRDT 2 minutes SU 4.508 4.508

NUO 1000 TSE 1105.28 1207.812

0

2

4

6

8

10

12

physical partition virtual partition

PARTITION TYPE

T
IM

E

SU
ANQ
ADQ

Figure 4. Repair times used for a specific UORR (3rd experiment).

7. Conclusion
We have shown that virtual rule partitioning as a new
method of partitioning allows us to diminish the time
of processing used by firing some UORRs. The
physical partitioning methods help to a great extent to

INPUTS OUTPUTS
 VRP PhRP

MIT 1 second ADQ 1.588 3.691

MET 2 seconds ANQ 1.483 3.113

MRDT 6 seconds SU 4.368 4.62

NUO 1000 TSE 1113.092 1163.126

Virtual Rule Partitioning Method for Maintaining Database Integrity 107

speedup the execution of rules. These methods depend
on the creation of the tables, which specify the
partitioning policy that is taken when the table is
created. This includes the selection of an attribute as
the criteria to partition the table. Total execution time
of the UORRs will highly affected by the form in
which the tables were partitioned. Our strategy VRP is
not concern by the way the table is partitioned. VRP
can be used in parallel database systems, and we have
to take into account that parallelism is not always the
proper way to execute update operations. Parallel
database systems are more advisable to be used in a
maximum workload means that the UORRs must be
fired to a huge amount of data to scan it. Applying the
proposed approach with little amount of data will result
in extra time between the demander and subscribers in
different nodes just to tell the demander that there is no
tuples satisfying the condition.

References
[1] Grefen P. W. “Integrity Control in Parallel

Database Systems,” PhD Thesis, University of
Twente, Netherlands, October 1992.

[2] Hanandeh F. A., Ibrahim H., and Muda Z., “A
Strategy for Semantic Integrity Maintenance for
Parallel Relational Database Systems,” in
Proceedings of the 2002 International Arab
Conference on Information Technology
(ACIT'2002), Qatar, vol. 2, pp. 714-719,
December 2002.

[3] Ibrahim H., “Extending Transactions with
Integrity Rules for Maintaining Database
Integrity,” in Proceedings of the International
Conference on Information and Knowledge
Engineering (IKE'02), USA, pp. 341-347, June
2002.

[4] Ibrahim H., “Semantic Integrity Constraints
Enforcement for Distributed Database,” PhD
Thesis, University of Wales Cardiff, June 1998.

[5] Jaime A. A., “Mixed Fragmentation Strategy in a
General Purpose Parallel Databases System,”
Second National Encounter of Computation
ENC99, Mexican Society of Sciences of the
Computation and Mexican Society of Artificial
Intelligence, Autonomous University of the State
of Hidalgo, Mexico, September 1999.

[6] McCarroll N. F., “Semantic Integrity
Enforcement in Parallel Database Machines,”
PhD Thesis, Department of Computer Science,
University of Sheffield, Sheffield, UK, May
1995.

[7] Ozsu M. T. and Valduriez P., Principles of
Distributed Database Systems , Prentice Hall,
1991.

[8] Seong-Jin P. and Bair D., “A Data Allocation
Considering Data Availability in Distributed
Database Systems,” International Conference on

Parallel and Distributed Systems, Korea, pp.
708-713, 1997.

[9] Thomas J. and Waston R., “A Fractional Data
Allocation Method for Distributed Databases,” in
Proceedings of the Third International
Conference on Parallel and Distributed
Information Systems, NY, USA, pp.168-175,
September 1994.

[10] Wang X. Y., “The Development of a Knowledge-
Based Transaction Design Assistant,” PhD
Thesis, Department of Computing Mathematics,
University of Wales College of Cardiff, Cardiff,
UK, 1992.

Feras Hanandeh obtained his BSc
in computer science from Yarmouk
University, Jordan in 1993, MSc in
computer science from University
Putra Malaysia, Malaysia in 2000.
Currently, he is a PhD candidate at
University Putra Malaysia. His

research interest includes parallel databases and logic
programming. He has published a number of papers
related to these areas.

Hamidah Ibrahim obtained her
PhD from the University of Wales,
Cardiff in 1998. Currently, she is a
lecturer at the Faculty of Computer
Science and Information
Technology, University Putra
Malaysia. Her research areas

include distributed databases and knowledge based
system. She has published a number of papers related
to these areas.

Ali Mamat is an associate professor
in the Computer Science Department
at University Putra Malaysia. He
obtained his PhD in 1992. His
research interest includes databases,
logic programming and knowledge
base.

Rozita Johari obtained her BSc in
computer science and mathematics
from Pittsburg State University,
Kansas in 1986, MSc in computer
science from Illinois Institute of
Technology, Chicago in 1987 and
completed her PhD at University

Putra Malaysia.

