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Abstract: In wireless sensor networks, one of most important issues is data collection from sensors to sink. Many researchers 

employ a mathematical formula to select the next forwarding node in the network-wide manner. We are motivated that 

surrounding environments for nodes are different in time and space. Because different situations of nodes are not considered 

for selecting the next forwarding node, the performance of data collection is degraded. In this paper, we present an intelligent 

approach for data collection in sensor networks. We model a nonlinear cost function for determining the next forwarder 

according to the input types whether inputs are correlated or uncorrelated for generating the output of the function. In our 

method, the correlated inputs are presented in a weighted sum with the dependent fashion but the uncoupled inputs with an 

independent fashion in the nonlinear function. The weights in the functions are determined to the direction in which the 

reliability of data collection maximizes. In the experimental section, we show that our method outperforms other conventional 

methods with respect to the efficiency in data collection from sensors to sink. 
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1. Introduction 

In wireless sensor networks, one of main purposes is to 

deliver sensed data collected from multiple sensors to 

data collection device or sink. The wireless sensor 

network has been attracting much attention from many 

researchers in recent years [5]. The networks have a 

wide range of applications [11, 18]. Especially, they 

are useful in continuously acquiring information in 

inaccessible or perilous areas for some time duration. 

The issues on constructing sensor networks, such as 

the deployment of sensors and sinks and the data 

collection schemes of sinks from sensors, are well 

addressed in the literature of wireless sensor networks 

[1, 14]. 

In general, data delivery in a sensor network is 

based on the premise that data from sensor to sink are 

loss-tolerant due to the sheer amount of correlated data 

[19]. However, since a sink may take appropriate 

actions based on the information provided by sensors, 

the accuracy of the situation awareness is improved 

from reducing the data loss. To reduce the loss, many 

researchers employ a mathematical formula for data 

collection from sensors to sink in the network-wide 

manner. Conventional approaches [2, 10] usually 

model an optimal link cost function using more than 

one input metric in order to select next forwarding 

neighbor node. They determine the optimal 

coefficients in the cost function without considering 

the node surrounding environments such as the 

wireless propagation environment or the geographical 

environment. Some methods employ a nonlinear 

function for selecting the next forwarding node [21, 

27]. However, they do not consider the input types 

whether inputs are correlated or uncorrelated for 

generating the output of the function even though the 

knowledge of input type can provide critical 

information. Because of this, their methods sometimes 

do not provide a meaningful performance. We are 

motivated that surrounding environments for sensor 

nodes are different in time and space and the 

characteristics of input types should be considered to 

improve the performance.  

In our approach, the correlated inputs are presented 

in a weighted sum with the dependent fashion but the 

uncoupled inputs with an independent fashion in the 

nonlinear function. After modeling the nonlinear 

function, we determine the optimal weights to inputs 

from training the function to the direction that the 

reliability of data collection maximizes. In the 

experimental section, we show that our method 

outperforms other conventional methods with respect 

to the efficiency in data collection from sensors to sink. 

The remainder of this paper is organized as follows. 

Section 2 presents the data collection problem from 

sensors to a sink in sensor networks and explains 

drawbacks of the related works. In section 3, we derive 

our nonlinear link cost function of selecting the next 

forwarding node. In addition, we present the training 

technique for selecting the optimal weights in the 

function. In section 4, the performance of our method 

is evaluated from the NS-2 based simulation results, 

and finally, we conclude in section 5. 
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2. Data Collection Problem 

The data collection problem has been an active 

research area in a wireless sensor network where a path 

should be provided for a sink to collect sensed data 

from sensors. Previous researches for the data 

collection can be classified into mobile sink approach 

[3, 24] and relay node approach [7, 13]. In the first 

approach, a mobile sink must go back and forth 

between sensors to gather sensed data. It takes time for 

a mobile sink to travel into a transmission range of a 

sensor. In the meantime, the sink cannot collect the 

sensed data in time. Sensor nodes nearby a sink 

forward many data from other sensors to the sink, 

compared to the sensor nodes that are located far from 

the sink. To reduce the energy consumption of the 

nearby nodes, a relay node approach is derived. A 

Relay Node (RN) is supposed not to generate or 

consume data, but to just forward data from source to 

destination. One of the important issues in relay node 

approach is the optimal placement of RNs to guarantee 

data collection. In an environment where a sink 

collects data from sensors, the network topology can 

be changed due to the node failure or discharge of 

battery. In this case, it is difficult to locate optimally 

RNs in the environment. Typically, for applications 

such as a military zone, disaster area, or underwater, it 

is not expected to control the optimal placement of 

RNs. Taking these issues into consideration, we 

assume that an RN is deployed in a random pattern in 

the sensor network and we focus on the data collection 

from sensors to the sink in the network. 

Usually, the conventional approaches for data 

collection model a cost function using more than one 

input metric to improve the performance. The 

Expected Transmission Count (ETX) [4], Expected 

Transmission Time (ETT), Weighted Cumulative ETT 

(WCETT) [6] metrics have employed the combined 

function of various inputs such as packet loss 

probability, bandwidth, and packet size. In many other 

approaches, the link cost is computed using energy-

based inputs such as network lifetime and remaining 

energy of a node, as well as throughput and end-to-end 

delay [12, 17, 20, 25, 26]. However, the conventional 

approaches determine the unified coefficients in the 

cost function without considering the surrounding 

environments of each node. Since the surrounding 

environments of a node are different from each other, 

the performance is degraded when the unified 

coefficients are employed to determine the path for 

data collection. To solve the problem, some 

approaches employ for obtaining the customized 

coefficients for environments of each node. Self-

Selective Routing (SSR) [21] attempts to find the next 

forwarding node with the smallest number of hops to 

the destination using the proposed lecture hall 

algorithm originated in the field of artificial 

intelligence. It assumes that the neighbour node with 

the smallest number of hops to the destination is the 

best candidates for forwarding data. Distributed Neural 

Networks Routing (DNNR) [27] employs the angle of 

the neighbor node to sink and remained energy of the 

neighbor to obtain the link cost for data delivery to the 

destination. It mainly focuses on reducing the energy 

consumption and data transmission delay. However, 

the reliability of data collection is affected by wireless 

channel condition and channel contention between 

nodes, as well as hops distance to the destination and 

data transmission delay. The approaches do not 

consider the input types for generating the output of 

the cost function. Because of this, the method is 

limited on performance improvement. We overcome 

the problem by considering the input types and the 

details are explained from the following section. 

 

3. Intelligent Approach for Data Collection 

In this section, we detail the proposed intelligent 

approach for data collection to reduce the data loss and 

the delay of data delivery. When a sensor intends to 

send its data, a path from the sensor to the sink needs 

to be established to deliver the data. Since the packet 

loss probability in a wireless multi-hop communication 

environment increases with the number of hops [23], 

we choose the hop distance from the RN serving the 

sensor to the sink as one of the metrics for data 

collection. The sink periodically floods a PROBE 

message over the entire network so that each RN in the 

network can infer the hop distance from itself to the 

sink through each of its neighbor RNs. The large 

flooding interval of a PROBE message seems adequate 

because the topology of the sensor network is quasi-

static. It is well known that a packet loss in a wireless 

network can happen either due to collision or due to a 

weak signal [16]. Each RN periodically sends a 

HELLO message to its neighbor RNs as its heartbeat. 

Through the exchange of HELLO messages, each RN 

measures Received Signal Strength (RSS) and Hello 

message reception ratio for each of its neighbour RNs. 

The Hello message reception ratio reflects the impact 

of channel contention from neighbour RNs and 

represents the ratio of the number of Hello message 

received from a neighbour RN to the number of the 

Hello message sent by the RN.  

Using RSSs, the reception ratios of HELLO 

messages, and the hop distances for neighbour RNs, a 

path setup process is triggered. The RNs construct the 

path with the following procedures. 

1. Serving RN Selection: In this paper, the serving RN 

of the sensor is the RN that is the last hop of the 

path from a sensor to the sink. The RNs start to 

construct a path when they receive data from a 

sensor for the first time. Since wireless transmission 

is broadcasted in nature, more than one RN can 

receive the data from the sensor. Therefore, the 
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method to determine a serving RN is required. The 

serving RN of a sensor is selected in the following 

manner. A sensor sends a SOLICIT message to 

neighbouring RNs by one-hop flooding. When an 

RN receives the SOLICIT message, it responds with 

a ADVERTISE message having the maximum cost 

among link costs for its neighbour RNs. Then the 

sensor selects the RN with the largest link cost as its 

serving RN and it sends a CONFIRM message to 

the selected RN. 

2. Next-hop RN Determination: After the serving RN 

for a sensor is selected, the serving RN initiates the 

path construction procedure by forwarding the 

sensed data received from the sensor to the next-hop 

RN. The RN receiving the data from the serving RN 

continues the path construction by forwarding the 

data to its next-hop RN. This process repeats until 

when the data is delivered to the sink. An RN 

selects the neighbour RN with the maximum link 

cost, as the next-hop RN for data delivery toward 

the sink. 

Using the three metrics explained above, we show the 

derivation of the cost function in the following section. 

 

3.1. Modelling a Nonlinear Cost Function for 

Selecting the Next Forwarding Node 

In this subsection we derive the nonlinear function for 

selecting a serving RN and next-hop RN out of 

neighbor RNs by modelling a mathematical nonlinear 

equation. From our scientific intuition, the link cost 

depends on various numbers of input features. The 

input features are extracted from the characteristics of 

the wireless propagation environment and geographical 

environment surrounding an RN. In our paper, three 

inputs are extracted, i.e., RSS, denoted as x1, the Hello 

message reception ratio, denoted as x2, and hop 

distance, denoted as x3. The link cost function is 

modeled as a nonlinear combination of the input 

features and their corresponding weights as seen in 

equation 1. In general, each weight value is determined 

according to the importance of its corresponding input: 
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Where Costi is the link cost of the i
th
 RN out of 

neighbour RNs and f is a nonlinear function. The xij is 

the j
th
 input and wij is its corresponding weight. 

Usually, the log function is commonly used as the 

nonlinear function because of its characteristic as 

follows: Many natural processes have a history 

dependent progression in which it begins small and 

accelerates to some point and then approaches to a 

saturation point over input features. Thus, equation 1 

can be modified as follows: 
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As seen in equation 2, the function consists of the 

weighed sum of inputs regardless of the relationship 

among inputs. It is just like the black-box style 

connections between inputs and weights. However, we 

intuitively know that some inputs are highly correlated 

to each other like inputs xi1 and xi2. For instance, if a 

neighbor node has high RSS value then it is highly 

possible to have high message reception ratio. To take 

this into the consideration, we divide the sum of 

weighted inputs according to whether inputs are 

correlated or uncorrelated. The correlated inputs are 

presented in a weighted sum with the dependent 

fashion but the uncoupled inputs with an independent 

fashion in the nonlinear function as seen in equation 3:  
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From equation 3, the optimal performance of the cost 

function depends on the proper weight sets which can 

be obtained by training the function to the direction in 

which the reliability of data collection reaches to the 

maximum point. From the following subsection, we 

use the packet transmission success ratio as the 

measurement of the reliability of data collection for a 

convenience. 

 

3.2. Training Weights 

As mentioned, the weights in the function mean the 

importance of corresponding inputs for producing the 

link cost. So, each weight can be obtained from 

measuring the weight sensitivity with respect to the 

packet transmission success ratio. The process of 

training the cost function can be summarized as 

follows. 
 

1. Set to 1s' to all weight weights as an initial weight 

set (named old weights in this paper). 

2. Calculate Costi, i=1, 2, …, N, using equation 3. 

3. Select the neighbour RN having max link cost and 

forward data packets to the selected RN. 

4. Calculate the packet transmission success ratio 

which means the ratio of the number of packets 

transmitted successfully to the RN with max link 

cost to the total number of packets sent to the RN. 

5. Vary one weight by very small amount, denoted as 

δ, at one time each such as equation 4. The δ is 

called learning ratio. 

.3,2,1, =+← kww kk δ                                                                                          (4) 

6. Repeat the steps from 2 to 4 with the weights in 5 if 

there occurs any improvement on the packet 

transmission success ratio during the step 6, then 

replace the old weights to the updated weights. 

7. Repeat the steps from 2 to 6 by varying the learning 

ratio δ such as δ+△ until there is no improvement 

on the packet transmission success ratio. 

(1) 

(2)

(3)
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It is challenging to determine an optimal learning ratio. 

If we choose too large value of δ, it causes high 

convergence speed but it has high possibility of 

missing the optimal weight values. Too small value of 

δ is vice versa of too large value of δ where 

convergence speed is too small but low possibility of 

missing the optimal weight values. We determine the 

learning ratio by exhaustive empirical experiment as 

shown in the experimental section. 

 

4. Performance Evaluation 

We experiment our method using the NS-2 [22] 

simulator. We have used the log-normal model in [15] 

to model radio propagation environment. An RN sends 

a Hello message for every 100 milliseconds. IEEE 

802.11 [8] is used as the MAC layer. The transmission 

range of a node is 250m and the total simulation time 

is 360sec.  

 

4.1. Verification of the Types of the Inputs 

Before we model our nonlinear cost function using 

three inputs as mentioned in the previous subsection, 

we verify the types of the inputs, i.e., whether RSS and 

Hello message reception ratio are correlated or not. 

The verification is done using the input sensitivity 

explained in our previous work [9]. The verification 

algorithm is summarized as follows. 

1. Train equation 2 using the weight update 

algorithm in the previous subsection and then 

measure the link cost for each node from the 

trained cost function. 

2. Vary one input at a time by adding small random 

value between 0.01 to 0.1. 

3. Calculate the cost function using the input 

obtained in 2. 

4. Obtain the input sensitivity of each input from 

the mean of the absolute differences of the costs. 

As seen in Table 1, the input sensitivities of x1 and x2 

together are large for either varying RSS (x1) or Hello 

message reception ratio (x2), not hop distance (x3). 

Also, the input sensitivities of x1 only are large when x2 

is varied. Thus it is verified that x1 and x2 are correlated 

each other and x3 is uncorrelated with x1 and x2.  
 

Table 1. The result of the input sensitivity. 
 

Varied 

Input 

Input 

Sensitivity of x1 

Input 

Sensitivity of x2 

Input 

Sensitivity of x3 

x1 0.45 0.36 0.09 

x2 0.31 0.40 0.06 

x3 0.14 0.13 0.34 

 
 

4.2. Validation of Our Link Cost Function 

These experiments have been carried out to validate 

the performance of the proposed training technique in a 

single-hop transmission environment. We compare the 

performance of our method with Conventional 

Nonlinear method (CNL) as seen in equation 2 and the 

Conventional Linear method (CL) using three input 

features such as RSS, Hello message reception ratio, 

and hop distance. In CL, only one input out of the three 

inputs is used as the cost function at one time such as 

CL(x1), CL(x2) and CL(x3). For the construction of the 

single-hop distribution network, 20 RNs are placed 

randomly in the 500m×500m area. To determine the 

optimal learning ratio δ as explained in the previous 

section, we train equation 2 repeatedly as varying the 

value of δ by 0.1 increment. Table 2 is the result of the 

packet transmission success ratio. From the results, we 

can infer that the packet transmission success ratio 

decreases as δ increases for our method and CNL. As 

seen in the Table, the value of δ is 0.3 provides the best 

training performance. The convergence speed is not 

issued in this experiment because equation 2 is trained 

within about 5-10 seconds. Using δ=0.3, we compare 

the performance of the methods by varying input 

values. Table 3 is the result obtained by varying the 

RSS for reflecting the variation of the received power 

in the shadowing propagation model [15] with adding 

log- normal random fading with zero mean and 

standard deviation σ1. Typical value of shadowing 

deviation varies from 4.0 to 10.0 for outdoor 

environment. From the Table, we can see that the 

methods using nonlinear function are more robust 

despite of dynamic random fading and they improve 

the packet transmission success ratio by about 21% 

compared to CL. From the result, the performance of 

our method is better by about 18.2% and 29.1% 

respectively than that of CNL and CL because our 

method considers the correlation between the inputs x1 

and x2 during training our link cost function. 

To analyze the effects of collision on packet 

transmission success ratio, we vary the possibility of 

packet collision using Gaussian distribution with zero 

mean and standard deviation σ2 as seen in Table 4. The 

method using the nonlinear function shows higher 

robustness and packet transmission success ratio by 

about 19% than CL, irrespective of the degree of 

packet collision. Similar to the result in Table 4, our 

method improves the performance by about 18.4% and 

28.3% compared to that using CNL and CL. From the 

above results, we can conclude that our method 

improves the packet transmission success ratio without 

the burden of large overhead occurred during training. 

Table 2. Packet transmission success ratio to determine the optimal learning ratio (δ). 
 

δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Our 0.928 0.943 0.979 0.913 0.902 0.893 0.853 0.801 0.797 0.763 

CNL 0.757 0.769 0.792 0.749 0.744 0.734 0.706 0.660 0.611 0.599 



40                                                         The International Arab Journal of Information Technology, Vol. 10, No. 1, January 2013                                                                                      

 

Table 3. Packet transmission success ratio with varying RSS by adding log normal random fading with zero mean and standard deviation σ1. 
 

σ1 Our CNL CL(x1) CL(x2) CL(x3) 

1.0 0.974 0.794 0.667 0.665 0.660 

2.0 0.976 0.796 0.662 0.666 0.655 

3.0 0.979 0.794 0.668 0.664 0.658 

4.0 0.974 0.794 0.668 0.670 0.655 

5.0 0.979 0.792 0.691 0.668 0.658 

6.0 0.981 0.793 0.727 0.701 0.658 

7.0 0.976 0.796 0.722 0.700 0.657 

8.0 0.976 0.795 0.725 0.700 0.658 

9.0 0.976 0.792 0.723 0.701 0.655 

10.0 0.979 0.795 0.725 0.703 0.649 

 

Table 4. Packet transmission success ratio with varying Hello message reception ratio using gaussian distribution with zero mean and 

standard deviation σ2. 
 

σ2 Our CNL CL(x1) CL(x2) CL(x3) 

0.1 0.974 0.794 0.705 0.696 0.670 

0.2 0.984 0.804 0.676 0.677 0.670 

0.3 0.982 0.791 0.685 0.674 0.669 

0.4 0.981 0.806 0.694 0.693 0.668 

0.5 0.979 0.792 0.705 0.726 0.673 

0.6 0.996 0.795 0.711 0.741 0.665 

0.7 0.975 0.801 0.727 0.748 0.665 

0.8 0.982 0.793 0.733 0.736 0.667 

0.9 0.978 0.796 0.706 0.748 0.668 

1.0 0.976 0.800 0.731 0.760 0.662 

 

5. Conclusions 

In this paper, we developed the nonlinear cost function 

for data delivery in sensor networks. The cost function 

was driven from the concept of the input types; 

correlated inputs and uncorrelated inputs. The input 

types can be identified using the input sensitivity as 

shown in the experimental section. Also, we presented 

the weight update algorithm for finding optimal 

weights in our nonlinear cost function. From the results 

of the performance comparison between our method 

and the conventional nonlinear method/the 

conventional linear method, we can conclude that our 

method outperforms with respect to the reliability of 

data delivery. To our best knowledge, the reason that 

our method can perform better than those methods is 

our method utilizes the relationship of input 

correlation. In our method, we extracted three input 

features to customize for sensor networks to improve 

the reliability of data delivery. However, we will find 

the way into a wide variety of applications and systems 

such as Intelligent Transportation System (ITS) and 

wireless mesh network with vastly varying 

requirements and characteristics. Even though these 

applications and systems are attracting much attention 

from many re-searchers, extracting input features to 

meet the requirements and characterizing the 

correlation among the inputs have not been addressed 

yet. 
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