
16 The International Arab Journal of Information Technology, Vol. 9, No. 1, January 2012

Least Recently Plus Five Least Frequently

Replacement Policy (LR+5LF)

Adwan AbdelFattah
1
 and Aiman Abu Samra

2

1
Computer Science Department, The Arab American University of Jenin, Palestine

2
Computer Engineering Department, The Islamic University of Gaza, Palestine

Abstract: In this paper, we present a new block replacement policy in which we proposed a new efficient algorithm for

combining two important policies Least Recently Used (LRU) and Least Frequently Used (LFU). The implementation of the

proposed policy is simple. It requires limited calculations to determine the victim block. We proposed our models to implement

LRU and LFU policies. The new policy gives each block in cache two weighing values corresponding to LRU and LFU

policies. Then a simple algorithm is used to get the overall value for each block. A comprehensive comparison is made

between our Policy and LRU, First In First Out (FIFO), V-WAY, and Combined LRU and LFU (CRF) policies. Experimental

results show that the LR+5LF replacement policy significantly reduces the number of cache misses. We modified simple scalar

simulator version 3 under Linux Ubuntu 9.04 and we used speccpu2000 benchmark to simulate this policy. The results of

simulations showed, that giving higher weighing to LFU policy gives this policy best performance characteristics over other

policies. Substantial improvement on miss rate was achieved on instruction level 1 cache and at level 2 cache memory.

Keywords: Cache memory, replacement policy, LRU, LFU, miss rate.

Received January 29, 2010; accepted September 20, 2010

1. Introduction

Caching is the main method used to decrease the speed

gap between processor and main memory [9, 13].

There are three basic cache organizations. First, direct

mapping, where any block has a unique place in cache

and no need to replacement policy. This

implementation has a good hit time but worse miss

rate. Second, the fully associative, which allows a

memory block to be mapped to any of the empty cache

blocks, but if there is no empty blocks a replacement

policy used to evict one from all over the cache. This

organization is very expensive in hardware
implementation and has worse hit time, as all

addresses will be compared to get a wanted block.

The third organization is set-associative, which

divides the cache into sets and allows a memory block

to be mapped at any empty block within a set. If there

are no empty blocks, a replacement will evict a block

from this set only. This organization is a trade-off

between the previous two organizations. As it is trade-

off between costs, hit time and miss rate.

One of its most important design decisions is the

block replacement policy. Effective replacement policy

is the topic of much research in computer systems. All

cache algorithms have one common function; which is

to reduce the miss rate [1, 3, 13]. The cost of misses

includes miss penalty, power consumption, and

bandwidth consumption. The "hit rate" of a cache

describes how often a searched-for block is actually

found in the cache. The choice of a block replacement

algorithm, in set associative caches, can have a great

effect on the overall system performance [3, 4]. More

efficient replacement policies keep track of more used

blocks in order to improve the hit rate for a given

cache size. Each replacement strategy is a compromise

between hit rate and latency.

Some policies are trivial others are complex. Trivial

policies are the first approaches used to determine the

replacement candidates. They include the Random

replacement where the block to be replaced is selected

randomly from all the blocks in the set. Another is the

FIFO replacement, where the set is designed as a

queue structure and every block that is inserted to the

set will be ordered according to the time they were

inserted in the cache. These trivial policies results in

higher miss rate. A miss is the failure to find a required

block in the cache and hence it must be requested from

the main memory. There is a number of popular

policies that depend on two measures. One is the

Recency which is the time span from the current

access time to the last access time of a certain block.

Recency was exploited by Least Recently Used (LRU)

policy and its different implementations. The second

measure is the Frequency, which was exploited by its

basic implementation, Least Frequently Used (LFU)

policy. In this policy, each cache block maintains a

counter that is incremented each time the block is

accessed. When it is required to pick a candidate for

replacement, the block with the minimum counter

value, that means minimum frequency, is picked.

These two extremes were used excessively in the cache

replacement policies research [7, 17].

Least Recently Plus Five Least Frequently Replacement Policy (LR+5LF) 17

LRU ignores the usability of the block so the most

accessed block may be the victim. LFU ignores the

latest accessed block, so the latest block may be the

victim, and may not take the chance to increase its

value. So the challenge was to combine frequency and

recency to obtain expectedly better performance in

terms of hit ratio.

In this paper, we present a new block replacement

policy, which combines LRU and LFU. Experimental

results show that our proposed replacement policy,

Least Recently Plus five Least Frequently (LR+5LF),

significantly reduces the number of cache misses.

We used Simple Scalar simulator version3 under

Linux Ubuntu 9.04 to get the results of the

comparisons between our proposed algorithm and

other popular algorithms. We modified the routine

code related to the replacement algorithm in the

Simple Scalar simulator.

The Simple Scalar tools set is a system software

infrastructure used to build modelling applications for

program performance analysis, detailed micro

architectural modelling, and hardware-software co-

verification. Using the Simple Scalar tools, users can

build modelling applications that simulate real

programs running on a range of modern processors and

systems. The tool set includes sample simulators

ranging from a fast functional simulator to a detailed,

dynamically scheduled processor model that supports

non-blocking caches, speculative execution, and state-

of-the-art branch prediction. The Simple Scalar tools

are used widely for research and instruction, for

example, in 2000 more than one third of all papers

published in top computer architecture conferences

used the Simple Scalar tools to evaluate their designs.

In addition to simulators, the Simple Scalar tools set

includes performance visualization tools, statistical

analysis resources, debug and verification

infrastructure [12].

 We used spec2000 benchmark to simulate this

policy. The results of simulations showed, that giving

higher weighing to LFU policy gives this policy best

performance characteristics over other policies.

Substantial improvement on miss rate was achieved on

instruction level 1 cache and at level 2 cache memory.

2. Related Work

The study of block replacement policies is, in essence,

a study of relating past access patterns with future

access behaviour. Based on the Recognition of access

patterns through acquisition and analysis of past

behaviour or history, replacement policies resolve to

identify the block that will be used furthest down in the

future, so that that block maybe replaced when needed

[2, 8].

The LRFU policy associates a value with each

block. This value is called the Combined Recency and

Frequency (CRF) value and quantifies the likelihood

that the block will be referenced in the near future.

Each reference to a block in the past contributes to this

value and a reference's contribution is determined by a

weighing function F(x), where x is the time span from

the reference in the past to the current time [7](Figure

1).

Figure 1. LRFU spectrums.

Zhansheng et al. [17], proposed a novel replacement

policy that switches between LRU and LFU on

runtime, they used a queue called Qout as a separate

data structure within the cache. The queue is limited in

size and the replacement is done using LRU in this

queue. Whenever a block is removed from the cache, it

is placed in Qout. They used an additional H (hit)

counter that is initialized to zero and an O (out)

counter that is also initialized to zero. The cache is

initially managed by LRU policy and with each miss,

the old block will be pushed to Q and the new block

will be checked to find if it already exists in Q. if it

does, then the H counter is incremented by one and if

not the O counter is incremented by one. The

replacement decision is made by comparing the values

of H and O, if the value of H is larger than Q then the

policy will be switched to LFU and if O is larger than

H, the policy will be changes to LRU and so on. This

method is an adaptive method and the idea is that

when the program is first started and the cache still has

free lines, then the recency will be more likely to affect

the replacement decision. And once the value of H

exceeds O then this indicates that the blocks that were

used before are needed and hence the frequency

becomes more dominant than the recency and vice

versa when O exceeds H. The implementation of this

scheme is complex which is negatively affect

performance.

Other polices combines LRU and LFU in one

scheme. They used different implementations but they

are trying to optimize the performance of cache

replacement algorithms [15, 16]. Some others use

Dynamic Insertion Policy (DIP), in which the selection

of replacement policy depends on which one incurs

fewer misses [10].

18 The International Arab Journal of Information Technology, Vol. 9, No. 1, January 2012

3. LR+5FU Policy

LR+5FU: is a novel replacement policy which is a

combination between two popular replacement policies

LRU and LFU. During the development of the

proposed policy, the following problems have been

solved:

• LRU and LFU weighing.

• Combining of LRU and LFU.

• Determining the line to be replaced.

3.1. LRU and LFU Weighing

To obtain a balance between two policies we add a

weighing value to each of them by developing the

following weighing algorithms.

 3.1.1. LRU Weighing Algorithm

The weighing value changed from <0> (least

recently/frequently used) to <associative-1> (most

recently/frequently used).

Algorithm 1 LRU Weighing

1. Hit block in cache

2. For(i=0;i<assoc;i++)

3. If block.wlru <Wlru[i]

4. Wlru=wlru-1

5. End for loop

6. Block.wlru=assoc-1

Where wlru[i] is a weighing value of LRU. When the

block in cache is accessed, the LRU algorithm gives

this block the Most Recently Used value, so the

algorithm works as follow: check weighing values for

all blocks in the set; if any block has a weighing value

larger than the weighing value of accessed block,

reduce it by 1, finally put the weighing value of

accessed block as the largest number which equals to

associative-1.

The implementation of this algorithm is simple and

needs a little hardware to be added, and it is done

during transferring of the word to CPU.

In Figure 2, we show a transition state diagram

which describes hardware implementation of the

suggested algorithm for 4-way associative cache. Any

hit to block will change the state of the block to

highest weighing value and decrease others, h1 means

block in location one has been hit; the states from S0

to S3, is the LRU weighing values of lines (0, 1, 2, 3)

for four ways set associative mapping.

Figure 2. LRU transition states diagram.

3.1.2. LFU Weighing Algorithm

This algorithm produces conversion of the values in

counters corresponding to each line, to the range of

weights that has been used in LRU algorithm.

Algorithm 2 LFU Weighing

1. LFU [n] is an array that contains the values of counters

for all lines.

2. LFUW[n] is an array of weights for all lines.

3. n- number of lines in the set .

4. LFUW [n] = {0}

5. For (i = 0; i<n-1; i++)

6. For (j = i + 1 ; j< n; j++)

7. IF (LFU [i]> LFU [j])

 LFUW [i]++;

8. Else If (LFU [i]< LFU [j])

 LFUW [j]++;

3.2. Combining Weighing Value

Replacement policy depends on the Weighing Least

Recently Least Frequently Used (WLRFU) values,

which determined by the following equation:

 WLRFU[i]=WLRU[i]*Cr + WLFU[i]*Cf (1)

Where Cr and Cf: are priority constants for LRU and

LFU respectively. In simulating process we will use

the values of these constants to improve the

performance.

3.3. Determining the Line to be Replaced

In normal case the line with minimum WLRFU will be

replaced, but in case, where two or more blocks have

the same WLRFU value as shown in Table1, for four

ways set mapping, algorithm 3 should be used to

resolve this problem.

The following algorithm has been developed to be

flexible to different systems requirements and this

Least Recently Plus Five Least Frequently Replacement Policy (LR+5LF) 19

achieved by using priority constants, which can be

assigned according to the priority of latency or

frequency in a specific systems.

Table1. Possible WLRFU for four ways set mapping.

LRUc + LFUc LRUc or LFUc

0 , 1 , 2 , 3 Lc0

1 , 2 , 3 , 4 Lc1

2 , 3 , 4 , 5 Lc2

3 , 4 , 5 , 6 Lc3

Algorithm 3 Determining the Line to be Replaced

1. sum= LRUc + LFUc

2. IF (sum = 3) then Replace Lc2, or Lc1 � depend on the

priority constants.

3. Else IF (sum = 2) then Replace Lc1

4. Else IF (sum = 1) then Replace Lc1 or Lc0 � depend on

the priority constants.

5. Else IF (sum = 0) then Replace Lc0

Where LFUc or LRUc is a least frequently or least

recently used counter respectively, Lci - the line which

it's LFUc or LRUc= i, from Table 1 we see that Lci line

should be selected carefully to be the median of LFUc

and LRUc, and by using this constraint the least miss

rate has been achieved.

4. Additional Hardware

Hardware implementation is simple, we need two

counters for each block in the cache; the first is for

LRU weighing and the other is for LFU weighing. If

the memory organization is four-way associative then

these counters are two bits length, if the cache

organization is eight-way associative then these

counters are three bits length.

In addition to the mentioned above hardware, we

need a large counter to store the usage number of each

block plus small storage for Cr and Cf. Note that if the

original hardware architecture uses the LFU algorithm

then the additional hardware is easy to add and

implement, it is just full adder plus shift register.

5. Simulation and Results

In this section, we discuss the results from trace-driven

simulations performed to assess the effectiveness of

the proposed LR+5LF policy. We modified the simple

scalar v3 simulator to implement the LR+5LF

replacement policy. We used benchmark

SPECCPU2000. The SPECCPU2000 benchmark suite

is a collection of 26 compute-intensive, non-trivial

programs used to evaluate the performance of a

computer's CPU, memory system, and compilers. The

benchmarks in this suite were chosen to represent real-

world applications, and thus exhibit a wide range of

runtime behaviours [14].

We compared the LR+5LF policy with other

policies that depends on cache size, multilevel caches,

block size and associativity by using the following

benchmarks:

1. Gcc: Integer component of SPECCPU2000, C

language optimizing compiler, 176.gcc is based on

gcc version 2.7.2.2. It generates code for a Motorola

88100 processor. The benchmark runs as a compiler

with many of its optimization flags enabled [14].

2. Vpr: Integer component of SPECCPU2000,

Integrated Circuit Computer-Aided Design Program

(More specifically, performs placement and routing

in Field-Programmable Gate Arrays) [14].

3. Parser: Integer component of SPECCPU2000,

Word Processing, The Link Grammar Parser is a

syntactic parser of English, based on link grammar,

an original theory of English syntax. Given a

sentence, the system assigns to it a syntactic

structure, which consists of set of labeled links

connecting pairs of words [14].

4. Equake: Floating point component of

SPECCPU2000, The program simulates the

propagation of elastic waves in large, highly

heterogeneous valleys, such as California's San

Fernando Valley, or the Greater Los Angeles Basin.

The goal is to recover the time history of the ground

motion everywhere within the valley due to a

specific seismic event. Computations are performed

on an unstructured mesh that locally resolves

wavelengths, using a finite element method [14].

5. Vortex: Integer component of SPECCPU2000,

VORTEx is a single-user object-oriented database

transaction benchmark which exercises a system

kernel coded in integer C. The VORTEx benchmark

is a derivative of a full OODBMS that has been

customized to conform to SPECCINT2000

(component measurement) guidelines [14]. Figure 3

shows the relationship between cache size, memory

organization and miss rate, at 1M level 2 cache on

2-ways, 4-ways, 8-ways and fully associative

mapping, it is clear that the performance is

approximately identical for all types.

Figure 3. Miss rate versus cache size on the Integer portion of

SPECCPU2000.

20 The International Arab Journal of Information Technology, Vol. 9, No. 1, January 2012

Assigning Values to Cr and Cf Constants: As shown

in Figure 4, the equation 1 gives the highest

performance results at Cr=1 and Cf=5. As we found

that giving Cf value larger than 5 doesn't increase the

performance. This is why our policy called (LR+5LF).

The formulation of this equation is similar to reducing

λ value in [1], to improve performance, where

reducing λ means the behaviour of LRFU policy is

becoming closer to LFU rather than to LRU.

Figure 4. The effects of Cr and Cf values on miss rate.

Our simulation focused on L2 cache, so we used the

same configuration of L1 cache for all policies, in

which a separate instruction L1 and Data L1 cache

with 128 sets, 32 bytes block size and 4-way

associatively has been used for each of them.

Figures 5 and 6 show the miss rate of LR+5LF

policy compared to LRU and FIFO by using four

different benchmarks. It is clear that the suggested

LR+5LF policy gives better results in the miss ratio

than both LRU and FIFO in L2 cache. In simulation

running time we found that the LR+5LF policy

achieves good improvement in miss rate at instruction

level 1 cache, but no change in data level 1 cache over

other algorithms.

Figure 5. Miss rate at L2 with cache 1024 sets and 64-bits block

size and 4-way associativity.

Figure 6. Miss rate at L2 cache with 2048 sets and 64-bits block

size and 4-way associativity.

In Figure 7, we compared our policy with three

important policies. First one is the optimum theoretical

policy in which LRU is self-correcting according to

the past accesses by adding a shadow directory and a

mistake history table. When there is a miss the OPT

[5, 6] will choose either to replace one of the blocks in

the cache or choose not to replace the missed block

and bypass it. Second one is V-way policy which try to

reduce conflict misses done in each set associative in

L2 cache, in which the tag are doubled and the

replacement becomes globally across L2 cache [11].

Third one is CRFP which is a self-tuning and can

switch between different cache replacement policies

adaptively and dynamically in response to the access

pattern changes [17].

The comparison was done by using vortex

benchmark (object oriented database) from

SPECCPU2000. We found that the LR+5LF policy

gave the best results in miss rate. It was the closest to

optimum theoretical.

Figure 7. Comparison of LR+5LF with other policies using 1M

level 2 cache.

6. Conclusions

We have developed a new policy (LR+5LF) which is

based on combining LRU and LFU replacement

policies in an efficient manner. To assess the

effectiveness of the proposed LR+5LF policy, we have

used the simple scalar v3 simulator to implement the

proposed replacement policy in addition to Gcc, Vpr,

Vortex, Parser and Equa benchmarks from

SPECCPU2000 benchmark suite. We show the

relationships between cache size, memory organization

and miss rate, at level 2 cache according to 2-ways, 4-

ways, 8-ways and fully associative mapping which

seems approximately identical for all types. Constants

Cr and Cf can be easily scaled in order to achieve the

highest performance results. For our proposed policy,

they should be assigned 1, 5 values respectively. By

using different benchmarks the suggested LR+5LF

policy gave better results in the miss ratio than both

LRU and FIFO in L2 cache.

We found that the LR+5LF policy achieved good

improvement in miss rate at instruction level 1 cache

and Identical to other algorithms at cache data level 1.

The LR+5LF policy has been compared with other

Least Recently Plus Five Least Frequently Replacement Policy (LR+5LF) 21

policies like optimum theoretical policy, v-way cache,

and CRF using vortex benchmark (object oriented

database) from SPECCPU2000.We found that the

proposed policy gave the best results in miss rate. It

was the closest to optimum theoretical.

References

[1] Alghazo J., Akaaboune A., and Botros N., “SF-

LRU Cache Replacement Algorithm,” in

Proceedings of International Workshop on

Memory Technology Design and Testing, USA,

pp. 19-24, 2004.

[2] Belady A., “A Study of Replacement Algorithms

for Virtual-Storage Computers,” Computer

Journal of IBM Systems, vol. 5, no. 2, pp. 78-

101, 1966.

[3] Hennessy J. and Patterson D., Computer

Architecture A Quantitative Approach, Morgan

Kaufmann Publishers, 2007.

[4] Jamil T. and Stacpoole R., “Cache Memories,”

IEEE Potentials, vol. 19, no. 2, pp. 24-29, 2000.

[5] Kampe M., Stenstrom P., and Dubois M., “Self-

Correcting LRU Replacement Policies,” in

Proceedings of the 1
st
 Conference on Computing

Frontiers, USA, pp. 181-191, 2004.

[6] Kaushik R. and Govindarajan R., “Emulating

Optimal Replacement with Shepherd Cache,” in

Proceedings of the 40
th
 International Symposium

on Microarchitecture, Chicago, pp. 445-454,

2007.

[7] Lee D., Choi J., Kim J., Noh S., Min S., Cho Y.,

and Kim C., “LRFU: A Spectrum of Policies that

Subsumes the Least Recently Used and Least

Frequently Used Policies,” IEEE Transaction on

Computers, vol. 50, no. 12, pp. 1352-1361, 2001.

[8] Mattson L., Gecsei J., Slutz R., and Traiger L.,

“Evaluation Techniques for Storage

Hierarchies,” Computer Journal of IBM Systems,

vol. 9, no. 2, pp. 78-117, 1970.

[9] Megiddo N. and Modha D., “ARC: A Self-

Tuning, Low Overhead Replacement Cache,” in

Proceedings of the 2
nd
 USENIX Symposium on

File and Storage Technologies, USA, pp. 115-

130, 2003.

[10] Qureshi K., Aamer J., Yale N., Patt C., Steely J.,

and Joel E., “Adaptive Insertion Policies for

High-Performance Caching,” in Proceedings of

the 34
th
 International Symp-osium on Computer

Architecture, USA, pp. 381-391, 2007.

[11] Qureshi K., Thompson D., and Patt N., “The V-

Way Cache: Demand Based Associativity via

Global Replacement,” in Proceedings of the 32
th

International Symposium on Computer

Architecture, USA, pp. 544-555, 2005.

[12] Simple Scalar, LLC, available at:

http://www.simplescalar.com/, last visited 2010.

[13] Stallings W., Computer Organization and

Architecture, Prentice Hall, 2006.

[14] Standard Performance Evaluation Corporation,

available at: http://www.spec.org/, last visited

2010.

[15] Wong A. and Baer L., “Modified LRU Policies

for Improving Second-Level Cache Behavior,” in

Proceedings of 6
th
 International Symposium on

High-Performance Computer Architecture,

France, pp. 49-60, 2000.

[16] Yoon J., Min L., and Cho Y., “Buffer Cache

Management: Predicting the Future from the

Past,” in Proceedings of International

Symposium on Parallel Architecture Algorithms

and Networks, Philippines, pp. 92-97, 2002.

[17] Zhansheng L., Dawei L., and Huijuan B.,

“CRFP: A Novel Adaptive Replacement Policy

Combined the LRU and LFU Policies,” in

Proceedings of IEEE 8
th
 International

Conference on Computer and Information

Technology Workshops, Sydney, pp. 72-79,

2008.

Adwan AbdelFattah is an assistant

professor at the Computer Science

Department of the Arab American

University of Jenin, Palestine.

Previously, he worked at

Philadelphia and Zarqa Private

University. He received his PhD

from the National Technical University of Ukraine in

1996. His research interests include computer

networks, computer architecture, cryptography,

networks security, authentication and digital signature.

Aiman Abu Samra is an IEEE and

computer society member. He

received his PhD from the National

Technical University of Ukraine in

1996. Currently, he is an assistant

professor at the Computer

Engineering Department at the

Islamic University of Gaza, Palestine. His research

interests include computer architecture, computer

networks and software engineering. He managed

several funded projects in cooperation with industry.

He teaches several courses on computer architecture

and computer networks.

