
The International Arab Journal of Information Technology, Vol. 10, No. 4, July 2013 389

An Efficient Certificateless Designated

Verifier Signature Scheme

Debiao He and Jianhua Chen

School of Mathematics and Statistics, Wuhan University, China

Abstract: To solve the key escrow problem in identity-based cryptosystem, Al-Riyami et al. introduced the CertificateLess

Public Key Cryptography (CL-PKC). As an important cryptographic primitive, CertificateLess Designated Verifier Signature

(CLDVS) scheme was studied widely. Following Al-Riyami et al. work, many certificateless Designated Verifier Signature

(DVS) schemes using bilinear pairings have been proposed. But the relative computation cost of the pairing is approximately

twenty times higher than that of the scalar multiplication over elliptic curve group. In order to improve the performance we

propose a certificateless DVS scheme without bilinear pairings. With the running time of the signature being saved greatly,

our scheme is more practical than the previous related schemes for practical application.

Keywords: CL-PKC, DVS, bilinear pairings, elliptic curve, random oracle model.

Received October 31, 2010; accepted May 24, 2011; published online August 5, 2012

1. Introduction

To solve the problem of certificate management in

traditional public key cryptography, Shamir [15]

proposed the concept of the identity-based public key

cryptography. However, identity-based public key

cryptography needs a trusted Key Generation Centre

(KGC) to generate a private key for an entity according

to his identity. So, the key escrow problem arises. To

solve the problem, CertificateLess Public Key

Cryptography (CL-PKC) was proposed by Al-Riyami

and Paterson [1].

Digital signature scheme, one of the general

primitives of cryptography, has many applications in

information security to provide authentication, data

integrity, and non-repudiation. In an ordinary digital

signature scheme, anyone can verify the validity of a

signature using the signer’s public key. However, in

some scenarios, this public verification is not desired,

if the signer does not want the recipient of a digital

signature to show this signature to a third party at will.

To address this problem above, Jakobsson et al. [9]

proposed the concept of Designated Verifier Signature

(DVS) schemes. A DVS scheme is special type of

digital signature scheme which provides message

authentication without non-repudiation. These

signatures have several applications such as in E-

voting, call for tenders and software licensing. Suppose

Alice has sent a DVS to Bob. Unlike the conventional

digital signatures, Bob cannot prove to a third party

that Alice has created the signature. This is

accomplished by the Bob’s capability of creating

another signature designated to himself which is

indistinguishable from Alice’s signature.

Following the pioneering work due to Jakobsson et

al. [9], many PKC-based DVS [12, 14, 17] and ID-

based DVS [10, 11, 16, 21] have been proposed.

Huang et al. [8], presented the first CertificateLess

Designated Verifier Signature (CLDVS) scheme.

Unfortunately, their scheme is insecure against a

malicious but passive KGC attack.

In order to improve the security, several CLDVS

schemes [3, 13, 19, 20] have been proposed. All the

above CLS schemes may be practical, but they are

from bilinear pairings and the pairing is regarded as the

most expensive cryptography primitive. The relative

computation cost of a pairing is approximately twenty

times higher than that of the scalar multiplication over

elliptic curve group [4, 18]. Therefore, CLDVS

schemes without bilinear pairings would be more

appealing in terms of efficiency.

In this paper, we present a CLDVS scheme without

pairings. The scheme rests on the Elliptic Curve

Computational Diffie-Hellman Problem (ECDHP).

With the pairing-free realization, the scheme’s

overhead is lower than that of previous schemes [3, 8,

13, 19, 20] in computation. The rest of the paper is

organized as follows: in section 2, we recall the model

for CLDVS and the security properties of CLDVS, we

propose our scheme in section 4, security analysis and

performance analysis of the proposed scheme are given

in section 5. Finally, we conclude this paper.

2. Preliminaries

2.1. Background of Elliptic Curve Group

Let the symbol E/Fp denote an elliptic curve E over a

prime finite field Fp, defined by an equation:

2 3

py x ax b , a ,b F= + + ∈ (1)

390 The International Arab Journal of Information Technology, Vol. 10, No. 4, July 2013

and with the discriminant:

3 24 27 0a b∆ = + ≠ (2)

The points on E/Fp together with an extra point O

called the point at infinity form a group:

{(,) : , , (,) 0} { }pG x y x y F E x y O= ∈ = ∪ (3)

Let the order of G be n. G is a cyclic additive group

under the point addition “+” defined as follows: Let

P,Q∈G, l be the line containing P and Q (tangent line

to E/Fp if P=Q), and R, the third point of intersection

of l with E/Fp. Let l' be the line connecting R and O.

Then P “+” Q is the point such that l' intersects E/Fp at

R and O and P “+” Q. Scalar multiplication over E/Fp

can be computed as follows:

 ()tP P P P t times= + + +… (4)

The following problems defined over G are assumed to

be intractable within polynomial time. Computational

Eliptic curve Diffie-Hellman problem: For P the

generator of G, given Q1=a.P and Q2=b.P to compute

Q=ab.P.

2.2. Certificateless Designated Verifier

Signatures

A CLDVS scheme consists of eight algorithms [8]:

Setup, Partial-Private-Key-Extract, Set-Secret-Value,

Set-Private-Key, Set-Public-Key, Sign, Verify and

Transcript-Simulation.

• Setup: Taking security parameter k as input and

returns the system parameters params and master

key.

• Partial-Private-Key-Extract: It takes params, master

key and a user’s identity ID as inputs. It returns a

partial private key dID.

• Set-Secret-Value: Taking as inputs params and a

user's identity ID, this algorithm generates a secret

value sID.

• Set-Private-Key: This algorithm makes params, a

user's partial private key dID and his secret value sID

as inputs, and outputs the full private key

skID={dID,sID}.

• Set-Public-Key: Taking as inputs params and a

user's secret value sID and dID, and generates a public

key pkID for the user.

• Sign: It takes as inputs params, a message m, the

signer A’s identity IDA, and A’s private key skID, the

designated verifier’s B’s identity IDB public key pkID

and outputs a signature S.

• Verify: It takes as inputs params, a public key pkID, a

message m, the signer A’s public key pkID, the

designated verifier’s B’s identity IDB, B’s private

key skID and a signature S, and returns 1 means that

the signature is accepted. Otherwise, 0 means

rejected.

• Transcript-Simulation: An algorithm that is run by

the designated verifier B to produce identically

distributed transcripts that are indistinguishable

from the original signer A.

2.3. Security Properties of Certificateless

Designated Verifier Signatures

The CLDVS scheme must satisfy the following

properties:

• Correctness: If the signer properly produces a

CLDVS by the CLDVS-Sign algorithm, then the

verifying algorithm must accept the produced

signature.

• Unforgeability: It is computationally infeasible to

construct a valid CLDVS without the knowledge of

the private key of either the signer or the designated

verifier [8].

• Source hiding: Given a message m and a CLDVS

on m, it is infeasible to determine who created this

signature either the original signer or the designated

verifier, even if one knows all the private keys [8].

• Non-delegatability: Given any indirect form of the

private key of the signer, it is infeasible to construct

a valid CLDVS to any designated verifier [8].

2.4. Security Model for Certificateless

Designated Verifier Signatures

In CLDVS, as defined in [8], there are two types of

adversaries with different capabilities, we assume Type

1 Adversary, A1 acts as a dishonest user while Type 2

Adversary, A2 acts as a malicious KGC:

• CLDVS Type 1 Adversary: Such an adversary A1

represents a third party attacks against the CLDVS

scheme. A1 does not have access to the master key

nor the user partial private key, but A1 can

compromise users’ secret values or replace users’

public keys at will, because of the uncertified nature

of the public keys generated by the users.

• CLDVS Type 2 Adversary: Such an Adversary A2

represents a malicious-but-passive KGC who is

assumed malicious at the very beginning of the

Setup stage of the system. A2 can access to the

master key, but cannot obtain the user secret value

nor replace the user public key.

• Definition 1. A CLDVS scheme is existential

unforgeable against adaptively chosen message and

identity attacks if and only if it is secure against

both types of adversaries.

3. Our Scheme

3.1. Scheme Description

In this section, we present an ID-based signature

scheme without pairing. Our scheme consists of eight

An Efficient Certificateless Designated Verifier Signature Scheme 391

algorithms: Setup, Partial-Private-Key-Extract, Set-

Secret-Value, Set-Private-Key, Set-Public-Key, Sign,

Verify and Transcript-Simulation.

• Setup: Takes a security parameter k, returns system

parameters and a master key. Given k, KGC does as

follows:

1. Choose a k-bit prime p and determine the tuple

{FP, E/ FP, G, P} as defined in section 2.1.

2. Choose the master private key *

nx Z∈ and

compute the master public key Ppub=x·P.

3. Choose two cryptographic secure hash functions
* *

1 :{0,1} nH Z→ and * *

2 :{0,1} nH Z→ .

4. Publish params={FP, E/FP, G, P, Ppub, H1, H2} as

system parameters and keep the master key x

secretly.

• Set-Secret-Value: The user with identity ID picks

randomly *

ID ns Z∈ , computes PID=sID·P and sets sID

as his secret value.

• Partial-Private-Key-Extract: This algorithm takes

system parameters, master key, a user’s identifier

and PID=sID·P as input and returns the user’s ID-

based private key. With this algorithm, KGC works

as follows for each user with identifier IDU:

1. Choose at random *

ID nr Z∈ , compute RID=rID·P

and hID=H1(ID, RID, PID).

2. Compute dID=rID+hID x mod n.

The user’s s partial private key is the tuple

{dID,RID} and he can validate her private key by

checking whether the equation dID·P=RID+hID·Ppub

holds. The private key is valid if the equation holds

and vice versa.

• Set-Private-Key: Given params, the user’s partial

private key dID and his secret value sID, and output a

pair skID={dID, sID} as the user’s private key.

• Set-Public-Key: This algorithm takes params, the

user’s secret value sID as inputs and as inputs,

computes PID=sID·P and generates the user's public

key pkID={RID, PID}

• Sign: This algorithm takes system parameters, the

signer A’s identity IDA, and A’s private key
AIDsk ,

the designated verifier’s B’s identity IDB public key

BIDpk and a message m as input and returns a

signature of the message m. The user does as the

follows:

1. Compute
1
(, ,)

B B BID B ID ID
h H ID R P= .

2. Choose at random *

nl Z∈ to compute

()
B B BID ID ID pubc l P R h P= ⋅ + + ⋅ .

3. Compute r=H2(m,c).

4. Choose at random *

nt Z∈ and compute

1 () mod
A AID IDs lt r d s n−

= − + .

5. The resulting signature is (r, s, t).

• Verify: This algorithm takes system parameters, the

signer A’s identity IDA, and A’s public key
AIDpk ,

the designated verifier’s B’s identity IDB private key

BIDsk , a message m and a signature (r, s, t) as

inputs. Then return 1 means that the signature is

accepted. Otherwise, 0 means rejected. The user

does as the follows:

1. Compute
1(, ,)

A A AID A ID IDh H ID R P= .

2. Compute ()(())
B B A A AID ID ID ID ID pubc t d s s P r P R h P′ = + ⋅ + ⋅ + + ⋅ .

3. Check whether r=H2(m,c’) holds. Return 1 if it is

equal. Otherwise return 0.

• Transcript-Simulation: This algorithm takes system

parameters, the signer A’s identity IDA, and A’s

public key
AIDpk , the designated verifier’s B’s

identity IDB private key
BIDsk and a message m as

inputs. Then generate a signature (r, s, t). The user

does as the follows:

1. Compute
1
(, ,)

A A AID A ID ID
h H ID R P= .

2. Choose at random *, ,ns r Z′ ′∈ compute

(),
A A AID ID ID pubc s P r P R h P′ ′= ⋅ + ⋅ + + ⋅ r=H2(m,c),

l=r´l
-1

mod n, s=s´l
-1

mod n and t=l(dIDB+sIDB)
-1

mod n.

3. The resulting signature is (r, s, t). Since

()(())

(())

())

())

B B A A A

A A A

A A A

A A A

ID ID ID ID ID pub

ID ID ID pub

ID ID ID pub

ID ID ID pub

c t d s s P r P R h P

l s P r P R h P

sl P rl P R h P

s P r P R h P c

′ = + ⋅ + ⋅ + + ⋅

= ⋅ + ⋅ + + ⋅

= ⋅ + ⋅ + + ⋅

′ ′= ⋅ + ⋅ + + ⋅ =

Then the designated verifier can generate the same

transcripts in an indistinguishable way.

3.2. Security Analysis

In the section, we give security analysis of our

proposed scheme and show that the security of our

proposed scheme is secure under the difficulty of

solving the ECCDH problem.

1. Correctness: The correctness of proposed scheme

can be verified by the following equations.

Since
A A A A AID ID ID ID ID pub(d s) P P R h P+ ⋅ = + + ⋅ and

()
B A B B BID ID ID ID ID pub

d s P P R h P+ ⋅ = + + ⋅ , we have:

1

1

()(())

()((())

())

()

()

()

B B A A A

B B A A

A A A

B B

B B

B B B

ID ID ID ID ID pub

ID ID ID ID

ID ID ID pub

ID ID

ID ID

ID ID ID pub

c t d s s P r P R h P

t d s lt r d s P

r P R h P

t d s lt P

l d s P

l P R h P c

−

−

′ = + ⋅ + ⋅ + + ⋅

= + − + ⋅

+ ⋅ + + ⋅

= + ⋅

= + ⋅

= + + ⋅ =

(5)

(6)

392 The International Arab Journal of Information Technology, Vol. 10, No. 4, July 2013

Then the correctness of our scheme is proved.

2. Unforgeability: We will prove our scheme can

provide the unforgeability property by the following

two theorems. The proof of the two theorems are

given in the appendixes.

• Theorem 1: If there is a type 1 adversary A1 that

breaks our proposed CLDVS scheme, then there

exists an algorithm F which solves the ECDHP

problem with non-negligible probability.

• Theorem 2: If there is a type 2 adversary A2 that

breaks our proposed CLDVS scheme, then there

exists an algorithm F which solves the EDCDH

problem with non-negligible probability.

3. Source Hiding: Given a DVS (r, s, t) on a message

m, even if a third party knows the signer A’s private

key pair (,)
A AID IDd s and the verifier B’s private

key pair (,),
B BID IDd s he cannot identify whether

(,)
A AID IDd s or (,)

B BID IDd s has been used in the

construction of the term s because he does not have

the knowledge of the random numbers l used during

the signing process. Hence, it is infeasible to

determine whether the original signer or the

designated verifier creates the signature.

4. Non-Delegatability: The problem of delegatability

does not exist in our scheme. Because the

construction of the term s requires the signer’s

private key pair (,),
A AID IDd s and it is impossible

for the signer to delegate his signing capability to

any third party without disclosing his private keys, a

third party can not generate a valid signature (r, s, t)

on a message m.

4. Comparison with Previous Scheme

In this section, we will compare the efficiency of our

new scheme with the latest CLDVS schemes, i.e.,

Huang et al. scheme [8], Ming et al. scheme [13],

Chen et al. scheme [3], Yang et al. scheme [20] and

Xiao et al. scheme [19]. For the convenience of

evaluating the computational cost, we define some

notations as follows:

• TGexp: The time of executing a modular

exponentiation operation.

• TGpair: The time of executing a pairing operation.

• TGpbsm: The time of executing a pairing-based scalar

multiplication operation of point.

• TGebsm: The time of executing an ECC-based scalar

multiplication operation of point.

• TGpadd: The time of executing an addition operation

of points

• TGinv: The time of executing a modular inversion

operation.

• TGmul: The time of executing a general

multiplication operation.

• TGadd: The time of executing a general addition

operation.

• TGmtph: The time of executing a map-to-point hash

function.

• TGh: The time of executing a one-way hash

function.

In Table 1, we summarize the performance results of

different CLDVS schemes. From the Table 1, we know

that the client side requires only

3TGpair+1TGpbsm+TGmtph+TGh+1TGpadd.

For the pairing-based scheme, to achieve the 1024-

bit RSA level security, we have to use the Tate pairing

defined over some supersingular elliptic curve on a

finite field Fq, where the length of q is 512 bits at least

[2]. For the ECC-based schemes, to achieve the same

security level, we employ some secure elliptic curve on

a finite field Fp or F2
m, where the length of p is 160 bits

at least [2]. Table 1 shows the results of the

performance comparison.

Table 1. Performance evaluation of our protocol.

 Sign Verify

Huang et al.’s

scheme [8]

1TGpair +1TGpbsm +
1TGinv +1TGmtph +

1TGh +1TGpadd

3TGpair +1TGpbsm +
TGmtph + TGh +

1 TGpadd

Ming et al.’s

scheme [13]

1TGpair +3 TGpbsm +

TGmtph + TGh

3TGpair +2TGpbsm + 1

TGpadd + TGh

Chen et al.’s

scheme [3]

1TGpair +1TGpbsm +
TGmtph + TGh

1TGpair +1TGpbsm +
TGmtph + TGh

Yang et al.’s

scheme [20]

1TGpair +4 TGpbsm +
TGmtph + TGh +

1 TGpadd

1TGpair +2TGpbsm +
TGmtph + TGh +

1 TGpadd

Xiao et al.’s

scheme [19]

3TGpbsm + TGinv +

TGmtph + TGh

1TGexp +2TGpair +

1TGpbsm + TGmtph +
TGh

Our scheme

2TGebsm +1TGinv +
3TGpadd +2 TGh +

2TGmul +2 TGadd

2TGebsm +3TGpadd +
2TGh +1 TGmul +

1TGadd

As the main computational overheads, we only

consider the bilinear pairing operation, the modular

exponentiation, the scale multiplication and the

pairing-based scale multiplication. From the theoretical

analysis [4] and the experimental result [2, 5, 6, 7], we

know the relative computation cost of the bilinear

pairing operation, the modular exponentiation and the

pairing-based scale multiplication are at least 19, 3 and

3 times that of the scalar multiplication separately. The

running time of the sign algorithm of our scheme is

9.09% of Huang et al. scheme [8], 7.14% of Ming et

al. scheme [13], 9.09% of Chen et al. scheme [3],

6.45% of Yang et al. scheme [20] and 22.22% of Xiao

et al. scheme [19], the running time of the verify

algorithm of our scheme is 3.33% of Huang et al.

scheme [8], 3.18% of Ming et al. scheme [13], 9.09%

of Chen et al. scheme [3], 8.00% of Yang et al. scheme

[20] and 4.54% of Xiao et al. scheme [19]. Thus our

An Efficient Certificateless Designated Verifier Signature Scheme 393

scheme is more useful and efficient than the previous

schemes.

5. Conclusions

In this paper, we have proposed an efficient CLDVS

scheme without bilinear pairings. We also prove the

security of the scheme under random oracle. Compared

with previous scheme, the new scheme reduces both

the running time. Therefore, our scheme is more

practical than the previous related schemes for

practical application.

Acknowledgements

The authors thank the anonymous reviewers and the

editors for their valuable comments. This research was

supported by the Fundamental Research Funds for the

Central Universities and the Specialized Research

Fund for the Doctoral Program of Higher Education of

China (No. 20110141120003).

References

[1] Al-Riyami S. and Paterson G., “Certificateless

Public Key Cryptography,” in Proceedings of the

9
th
 International Conference on the Theory and

Application of Cryptology and Information

Security, Taiwan, pp. 452-473, 2003.

[2] Cao X. and Kou W., “A Pairing-Free Identity-

Based Authenticated Key Agreement Scheme

with Minimal Message Exchanges,” Information

Sciences, vol. 180, no. 15, pp. 2895-2903, 2010.

[3] Chen H., Song S., Zhang T., and Song G, “An

Efficient Certificateless Short Designated

Verifier Signature Scheme,” in Proceedings of

the 4
th
 International Conference on Wireless

Networking and Mobile Computing, Dalian, pp.

1-6, 2008.

[4] Chen L., Cheng Z., and Smart N., “Identity-

Based Key Agreement Protocols from Pairings,”

International Journal Information Security, vol.

6, no. 4, pp. 213-241, 2007.

[5] He D., Chen J., and Hu J., “An ID-Based Proxy

Signature Schemes without Bilinear Pairings,”

Annals of Telecommunications, vol. 66, no. 11-

12, pp. 657-662, 2011.

[6] He D., Chen J., and Hu J. “A Pairing-Free

Certificateless Authenticated Key Agreement

Protocol,” International Journal of

Communication Systems, vol. 25, no. 2, pp. 221-

230, 2012.

[7] He D., Chen J., and Zhang R., “An Efficient

Identity-Based Blind Signature Scheme without

Bilinear Pairings,” Computers & Electrical

Engineering, vol. 37, no. 4, pp. 444-450, 2011.

[8] Huang X., Susilo W., Yi M., and Zhang F.,

“Certificateless Designated Verifier Signature

Schemes,” in Proceedings of Advanced

Information Networking and Application,

Vienna, pp. 15-19, 2006.

[9] Jakobsson M., Sako K., and Impagliazzo R.,

“Designated Verifier Proofs and their

Applications,” in Proceedings of Advances in

Cryptology: EUROCRYPT-International

Conference on the Theory and Application of

Cryptographic Techniques, Spain, pp. 143-154,

1996.

[10] Kang B., Boyd C., and Dawson E., “A Novel

Identity-Based Strong Designated Verifier

Signature Scheme,” The Journal of Systems and

Software, vol. 82, no. 2, pp. 270-273, 2009.

[11] Kumar K., Shailaja G., and Saxena A., “Identity

Based Strong Designated Verifier Signature

Scheme,” Informatica, vol. 18, no. 2, pp. 239-

252, 2007.

[12] Lipmaa H., Wang G., and Bao F., “Designated

Verifier Signature Schemes: Attacks, New

Security Notions and a New Construction,” in

Proceedings of the 32
nd

 International Colloquium

Automata, Languages and Programming, Berlin,

pp. 459-471, 2005.

[13] Ming Y., Shen X., and Wang Y., “Certificateless

Universal Designated Verifier Signature

Schemes,” Journal of China Universitles Posts

and Telecommunications, vol. 14, no. 3, pp. 85-

91, 2007.
[14] Saeednia S., Kremer S., and Markowitch O., “An

Efficient Strong Designated Verifier Signature

Scheme,” in Proceedings of Information Security

and Cryptology, Berlin, pp. 40-54, 2003.

[15] Shamir A., “Identity-Based Cryptosystems and

Signature Schemes,” in Proceedings of CRYPTO

on Advances in Cryptology, USA, pp. 47-53,

1985.

[16] Susilo W., Zhang F., and Mu Y., “Identity-Based

Strong Designated Verifier Signature Schemes,”

in Proceedings of Information Security and

Privacy, Berlin, pp. 313-324, 2004.

[17] Tso R., Okamoto T., and Okamoto E., “Practical

Strong Designated Verifier Signature Schemes

Based on Double Discrete Logarithms,” in

Proceedings of the 1
st
 SKLOIS Conference on

Information Security and Cryptology, Berlin, pp.

113-127, 2005.

[18] Wu S. and Zhu Y., “Improved Two-Factor

Authenticated Key Exchange Protocol,” The

International Arab Journal of Information

Technology, vol. 8, no. 4, pp. 430-439, 2011.

[19] Xiao Z., Yang B., and Li S., “Certificateless

Strong Designated Verifier Signature Scheme,”

in Proceedings of 2
nd

International Conference

on e-Business and Information System Security,

Wuhan, pp. 1-5, 2010.

[20] Yang B., Hu Z., and Xiao Z., “Efficient

Certificateless Strong Designated Verifier

Signature Scheme,” in Proceedings of

394 The International Arab Journal of Information Technology, Vol. 10, No. 4, July 2013

International Conference on Computational

Intelligence and Security, Beijing, pp.432-436,

2009.

[21] Zhang J. and Mao J., “A Novel ID-Based

Designated Verifier Signature Scheme,”

Information Science, vol. 178, no. 3, pp. 766-773,

2008.

Debiao He received his PhD degree

in applied mathematics from School

of Mathematics and Statistics,

Wuhan University in 2009.

Currently, he is a lecturer in Wuhan

University. His main research

interests include cryptography and

information security, in particular, cryptographic

protocols.

Jianhua Chen received his PhD

degree in applied mathematics from

Wuhan University, Wuhan, China, in

1994. Currently, he is a professor in

Wuhan University. His current

research interests include number

theory, information security and

network security.

Appendixes

• Proof for Theorem 1: Suppose F is challenged with

a ECCDH instance (P, Q1=aP, Q2=bP) and is

tasked to compute Q3=ab·P. To do so, F picks two

identity IDI and IDJ at random as the challenged ID

in this game, and gives {Fp, E/Fp, G, P, Ppub=Q1, H1,

H2} to A1 as the public parameters. Then F answers

A1’s queries as follows.

• H1-Queries: F maintains a hash list
1HL of tuple

(, , , ,)
i i i ii ID ID ID IDID R P d h as explained below. The

list is initially empty. When A1 makes a hash oracle

query on IDi, if the query IDj has already appeared

on
1HL , then the previously defined value is

returned. Otherwise, F acts as described in the

partial private key extraction queries.

• H2-Queries: F maintains a hash list
2HL of tuple

(mj, cj, hj). When A1 makes H2 queries for identity

IDi on the message mj, F chooses a random value
*

j nh Z∈ , sets hj=H2(mj, cj) and adds (mj, cj, hj) to

2HL , and sends hj to A1.

• Partial Private Key Extraction Queries: A1 is

allowed to query the extraction oracle for an identity

IDi. F query H1 oracle, IDi is on
1HL , then F

response with (, , , ,).
i i i ii ID ID ID IDID R P d h Otherwise,

if simulates the oracle as follows. It chooses

*,i i na b Z∈ at random, sets ,
iID i pub iR a P b P= ⋅ + ⋅

iID id =b ,
1(,) mod ,

i iID i ID ih H ID R a n= ← − response

with (, , , ,),
i i i ii ID ID ID IDID R P d h and inserts

(, , , ,)
i i i ii ID ID ID IDID R P d h into

1
.HL Note that

(, ,)
i i iID ID IDR d h generated in this way satisfies the

equation dID·P=RID+hID·Ppub in the partial private

key extraction algorithm. It is a valid secret key.

• Public Key Extraction Queries: F maintains a list

Lpk of tuple (, ,)
i ii ID IDID s pk which is initially

empty. When A1 queries on input IDi, F checks

whether Lpk contains a tuple for this input. If it does,

the previously defined value is returned. Otherwise,

if IDi≠IDJ, F picks a random value
* ,ID ns Z∈

computes .
i iID IDP s P= ⋅ If IDi=IDJ, F sets

iIDP b P= ⋅ and
iIDs =⊥ . F queries Partial Private

Key Extraction Queries with IDi and
iIDP and get

response .
iIDR At last F returns { , }

i i iID ID IDpk P R= and

adds (, ,)
i ii ID IDID s pk to the Lpk.

• Private Key Extraction Queries: For query on input

IDi, If IDi=IDI or IDi=IDJ, F stops and outputs

“failure”. Otherwise, F performs as follows:

If the
1HL and the Lpk contain the corresponding

tuple (, , ,)
i i ii ID ID ID

ID R s h and the tuple

(, ,)
i ii ID IDID s pk respectively, F sets

{ , }
i i iID ID IDsk d s= and sends it to A1. Otherwise, F

makes a partial private key extraction query and a

public key extraction query on IDi, then simulates as

the above process and sends { , }
i i iID ID IDsk d s= to

A1.

• Public Key Replacement: When A1 queries on input

�,(),
ii IDpkID F checks whether the tuple

(, ,)
i ii ID IDID s pk is contained in the Lpk. If it does,

F sets �
i iID IDpk pk= and adds the tuple

(, ,)
ii IDID pk⊥ to the Lpk.

• Signing Queries: When a message m, the signer A’s

identity IDA, the designated verifier’s B ’s identity

IDB is coming, F acts as follows: F first checks that

whether tuple (, , ,)
i i ii ID ID IDID R d h and

(, ,)
i ii ID IDID s pk are in

1HL and Lpk separately. If

yes, it just retrieves (, , ,)
A A B BID ID ID IDd s P R from the

tables and uses these values to sign for the message

according to the signing algorithm described in the

scheme. It outputs the signature (r, s, t) for the

message m and stores the value H2(m, c) in
2HL for

consistency. If IDA or IDB has not been queried to

An Efficient Certificateless Designated Verifier Signature Scheme 395

the partial private extraction oracle and the private

extraction oracle, F executes the simulation of the

partial private extraction oracle and the private

extraction oracle, then uses the corresponding secret

key to sign the message.

Finally, A1 stops and outputs a signature S={r, s, t}

on the message m with the signer A’s identity IDA,

and A’s private key
AIDsk , the designated verifier’s

B’s identity IDB public key
BIDpk , which satisfies

the following equation

(, , , , ,) 1
B AA ID IDVerify params m ID sk pk S = . If IDA≠IDJ

or IDB≠IDJ, F outputs “failure” and aborts.

Otherwise, F recovers the tuple

(, , ,)
I I II ID ID IDID R d h and (, , ,)

J J JJ ID ID IDID R d h

from
1
,HL the tuple (, ,)

I II ID IDID s pk and

(, ,)
J JJ ID IDID s pk from Lpk and the tuple (m, c, h)

from
2
.HL Then, we have:

()(())
J J I I IID ID ID ID ID pubc t d s s P r P R h P= + ⋅ + ⋅ + + ⋅ (7)

Since PIDI=sIDI·P, RIDJ=b·P and Ppub=a·P, we could

have:

 2 2

2 3

()(())

()

J J I I I

J I

I I

J I I I

ID ID ID ID ID pub

ID ID

ID ID

ID ID ID ID pub

c t d s s P r P R h P

t s Q t s s P t r s Q

t r d Q t r h Q

t s r P R h P

= + ⋅ + ⋅ + + ⋅

= ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ + + ⋅

Then we have

3 2

2 2

()

I J

I I

J I I I

ID ID

ID ID

ID ID ID ID pub

t r h Q c t s Q t s s P

t r s Q t r d Q

t s r P R h P

⋅ ⋅ ⋅ = − ⋅ ⋅ − ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

− ⋅ ⋅ ⋅ + + ⋅

 (9)

and

1

3 2

2 2

() (

())

I

J I I

J I I I

ID

ID ID ID

ID ID ID ID pub

Q t r h c t s Q

t s s P t r s Q t r d Q

t s r P R h P

−
= ⋅ ⋅ − ⋅ ⋅ −

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ −

⋅ ⋅ ⋅ + + ⋅

 (10)

Obviously, the probability of IDA=IDI or IDB=IDJ

is 1

(1)
s s

q q −

. Thus, we can obtain Q3=ab·P with the

probability
2

(1)s sq q

ε

−
. In other words, given (P, Q1=aP,

Q2=bP), F can solve the ECCDH problem with non-

negligible probability 2
,

(1)s sq q

ε

−

 which is in

contradiction with the ECCDH assumption.

• Proof for Theorem 2: Suppose that there is a type 2

Adversar A2 who can breaks our scheme with

probability ε, when making qe extraction queries, qs

signing queries and qh hashing queries respectively.

Then, we will show how to use the ability of A2 to

construct an algorithm F solving the ECCDH.

Suppose F is challenged with a ECCDH instance (P,

Q1=aP, Q2=bP) and is tasked to compute Q3=ab·P.

To do so, F chooses a random
*

nx Z∈ , computes

Q=xP, picks two identity IDI and IDJ at random as

the challenged ID in this game, and gives public

parameters {Fp, E/Fp, G, P, Ppub=Q1, H1, H2} and

the master key s to A2 . Then F answers A2’s

queries as follows.

• H1-Queries: F maintains a hash list
1HL of tuple

(, , , ,)
i i i ii ID ID ID IDID R P d h indexed by IDi. The list

is initially empty. When A2 makes a hash oracle

query on IDi, if the query IDi has already appeared

on
1
,HL then the previously defined value is

returned. Otherwise, F makes the partial private key

extraction query with IDi, and sends
iIDh to A2.

• H2-Queries: F maintains a hash list
2HL of tuple

(mj, cj, hj). When A2 makes H2 queries for identity

IDi on the message mj, F chooses a random value
*

j nh Z∈ , sets hj=H2(mj, cj) and adds (mj, cj, hj) to

2
,HL and sends hj to A2.

• Partial Private Key Extraction Queries: A2 is

allowed to query the extraction oracle for an identity

IDi. F query H1 oracle, IDi is on
1HL , then F

response with (, , , ,).
i i i ii ID ID ID IDID R P d h Otherwise,

if simulates the oracle as follows. It chooses
iIDr at

random, sets ,
i iID IDR r P= ⋅

1(, ,)
i i iID i ID IDh H ID R P=

and ,
i i iID ID IDd r x h= + ⋅ response with

(, , , ,),
i i i ii ID ID ID IDID R P d h and inserts

(, , , ,)
i i i ii ID ID ID IDID R P d h into

1HL .

• Private Key Extraction Queries: F maintains a list

Lsk of tuple (, ,)
i ii ID IDID d s which is initially

empty. For query on input IDi, F performs as

follows:

1. If the query IDi has already appeared on Lsk, then

the previously defined value is returned.

2. Else if IDi=IDI, F sets
iIDs =⊥ , 1iIDP Q= .

3. Else if IDi=IDJ, F sets
iIDs =⊥ , 2iIDP Q= .

4. Else if IDi≠IDI and IDI≠IDJ, F generates a

random number * ,
iID n

s Z∈ compute .
i iID IDP s P= ⋅

Then F looks up
1HL to get the tuple

(, , ,),
i i ii ID ID IDID R d h and add the tuple

(8)

396 The International Arab Journal of Information Technology, Vol. 10, No. 4, July 2013

(, , ,)
i i ii ID ID IDID d s P to Lsk, and sends

{ , }
i i iID ID IDsk d s= to A2.

• Public Key Extraction Queries: F maintains a list

Lpk of tuple (,)
ii IDID pk which is initially empty.

When A2 queries on input IDi, F checks whether

Lpk contains a tuple for this input. If it does, the

previously defined value is returned. Otherwise, F

looks up the tables
1HL and Lsk and gets the tuple

(, , ,)
i i ii ID ID IDID R d h and (, , ,)

i i ii ID ID IDID d s P

separately. At last F returns { , }
i i iID ID IDpk P R= and

adds (,)
ii IDID pk to the Lpk.

• Signing Queries: When a message m, the signer A’s

identity IDA, the designated verifier’s B’s identity

IDB is coming, F acts as follows: If IDA=IDI or

IDA=IDJ, F terminates the simulation. Otherwise, F

first checks that whether tuple

(, , ,)
i i ii ID ID IDID R d h and (,)

ii IDID pk are in

1HL and Lpk separately. If yes, it just retrieves

(, , ,)
A A B BID ID ID IDd s P R from the tables and uses

these values to sign for the message according to the

signing algorithm described in the scheme. It

outputs the signature (r, s, t) for the message m and

stores the value H2(m, c) in
2HL for consistency. If

IDA or IDB has not been queried to the partial private

extraction oracle and the private extraction oracle, F

executes the simulation of the partial private

extraction oracle and the private extraction oracle,

then uses the corresponding secret key to sign the

message.

Finally, A2 stops and outputs a signature S={r, s, t}

on the message m with the signer A’s identity IDA,

and A’s private key
AIDsk , the designated verifier’s

B’s identity IDB public key
BIDpk , which satisfies

the following equation

(, , , , ,) 1
B AA ID IDVerify params m ID sk pk S = . If IDA≠IDI

or IDB≠IDJ, F outputs “failure” and aborts.

Otherwise, F recovers the tuple

(, , ,)
I I II ID ID IDID R d h and (, , ,)

J J JJ ID ID IDID R d h

from
1
,HL the tuple (, ,)

I II ID IDID s pk and

(, ,)
J JJ ID IDID s pk from Lpk and the tuple (m, c, h)

from
2
.HL Then, we have:

()(())
J J I I IID ID ID ID ID pubc t d s s P r P R h P= + ⋅ + ⋅ + + ⋅ (11)

Since
1 ,

IID
P Q a P= = ⋅ 2JIDR Q b P= = ⋅ and Ppub=x·P, we

could have:

3 2 2

()(())

()

J J I I I

J J I I I J

I I

ID ID ID ID ID pub

ID ID ID ID ID pub ID

ID ID

c t d s s P r P R h P

t s R t d r P R h P t s P

t r Q t d r Q t r h x Q

= + ⋅ + ⋅ + + ⋅

= ⋅ ⋅ + ⋅ ⋅ ⋅ + + ⋅ + ⋅ ⋅

+ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

 (12)

Then we have:

3

2 2

()

J

J I I I

J I I

ID

ID ID ID ID pub

ID ID ID

t r Q c t s R

t d r P R h P

t s P t d r Q t r h x Q

⋅ ⋅ = − ⋅ ⋅ −

⋅ ⋅ ⋅ + + ⋅ −

⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

 (13)

and

1

3

2 2

() (

()

)

J

J I I I

J I I

ID

ID ID ID ID pub

ID ID ID

Q t r c t s R

t d r P R h P

t s P t d r Q t r h x Q

−
= ⋅ − ⋅ ⋅ −

⋅ ⋅ ⋅ + + ⋅ −

⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅

 (14)

Obviously, the probability of IDA=IDI or IDB=IDJ is
1

.
(1)s sq q −

Thus, we can obtain Q3=ab·P with the

probability
2

.
(1)

s s
q q

ε

−
 In other words, given (P, Q1=aP,

Q2=bP), F can solve the ECCDH problem with non-

negligible probability 2
,

(1)s sq q

ε

−
which is in

contradiction with the ECCDH assumption.

