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Abstract: In this paper, we present a new block replacement policy in which we proposed a new efficient algorithm for 

combining two important policies Least Recently Used (LRU) and Least Frequently Used (LFU). The implementation of the 

proposed policy is simple. It requires limited calculations to determine the victim block. We proposed our models to implement 

LRU and LFU policies. The new policy gives each block in cache two weighing values corresponding to LRU and LFU 

policies. Then a simple algorithm is used to get the overall value for each block. A comprehensive comparison is made 

between our Policy and LRU, First In First Out (FIFO), V-WAY, and Combined LRU and LFU (CRF) policies. Experimental 

results show that the LR+5LF replacement policy significantly reduces the number of cache misses. We modified simple scalar 

simulator version 3 under Linux Ubuntu 9.04 and we used speccpu2000 benchmark to simulate this policy. The results of 

simulations showed, that giving higher weighing to LFU policy gives this policy best performance characteristics over other 

policies. Substantial improvement on miss rate was achieved on instruction level 1 cache and at level 2 cache memory. 
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1. Introduction 

Caching is the main method used to decrease the speed 

gap between processor and main memory [9, 13]. 

There are three basic cache organizations. First, direct 

mapping, where any block has a unique place in cache 

and no need to replacement policy. This 

implementation has a good hit time but worse miss 

rate. Second, the fully associative, which allows a 

memory block to be mapped to any of the empty cache 

blocks, but if there is no empty blocks a replacement 

policy used to evict one from all over the cache. This 

organization is very expensive in hardware 
implementation and has worse hit time, as all 

addresses will be compared to get a wanted block. 

The third organization is set-associative, which 

divides the cache into sets and allows a memory block 

to be mapped at any empty block within a set.  If there 

are no empty blocks, a replacement will evict a block 

from this set only.  This organization is a trade-off 

between the previous two organizations.  As it is trade-

off between costs, hit time and miss rate.        

One of its most important design decisions is the 

block replacement policy. Effective replacement policy 

is the topic of much research in computer systems. All 

cache algorithms have one common function; which is 

to reduce the miss rate [1, 3, 13]. The cost of misses 

includes miss penalty, power consumption, and 

bandwidth consumption. The "hit rate" of a cache 

describes how often a searched-for block is actually 

found in the cache. The choice of a block replacement 

algorithm, in set associative caches, can have a great 

effect on the overall system performance [3, 4]. More 

efficient replacement  policies keep track of more used 

blocks in order to improve the hit rate for a given 

cache size. Each replacement strategy is a compromise 

between hit rate and latency. 

Some policies are trivial others are complex. Trivial 

policies are the first approaches used to determine the 

replacement candidates. They include the Random 

replacement where the block to be replaced is selected 

randomly from all the blocks in the set. Another is the 

FIFO replacement, where the set is designed as a 

queue structure and every block that is inserted to the 

set will be ordered according to the time they were 

inserted in the cache. These trivial policies results in 

higher miss rate. A miss is the failure to find a required 

block in the cache and hence it must be requested from 

the main memory. There is a number of popular 

policies that depend on two measures. One is the 

Recency which is the time span from the current 

access time to the last access time of a certain block. 

Recency was exploited by Least Recently Used (LRU) 

policy and its different implementations. The second 

measure is the Frequency, which was exploited by its 

basic implementation, Least Frequently Used (LFU) 

policy. In this policy, each cache block maintains a 

counter that is incremented each time the block is 

accessed. When it is required to pick a candidate for 

replacement, the block with the minimum counter 

value, that means minimum frequency, is picked. 

These two extremes were used excessively in the cache 

replacement policies research [7, 17]. 
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LRU ignores the usability of the block so the most 

accessed block may be the victim. LFU ignores the 

latest accessed block, so the latest block may be the 

victim, and may not take the chance to increase its 

value. So the challenge was to combine frequency and 

recency to obtain expectedly better performance in 

terms of hit ratio. 

In this paper, we present a new block replacement 

policy, which combines LRU and LFU. Experimental 

results show that our proposed replacement policy, 

Least Recently Plus five Least Frequently (LR+5LF), 

significantly reduces the number of cache misses.  

We used Simple Scalar simulator version3 under 

Linux Ubuntu 9.04 to get the results of the 

comparisons between our proposed algorithm and 

other popular algorithms. We modified the routine 

code related to the replacement algorithm in the 

Simple Scalar simulator. 

The Simple Scalar tools set is a system software 

infrastructure used to build modelling applications for 

program performance analysis, detailed micro 

architectural modelling, and hardware-software co-

verification. Using the Simple Scalar tools, users can 

build modelling applications that simulate real 

programs running on a range of modern processors and 

systems.  The tool set includes sample simulators 

ranging from a fast functional simulator to a detailed, 

dynamically scheduled processor model that supports 

non-blocking caches, speculative execution, and state-

of-the-art branch prediction. The Simple Scalar tools 

are used widely for research and instruction, for 

example, in 2000 more than one third of all papers 

published in top computer architecture conferences 

used the Simple Scalar tools to evaluate their designs.  

In addition to simulators, the Simple Scalar tools set 

includes performance visualization tools, statistical 

analysis resources, debug and verification 

infrastructure [12]. 

 We used spec2000 benchmark to simulate this 

policy. The results of simulations showed, that giving 

higher weighing to LFU policy gives this policy best 

performance characteristics over other policies. 

Substantial improvement on miss rate was achieved on 

instruction level 1 cache and at level 2 cache memory. 

 

2. Related Work 

The study of block replacement policies is, in essence, 

a study of relating past access patterns with future 

access behaviour. Based on the Recognition of access 

patterns through acquisition and analysis of past 

behaviour or history, replacement policies resolve to 

identify the block that will be used furthest down in the 

future, so that that block maybe replaced when needed 

[2, 8]. 

The LRFU policy associates a value with each 

block. This value is called the Combined Recency and 

Frequency (CRF) value and quantifies the likelihood 

that the block will be referenced in the near future. 

Each reference to a block in the past contributes to this 

value and a reference's contribution is determined by a 

weighing function F(x), where x is the time span from 

the reference in the past to the current time [7](Figure 

1). 

 

 
 

Figure 1. LRFU spectrums. 

 

Zhansheng et al. [17], proposed a novel replacement 

policy that switches between LRU and LFU on 

runtime, they used a queue called Qout as a separate 

data structure within the cache. The queue is limited in 

size and the replacement is done using LRU in this 

queue. Whenever a block is removed from the cache, it 

is placed in Qout. They used an additional H (hit) 

counter that is initialized to zero and an O (out) 

counter that is also initialized to zero. The cache is 

initially managed by LRU policy and with each miss, 

the old block will be pushed to Q and the new block 

will be checked to find if it already exists in Q. if it 

does, then the H counter is incremented by one and if 

not the O counter is incremented by one. The 

replacement decision is made by comparing the values 

of H and O, if the value of H is larger than Q then the 

policy will be switched to LFU and if O is larger than 

H, the policy will be changes to LRU and so on. This 

method is an adaptive method and the idea is that 

when the program is first started and the cache still has 

free lines, then the recency will be more likely to affect 

the replacement decision. And once the value of H 

exceeds O then this indicates that the blocks that were 

used before are needed and hence the frequency 

becomes more dominant than the recency and vice 

versa when O exceeds H. The implementation of this 

scheme is complex which is negatively affect 

performance. 

Other polices combines LRU and LFU in one 

scheme.  They used different implementations but they 

are trying to optimize the performance of cache 

replacement algorithms [15, 16]. Some others use 

Dynamic Insertion Policy (DIP), in which the selection 

of replacement policy depends on which one incurs 

fewer misses [10]. 
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3. LR+5FU Policy 

LR+5FU: is a novel replacement policy which is a 

combination between two popular replacement policies 

LRU and LFU. During the development of the 

proposed policy, the following problems have been 

solved: 
 

• LRU and LFU weighing. 

• Combining of LRU and LFU. 

• Determining the line to be replaced. 

 

3.1. LRU and LFU Weighing 

To obtain a balance between two policies we add a 

weighing value to each of them by developing the 

following weighing algorithms. 

 

 3.1.1. LRU Weighing Algorithm 
 

The weighing value changed from <0> (least 

recently/frequently used) to <associative-1> (most 

recently/frequently used). 
 

Algorithm 1 LRU Weighing 
 

1. Hit block in cache 

2. For(i=0;i<assoc;i++) 

3. If block.wlru <Wlru[i]  

4. Wlru=wlru-1 

5. End for loop 

6. Block.wlru=assoc-1 
 

Where wlru[i] is a weighing value of LRU. When the 

block in cache is accessed, the LRU algorithm gives 

this block the Most Recently Used value, so the 

algorithm works as follow: check weighing values for 

all blocks in the set; if any block has a weighing value 

larger than the weighing value of accessed block, 

reduce it by 1, finally put the weighing value of 

accessed block as the largest number which equals to 

associative-1. 

The implementation of this algorithm is simple and 

needs a little hardware to be added, and it is done 

during transferring of the word to CPU. 

In Figure 2, we show a transition state diagram 

which describes hardware implementation of the 

suggested algorithm for 4-way associative cache. Any 

hit to block will change the state of the block to 

highest weighing value and decrease others, h1 means 

block in location one has been hit; the states from S0 

to S3, is the LRU weighing values of lines (0, 1, 2, 3) 

for four ways set associative  mapping.  

 

 
 

Figure 2. LRU transition states diagram. 

 

3.1.2. LFU Weighing Algorithm 
 

This algorithm produces conversion of the values in 

counters corresponding to each line, to the range of 

weights that has been used in LRU algorithm. 
 

Algorithm 2 LFU Weighing 
  

1. LFU [n] is an array that contains the values of counters 

for all lines. 

2. LFUW[n]   is an array of weights for all lines. 

3. n- number of lines in the set . 

4. LFUW [n] = {0} 

5. For (i = 0; i<n-1; i++) 

6. For ( j = i + 1 ; j< n; j++) 

7. IF (LFU [i]> LFU [j])  

                                LFUW [i ]++; 

8.          Else If ( LFU [i]< LFU [j])  

                                            LFUW [j]++; 

 

3.2. Combining Weighing Value 
 

Replacement policy depends on the Weighing Least 

Recently Least Frequently Used (WLRFU) values, 

which determined by the following equation: 
 

                   WLRFU[i]=WLRU[i]*Cr + WLFU[i]*Cf             (1) 
 

Where Cr and Cf: are priority constants for LRU and 

LFU respectively. In simulating process we will use 

the values of these constants to improve the 

performance. 

 

3.3. Determining the Line to be Replaced 
 

In normal case the line with minimum WLRFU will be 

replaced, but in case, where two or more blocks have 

the same WLRFU value as shown in Table1, for four 

ways set mapping, algorithm 3 should be used to 

resolve this problem.   

The following algorithm has been developed to be 

flexible to different systems requirements and this 
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achieved by using priority constants, which can be 

assigned according to the priority of latency or 

frequency in a specific systems. 
   

Table1. Possible WLRFU for four ways set mapping. 
 

LRUc + LFUc LRUc or LFUc 

0  , 1 , 2 , 3 Lc0 

1  , 2 , 3 , 4 Lc1 

2  , 3 , 4 , 5 Lc2 

3  , 4 , 5 , 6 Lc3 

 

Algorithm 3 Determining the Line to be Replaced 
 

1. sum= LRUc + LFUc 

2. IF (sum = 3) then Replace Lc2, or Lc1  �  depend on the 

priority constants.  

3. Else IF (sum = 2) then Replace Lc1 

4. Else IF (sum = 1) then Replace Lc1   or  Lc0  � depend on 

the priority constants. 

5. Else IF (sum = 0) then Replace Lc0  
 

Where LFUc or LRUc is a least frequently or least 

recently used counter respectively,  Lci  - the line which 

it's  LFUc or LRUc= i, from Table 1 we see that Lci line 

should be selected carefully to be the median of LFUc 

and LRUc, and by using this constraint the least miss 

rate has been achieved. 

 

4. Additional Hardware 

Hardware implementation is simple, we need two 

counters for each block in the cache; the first is for 

LRU weighing and the other is for LFU weighing. If 

the memory organization is four-way associative then 

these counters are two bits length, if the cache 

organization is eight-way associative then these 

counters are three bits length.  

In addition to the mentioned above hardware, we 

need a large counter to store the usage number of each 

block plus small storage for Cr and Cf. Note that if the 

original hardware architecture uses the LFU algorithm 

then the additional hardware is easy to add and 

implement, it is just full adder plus shift register. 

 

5. Simulation and Results 

In this section, we discuss the results from trace-driven 

simulations performed to assess the effectiveness of 

the proposed LR+5LF policy. We modified the simple 

scalar v3 simulator to implement the LR+5LF 

replacement policy. We used benchmark 

SPECCPU2000. The SPECCPU2000 benchmark suite 

is a collection of 26 compute-intensive, non-trivial 

programs used to evaluate the performance of a 

computer's CPU, memory system, and compilers. The 

benchmarks in this suite were chosen to represent real-

world applications, and thus exhibit a wide range of 

runtime behaviours [14].  

We compared the LR+5LF policy with other 

policies that depends on cache size, multilevel caches, 

block size and associativity by using the following 

benchmarks: 

1. Gcc: Integer component of SPECCPU2000, C 

language optimizing compiler, 176.gcc is based on 

gcc version 2.7.2.2. It generates code for a Motorola 

88100 processor. The benchmark runs as a compiler 

with many of its optimization flags enabled [14]. 

2. Vpr: Integer component of SPECCPU2000, 

Integrated Circuit Computer-Aided Design Program 

(More specifically, performs placement and routing 

in Field-Programmable Gate Arrays) [14]. 

3. Parser: Integer component of SPECCPU2000, 

Word Processing, The Link Grammar Parser is a 

syntactic parser of English, based on link grammar, 

an original theory of English syntax. Given a 

sentence, the system assigns to it a syntactic 

structure, which consists of set of labeled links 

connecting pairs of words [14]. 

4. Equake: Floating point component of 

SPECCPU2000, The program simulates the 

propagation of elastic waves in large, highly 

heterogeneous valleys, such as California's San 

Fernando Valley, or the Greater Los Angeles Basin. 

The goal is to recover the time history of the ground 

motion everywhere within the valley due to a 

specific seismic event. Computations are performed 

on an unstructured mesh that locally resolves 

wavelengths, using a finite element method [14]. 

5. Vortex: Integer component of SPECCPU2000, 

VORTEx is a single-user object-oriented database 

transaction benchmark which exercises a system 

kernel coded in integer C. The VORTEx benchmark 

is a derivative of a full OODBMS that has been 

customized to conform to SPECCINT2000 

(component measurement) guidelines [14]. Figure 3 

shows the relationship between cache size, memory 

organization and miss rate, at 1M level 2 cache on 

2-ways, 4-ways, 8-ways and fully associative 

mapping, it is clear that the performance is 

approximately  identical for all types. 

 

 
 

Figure 3. Miss rate versus cache size on the Integer portion of 

SPECCPU2000. 
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Assigning Values to Cr and Cf Constants: As shown 

in Figure 4, the equation 1 gives the highest 

performance results at Cr=1 and Cf=5. As we found 

that giving Cf value larger than 5 doesn't increase the 

performance. This is why our policy called (LR+5LF). 

The formulation of this equation is similar to reducing 

λ value in [1], to improve performance, where 

reducing λ means the behaviour of LRFU policy is 

becoming closer to LFU rather than to LRU. 
 

 
Figure 4. The effects of Cr and Cf  values on miss rate. 

 

Our simulation focused on L2 cache, so we used the 

same configuration of L1 cache for all policies, in 

which a separate instruction L1 and Data L1 cache 

with 128 sets, 32 bytes block size and 4-way 

associatively has been used for each of them. 

Figures 5 and 6 show the miss rate of LR+5LF 

policy compared to LRU and FIFO by using four 

different benchmarks. It is clear that the suggested 

LR+5LF policy gives better results in the miss ratio 

than both LRU and FIFO in L2 cache. In simulation 

running time we found that the LR+5LF policy 

achieves good improvement in miss rate at instruction 

level 1 cache, but no change in data  level 1 cache over 

other algorithms. 
 

 

Figure 5. Miss rate at L2 with cache 1024 sets and 64-bits block 

size and 4-way associativity. 

 

 

Figure 6.  Miss rate at L2 cache with 2048 sets and 64-bits block 

size and 4-way associativity. 

 

In Figure 7, we compared our policy with three 

important policies. First one is the optimum theoretical 

policy in which LRU is self-correcting according to 

the past accesses by adding a shadow directory and a 

mistake history table.  When there is a miss the OPT 

[5, 6] will choose either to replace one of the blocks in 

the cache or choose not to replace the missed block 

and bypass it. Second one is V-way policy which try to 

reduce conflict misses done in each set associative in 

L2 cache, in which the tag are doubled and the 

replacement becomes globally across L2 cache [11]. 

Third one is CRFP which is a self-tuning and can 

switch between different cache replacement policies 

adaptively and dynamically in response to the access 

pattern changes [17]. 

The comparison was done by using vortex 

benchmark (object oriented database) from 

SPECCPU2000. We found that the LR+5LF policy 

gave the best results in miss rate. It was the closest to 

optimum theoretical. 
 

 

 

Figure 7. Comparison of LR+5LF with other policies using 1M 

level 2 cache. 

 

6. Conclusions  

We have developed a new policy (LR+5LF) which is 

based on combining LRU and LFU replacement 

policies in an efficient manner. To assess the 

effectiveness of the proposed LR+5LF policy, we have 

used the simple scalar v3 simulator to implement the 

proposed replacement policy  in addition to Gcc, Vpr, 

Vortex, Parser and Equa benchmarks from 

SPECCPU2000 benchmark suite. We show the 

relationships between cache size, memory organization 

and miss rate, at level 2 cache according to 2-ways,  4-

ways, 8-ways and fully associative mapping which 

seems approximately identical for all types. Constants 

Cr and Cf can be easily scaled in order to achieve the 

highest performance results. For our proposed policy, 

they should be assigned 1, 5 values respectively. By 

using different benchmarks the suggested LR+5LF 

policy gave better results in the miss ratio than both 

LRU and FIFO in L2 cache.  

We found that the LR+5LF policy achieved good 

improvement in miss rate at instruction level 1 cache 

and Identical to other algorithms at cache data  level 1. 

The LR+5LF policy has been compared with other 



Least Recently Plus Five Least Frequently Replacement Policy (LR+5LF)                                                                                 21 

policies like optimum theoretical policy, v-way cache, 

and CRF using vortex benchmark (object oriented 

database) from SPECCPU2000.We found that the 

proposed policy gave the best results in miss rate. It 

was the closest to optimum theoretical. 
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