
30 The International Arab Journal of Information Technology, Vol. 9, No. 1, January 2012

A Framework for Distributed Pattern Matching

Based on Multithreading

Najib Kofahi and Ahmed Abusalama

Department of Computer Science, Yarmouk University, Jordan

Abstract: Despite of the dramatic evolution in high performance computing we still need to devise new efficient algorithms to

speed up the search process. In this paper, we present a framework for a data-distributed and multithreaded string matching

approach in a homogeneous distributed environment. The main idea of this approach is to have multiple agents that

concurrently search the text, each one from different position. By searching the text from different positions the required

pattern can be found more quickly than by searching the text from one position). Concurrent search can be achieved by two

techniques; the first is by using multithreading on a single processor, in this technique each thread is responsible for searching

one part of the text. The concurrency of the multithreading technique is based on the time sharing principle, so it provides us

of an illusion of concurrency not pure concurrency. The second technique is by having multiprocessor machine or distributed

processors to search the text; in this technique all of the processors search the text in a pure concurrent way. Our approach

combines the two concurrent search techniques to form a hybrid one that takes advantage from the two techniques. The

proposed approach manipulates both exact string matching and approximate string matching with k-mismatches.

Experimental results demonstrate that this approach is an efficient solution to the problem in a homogeneous clustered system.

Keywords: Pattern matching, online search algorithms, multithreading, concurrency, java space technology, distributed

processing.

Received April 7, 2009; accepted November 5, 2009

1. Introduction

The problem of finding exact or non-exact occurrences

of a pattern P in a text T over some alphabet is a

central problem of combinatorial pattern matching and

has a variety of applications in many areas of

computer science [19]. String searching algorithms can

be accomplished in two ways:

1. Exact match, meaning that the passages returned

will contain an exact match of the key input.

2. Approximate match, meaning that the passage will

contain some part of the key word input [17].

Although the dramatic evolution of processor

technology and other advances have reduced search

response to negligible times, pattern matching problem

still remains a useful area of research and development

for a number of reasons. Firstly, as the size of data

continues to grow, sequence searches will become

increasingly taxing on search engines. Secondly, the

pattern matching still remains an integral part of faster

matching algorithms, typically comprising the final

part of a search. Lastly, researchers have to understand

the classical methods of pattern matching to develop

new efficient algorithms [12].

With the developments of new pattern matching

techniques, efficiency and speed are the main factors

in deciding among different options available for each

application area. Each application area has certain

special features that can be used by pattern matching

technique best suited for that area [24].

This study presents a new approach to solve the

problem of pattern matching depending on the idea of

search distribution over multiple connected nodes. At

each node we adopt the multithreading paradigm to

speedup the searching process. By using

multithreading and distributed search over connected

nodes the text can be searched concurrently from

different positions. This will decrease the time needed

to find the required pattern.

For our implementation purposes, Java threads - a

built-in parallelism support- is used to implement the

multithreaded approach. To implement the distributed

processing, we use the Java space technology, which is

easy to implement and satisfy our problem

requirements. At each node in the distribution, the

multithreaded approach works in a timesharing

manner.

The rest of the paper is organized as follows.

Section 2 gives a brief introduction to string searching

algorithms. In section 3, the subject of threads and

multithreading is introduced, and distributed

computing and distributed algorithms are discussed in

section 4. The main contribution of this research is

given in section 5: The multithreaded distributed

pattern matcher. Implementation and experimental

results are explained in section 6. The conclusions and

future work is given in section 7.

A Framework for Distributed Pattern Matching Based on Multithreading 31

2. String Searching Algorithms

In general, there are two ways to search a text T to

find a pattern P depending on weather the algorithm

performs some preprocessing on the text T or not.

Depending on the problem domain, some of the

matching algorithms have to preprocess the text and

build a data structure to aid in the search process. Such

algorithms are called indexers. (i.e., suffix arrays.

suffix trees, and inverted files). Other algorithms

directly perform the search on the text without any

preprocessing. Such algorithms are called sequential or

online search algorithms (i.e., Knuth-Morris, Boyer

Moore, and Brute-Force) [28]. In this paper, we are

interested in enhancing the online search algorithms.

3. Threads and Multithreading Motivation

A thread is simply a path of execution within a process

or it’s a low weight process [13]. In single threaded

applications, all operations, regardless of type,

duration or priority, execute on a single thread. Such

applications are simple to design and build and all

operations are serialized. That means there is one

thread running at a time. However, there are many

situations where it's useful to have multiple threads of

execution that run simultaneously based on the

principle of timesharing [26].

Concurrency is very important in many computer

applications, but most of the programming languages

do not enable programmers to specify concurrent

activities. Rather, programming languages generally

provide only a simple set of control structures that

enable programmers to perform one action at a time

then precede to the next action after the previous one

is finished. The kind of concurrency that computers

perform today normally is implemented as operating

system “primitives” available only to high experienced

system programmers [7].

Java is unique among popular general-purpose

programming languages in that it makes concurrency

primitives available to the applications programmer.

The programmer specifies that applications contain

threads of execution, each thread designating a portion

of a program that may execute concurrently with other

threads. Multithreading gives the Java programmer

powerful capabilities that are not available in C and

C++, the languages on which Java is based [7].

CPU can process only one instruction at time

(regardless to the pipelining technology). When a

multithreaded application runs on a single processor

it's impossible to have a complete or pure parallelism,

but it gives us an illusion of parallelism depending on

the timesharing principle. The idea is behind the very

fast context switching between threads that can be

performed by the CPU. Because of that fast context

switching the different running threads seems to be

running at the same time.

This study implements a multithreading text

searching approach to improve text searching

performance at a single CPU machine. The idea is to

have more than one searcher thread that search the text

from different positions. Since the required pattern

may occur at any position, having multiple searchers is

better than searching the text sequentially from the

first character to the last one.

4. Distributed Computing and Distributed

 Algorithms

The new technologies of networking and the dramatic

evolution of the internet and intranet impacts the way

that we use computers and changes the way we create

applications for them. Distributed applications are

becoming the natural way to build software.

“Distributed computing” is all about designing and

building applications as a set of processes that are

distributed across a network of machines and work

together as an ensemble to solve a common problem

[8].

Distributed algorithms are algorithms designed to

run on a distributed system; where many processes

cooperate by solving parts of a given problem in

parallel. For this purpose, the processes have to

exchange data and synchronize their actions. In

contrast to so called parallel algorithms,

communication and synchronization is solely done by

message passing -there are no shared variables- and

usually the processes do not even have access to a

common clock. Since message transmission time

cannot be ignored, no process has immediate access to

the global state. Hence, control decisions must be

made on a partial and often outdated view of the

global state which is assembled from information

gathered gradually from other processes [16].

Distributing computing requires a tool by which the

distributed machines can communicate. Many tools are

available such as Remote Method Invocation (RMI),

CORBA and Java Space. Each tool has its own

specifications; the application designer chooses the

appropriate one for his application requirement.

5. The Multithreaded Distributed Pattern

 Matcher

5.1. Multithreading Approach

The main idea by using multithreading to solve the

pattern matching problem (on a single CPU machine)

is to have multi searching threads that search the target

text simultaneously in a timesharing manner. Each

thread starts searching the target text from different

position. By searching the text from different positions

(instead of one position) the speed of finding the

required pattern will increase. The speed up obtained

by using this approach comes from the nature of the

32 The International Arab Journal of Information Technology, Vol. 9, No. 1, January 2012

threads work (time sharing) and the nature of the target

text that can be accessed from any position. Logically,

having more than one person searching for something

is better than having one searcher. To illustrate the

idea let's see the following example:

Suppose that we have an 80 character text (80

characters length) and we search for a pattern occurs at

position 61 using brute force algorithm, as shown in

Figure 1.

1 2 3 4 5 6 7 8 9 10

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

p21 p22 p23 p24 p25 p26 p27 p28 p29 p30

p31 p32 p33 p34 p35 p36 p37 p38 p39 p40

p41 p42 p43 p44 p45 p46 p47 p48 p49 p50

p51 p52 p53 p54 p55 p56 p57 p58 p59 p60

p61 p62 p63 p64 p65 p66 p67 p68 p69 p70

p71 p72 p73 p74 p75 p76 p77 p78 p79 p80

Figure 1. Searching an 80 character text.

In sequential search (having one working process

to search the text from the first character to the last

one) the CPU examines 60 characters to reach the

required pattern. Now let's move to the multi threading

effect on this text.

To force each thread to search the text from

different position, the text is divided into equal parts

and each thread is responsible for searching a

particular part. If the text length is not divisible by the

number of threads then the last thread will search the

division remainder.

Threads work in a time sharing manner, that means

(in the simple form) the first thread examines the first

character of its assigned text part, then the CPU makes

a context switch to the second thread to examine the

first character of its part, and then the CPU makes a

context switching to the third thread and so on until

the CPU makes context switching to all of the threads.

Then CPU switches back to the first thread to examine

the second character of its part, and so on. This

process is repeated until the whole text is examined, as

shown Figure 2.

Figure 2. Searcher threads context switching.

• Using two threads to search the text: We have a text

with 80 characters (1-80), so we divide it into two

parts. The first part is from 1-40 and the second part

is from 41-80, as shown in Figure 3.

1 2 3 4 5 6 7 8 9 10

T
h
r
ea

d
 1

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

p21 p22 p23 p24 p25 p26 p27 p28 p29 p30

p31 p32 p33 p34 p35 p36 p37 p38 p39 p40

T
h
r
ea

d
 2

p41 p42 p43 p44 p45 p46 p47 p48 p49 p50

p51 p52 p53 p54 p55 p56 p57 p58 p59 p60

p61 p62 p63 p64 p65 p66 p67 p68 p69 p70

p71 p72 p73 p74 p75 p76 p77 p78 p79 p80

Figure 3. Using two threads for text searching.

By considering the context switching illustrated in

Figure 2, the CPU examines 40 characters to reach the

required pattern. So in this case using two threads is

better than using one thread. Note that this is not

always the case; it depends on the position of the

pattern in the text. This matter will be illustrated in the

following.

• Using three threads to search the text: The text is

divided into three parts; part one from 1-26, part

two from 27-52 and part three from 53-80, as

shown in Figure 4. In this case, the CPU examines

21 characters to reach the required pattern.

 1 2 3 4 5 6 7 8 9 10

T
1

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

p21 p22 p23 p24 p25 p26

T
2

p27 p28 p29 p30 p31 p32 p33 p34 p35 p36

p37 p38 p39 p40 p41 p42 p43 p44 p45 p46

p47 p48 p49 p50 p51 p52

T
3

p53 p54 p55 p56 p57 p58 p59 p60 p61 p62

p63 p64 p65 p66 p67 p68 p69 p70 p71 p72

p73 p74 p75 p76 p77 p78 p79 p80

Figure 4. Using three threads for text searching.

• Using four threads to search the text: The text is

divided into four parts; part one from 1-20, part two

from 21-40, part three from 41-60 and part four

from 61-80, as shown in Figure 5. In this case, the

CPU examines only 3 characters to reach the

required pattern. So, it is an incredible improvement

to search this text considering the using of one and

two threads. Increasing the number of threads is not

A Framework for Distributed Pattern Matching Based on Multithreading 33

the idea to speed up this approach; the idea is to

have an appropriate number of threads (or text

parts) by which the pattern occurs at a near position

to the beginning of any text part. When a pattern

occurs at a near position to the beginning of a text

part it can be found quickly.

 1 2 3 4 5 6 7 8 9 10

T
1

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

T
2

p21 p22 p23 p24 p25 p26 p27 p28 p29 p30

p31 p32 p33 p34 p35 p36 p37 p38 p39 p40

T
3

p41 p42 p43 p44 p45 p46 p47 p48 p49 p50

p51 p52 p53 p54 p55 p56 p57 p58 p59 p60

T
4

p61 p62 p63 p64 p65 p66 p67 p68 p69 p70

p71 p72 p73 p74 p75 p76 p77 p78 p79 p80

Figure 5. Using four threads for text searching.

• Using five threads to search the text: The text is

divided into five parts; part one from 1-16, part two

from 17-32, part three from 33-48, part four from

49-64 and part five from 65-80, as shown in Figure

6. In this case, the CPU examines 60 characters to

reach the required pattern. Although the number of

threads have increased, this case is worse than

others. Each time we use different number of

threads the pattern position become closer or distant

from the beginning of the data parts.

Figure 6. Using five threads for text searching.

5.2. The Problem of Text Partitioning Among

 the Threads

Since there are multiple threads that search the text

form different positions, the text has to be divided into

subtexts and each subtext is allocated to a particular

thread. Texts or (strings) in Java are stored in a single

array data structure and its characters can be accessed

via the indexes of that array. To avoid the problem that

occurs when a pattern is found at the boundaries of

two subtexts the text is virtually divided into subtext.

Instead of searching independent subtexts, all of the

threads perform the search on the same text (array) but

each one with different indexes. In this case if a

pattern found at the last positions of a subtext i and the

first positions of the next subtext, then the thread that

searches the subtext i can find the pattern since it can

access the characters of the next subtext. Text is

divided among threads according to the following

pseudo code:

For i=1 to numberOfThreads

search(((i-1) * ((text.length() /numOfThreads) –1))

 +i ,(i* ((text.length() /numOfThreads) –1)) +i)

i= i+ 1

End do

Where: numberOfThreads: The number of the working

threads.

Search (x, y): Search the text from position x to

position y.

text.length: The length of the target text.

Consider the case of using two threads discussed

earlier to find a pattern P with a length of 6 characters

and occurs at position 38 in the text. The first thread

searches the text from position 1 to 40, and the second

thread searches the text from position 41 to 80. When

the first thread detects a partial match at positions 38-

40 it can continue to test the positions 41-43.

5.3. Implementing and Testing the

 Multithreaded Approach

The multithreaded approach is implemented with Java

threads on Intel P4 CPU with 2.53 GHz speed. Text

size is 2.6 MB. Pattern size is 1 KB (to make more

computations). Search algorithm used is the brute

force algorithm. The pattern occurs -in the text- at the

position number 1,639,400. The results obtained for

different number of threads is shown in Table 1.

The best time gained by using five threads (1500

ms instead of 8125 ms by using one thread) as shown

in Figure 7.

Table 1. Time obtained in milliseconds by using varying numbers

of threads on a single CPU.

Number of Threads Time in ms

1 8125

2 3350

3 11360

4 6453

5 1500

6 9750

7 5109

8 13312

9 8485

10 3578

 1 2 3 4 5 6 7 8 9 10

T
1

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p11 p12 p13 p14 p15 p16

T
2

p17 p18 p19 p20 p21 p22 p23 p24 p25 p26

p27 p28 p29 p30 p31 p32
T
3

p33 p34 p35 p36 p37 p38 p39 p40 p41 p42

p43 p44 p45 p46 p47 p48

T
4

p49 p50 p51 p52 p53 p54 p55 p56 p57 p58

p59 p60 p61 p62 p63 p64

T
5

p65 p66 p67 p68 p69 p70 p71 p72 p73 p74

p75 p76 p77 p78 p79 p80

34 The International Arab Journal of Information Technology, Vol. 9, No. 1, January 2012

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9

Number of threads

T
im
e
 i
n
 m
s

Figure 7. Relation between number of threads and time required to

find the pattern.

5.4. Analyzing Multithreading Approach

 Behavior

From the experimental results it is shown that the

behavior of the multithreaded approach is not

predictable. As seen from the experimental results

each number of threads gives a different result. To

have good results to find the required pattern, the

pattern should occur at the beginning of any subtext.

The pattern position (according to the beginning of

subtexts) depends on the number of threads (subtext=

text length/ number of threads) so we need to know the

number of threads by which the pattern occurs at a

near position to the beginning of a subtext. The

relation between pattern position and number of

threads is described in the following formula:

((N /Tn) * Ti) + 1 ≤ pattern position ≤ ((N/ Tn) * Ti) +

N/ 2 * Tn

Where:

N: Target text length.

Tn: Number of threads.

Ti: Thread number i, i= 0, 1, 2 … n.

The shaded area in Figure 8 shows the pattern

positions described by this formula. The problem in

this formula is the two unknown variables (pattern

position and Tn).

T
0
 1 2 3 4 5 6 7 8 9 10

T
1
 11 12 13 14 15 16 17 18 19 20

T
2
 21 22 23 24 25 26 27 28 29 30

…

T
n
 N

Figure 8. The best pattern positions in the multithreaded approach.

This unpredictable behavior depends on the text

length. If we have a small text that will be divided into

smaller subtexts and the pattern occurs outside the

range specified by the above formula then the required

time to find it will not be much large than the time

required to find the pattern positions specified by the

formula. The larger text length led to more

unpredictable behavior. To obtain good results we

have to work on small texts, but what if we have large

texts?

5.5. The Distributed Matcher

The multithreaded approach illustrated in the previous

section shows very good results; but there is a problem

of the behavior of the threads. The problem is how we

can determine the number of the threads that gives us

the highest speed up. This problem because all of the

threads running on a single CPU in a time sharing

manner. As mentioned in the previous section the

problem can be smoothed by working on small texts.

From this point we move our thinking to another

approach in which we have multiple computers that

running the multithreaded approach at the same time;

each computer with different subtext (that’s smaller

than the target text) to search. So now we move to the

distributed computing to solve our new problem.

In the distributed matcher approach the text is

divided into equal subtexts and each computer in the

distributed system is running the multithreaded text

searching approach on a different subtext. In this case

the text is partitioned two times; one by the distributed

matcher and the other by the multithreaded matcher.

For example, if we have five computers in the

distributed matcher and each of them running the

multithreaded matcher with four threads, then we have

twenty searcher threads that search the text from

different positions at the same time. The more

searchers (on different machines) the more speed to

find the pattern.

Our distributed approach consists of one client and

(n) servers as shown in Figure 9. The client is

responsible for broadcasting the pattern to the servers

and receiving the results from these servers. Each

server has an independent copy of the text. The client

is not responsible for distributing the text to avoid

communication overhead. The first server that finds

the pattern (or patterns) sends the result back to the

client.

Figure 9. Distributed matcher.

5.6. The Problem of Text Partitioning Among

 Servers

As in the multithreaded approach the virtual

portioning is used to partition the text across the

multiple servers. Each sever machine has a copy of the

A Framework for Distributed Pattern Matching Based on Multithreading 35

text and searches a part of it depending on the index

partitioning that determined by the client machine. The

virtual partitioning of the thread subtexts and servers

subtexts is done according to the following pseudo

code:

For each server

Do i=1 to numberOfThreads

bruteForce (((startSearch + (threadDataLen * i))) +

(sId -1) * partLen , ((startSearch + (threadDataLen*

(i+1)))+((sId-1) * partLen))-1);

i=i+1

End do

Where:

startSearch: The position from which the server starts

the search.

threadDataLen: Length of the subtext to be searched

by each thread at the server.

Sid: Server number.

5.7. Analyzing Distributed Multithreading

 Approach Behavior

The main contribution of using distributed processing

in this study is to distribute search load among

multiple servers and to implement the multithreaded

approach on small subtexts (to have a smoothed

multithreading behavior). As mentioned above, the

distributed multithreaded matcher partitions the target

text in two stages. This two partition stages affect the

pattern position according to the subtexts assigned to

the searcher threads at each server. Consider the

following example. Suppose that we have a text with

400 characters searched by the distributed

multithreaded matcher with four servers and 4 threads

at each server. The following partitioning scheme will

be performed as shown in Table 2. In this case, there

are 16 threads (4*4) that search the text from different

positions at the same time.

6. Implementation and Experimental

 Results

For exploiting parallelism in each server, the

multithreaded approach is used and implemented with

Java threads. For distributed processing, the

distributed approach is used and implemented with

Java space technology. For experiments, we used four

computers connected by a high performance local

network. Computers in the network have a high speed

network interface card (NIC with Gigabit speed) and

connected via a high speed switch (Gigabit � thernet

switch). Each computer in the network has 2 GHz Intel

Pentium 4 CPU and 1 GB of RAM. Experiments are

done under windows XP professional edition

environment. The graph in Figure 10 shows the

comparison results of the sequential search and our

distributed multithreaded approach on a variable text

size and fixed pattern size. In this experiment we use

four servers on which the multithreaded approach is

running with five threads. The distributed

multithreaded approach produces better performance

than the sequential approach.

Table 2. The partition of text with 400 character length among four

servers and four threads at each server.

Server 1 searches

the text from

position 1 to

position 100

Thread ID Search Range

Thread 1 1 – 25

Thread 2 26 – 50

Thread 3 51 – 75

Thread 4 76 – 100

Server 2 searches

the text from

position 101 to

position 200

Thread ID Search Range

Thread 5 101 – 125

Thread 6 126 – 150

Thread 7 151 – 175

Thread 8 176 – 200

Server 3 searches

the text from

position 201 to

position 300

Thread ID Search Range

Thread 9 201 – 225

Thread 10 226 – 250

Thread 11 251 – 275

Thread 12 276 – 300

Server 4 searches

the text from

position 301 to

position 400

Thread ID Search Range

Thread 13 301 – 325

Thread 14 326 – 350

Thread 15 351 – 375

Thread 16 376 – 400

0

5000

10000

15000

20000

25000

30000

5 6 7 8 9 10 11 12 13 14

Text size in MB

T
im

e
 i
n
 m

s

Sequential Approach Distributed Multithreaded Approach

Figure 10. Sequential search vs distributed multithreaded search

with four servers and five threads at each server. Text size is

variable and pattern length is 500 characters.

As shown in the graph, while the text size is

increasing, the time required to find the pattern by the

sequential approach is increased. In the distributed

multithreaded approach this is not always the case, i.e.,

at text sizes of (10, 11, 12 MB) the time required to

find the pattern is less than the time required to find it

with a text size of 9 MB. This improvement results

from the multithreaded approach, where at the text

sizes of (10, 11, 12 MB) the pattern occurs at a

position near to the beginning of a subtext searched by

a particular thread. The graph in Figure 11 shows the

comparison results of the sequential search and our

distributed multithreaded approach on a fixed text size

36 The International Arab Journal of Information Technology, Vol. 9, No. 1, January 2012

and variable pattern size. In this experiment we use

four servers on which the multithreaded approach is

running with five threads. The distributed

multithreaded approach produces better performance

than the sequential approach.

0

5000

10000

15000

20000

25000

30000

50 100 150 200 250 300 350 400 450 500

Pattern length (# of characters)

T
im

e
 i
n
 m

s

Seqeuntial Approach Distributed Multithreaded Approach

Figure 11. Sequential search vs distributed multithreaded search

with four servers and five threads at each server. Text size is 14

MB and pattern length is variable.

The graph in Figure 12 shows the effect of the

number of servers on the time required to find the

pattern.

0

5000

10000

15000

20000

25000

30000

1 2 3 4

Number of Servers

T
im
e
 i
n
 m
s

Figure 12. Relation between number of servers and time required

to find the pattern in the distributed multithreaded approach. Text

 size is 14 MB and pattern length is 500 characters.

As seen from the graph in Figure 12, the more

servers the less time to find the pattern. The

improvement achieved by increasing number of

servers comes from distributing the load of the search

process and the affect of text partitioning on the

pattern position according to the thread's subtexts.

Note that the data is partitioned two times; the first one

is for distribution search load among the servers and

the other is for assigning subtexts to the searcher

threads at each server. Both of the partitioning stages

affect the position of the pattern according to the

thread's subtexts.

As mentioned in the previous sections, we can not

determine the number of threads that will produce the

best results. For some pattern positions in a very large

texts having one thread is better than having multiple

threads. By the using of distributed processing the

multithreaded approach is implemented on smaller

texts (since the target text is partitioned into subtexts).

The distributed approach smoothes the multithreaded

approach behavior. Table 3 shows the smoothed

behavior of the multithreaded approach on large text

which is divided into smaller subtexts among four

servers. The time required to find the pattern using 2-9

threads is less than or near the time required to find it

using one thread.

Table 3. The effect of number of threads on the time required to

find the pattern using 4 servers. Text size is 14 MB and pattern

length is 500 characters.

Number of Threads Time Using 4 Servers

1 6109

2 6109

3 3102

4 7124

5 5640

6 4640

7 1500

8 6842

9 5520

Table 4 shows the rough behavior of the

multithreaded approach on large text using single

computer.

Table 4. The effect of number of threads on the time required to

find the pattern using single computer. Text size is 14 MB and

pattern length is 500 characters.

Number of Threads Time Using 4 Servers

1 28609

2 26344

3 22391

4 21047

5 18564

6 16672

7 14524

8 12754

9 10828

7. Conclusions and Future Work

Several researches and techniques were developed to

solve the pattern matching problem which considered

as a hot area for research. In this report we have

presented a new efficient technique to solve this

problem using multithreading and distributed

processing. Multithreaded search on a single CPU

have a nondeterministic behavior, since there is a

particular number of threads that will produce the

highest performance. This number of threads is data

dependent number so it cannot be predetermined

before performing search process. To minimize the

effect of this problem the distributed processing is

merged with the multithreaded search. By having

A Framework for Distributed Pattern Matching Based on Multithreading 37

multiple machines that running the multithreaded

approach the behavior of the multithreaded search

becomes more reliable.

The experiments on the distributed multithreaded

approach produce better results than the sequential

search. For experiments we implement the brute force

algorithm (its complexity is O (mn)) to ease the time

tracking. Any sequential search algorithm can be

applied to the distributed multithreaded approach.

In this paper, we introduce a distributed

multithreaded string matcher that runs on a

homogeneous environment which all of its machines

have the same capabilities. But what if we have a

heterogeneous environment that consists of

workstations (with multiple CPUs) and PCs with

different specifications? The problem of implementing

our approach in a heterogeneous environment results

from the need for a dynamic load balancing among the

different servers, i.e. workstations must have work

load more than PCs. The problem of dynamic load

balancing of the distributed pattern matching is not a

simple problem. Many techniques were developed to

solve this problem and new techniques are waiting to

be discovered.

References

[1] Ababneh M., Oqeili S., and Abdeen R.,

“Occurrences Algorithm for String Searching

Based on Brute-Force Algorithm,” Computer

Journal of Science Publication, vol. 2, no. 1, pp.

82-85, 2006.

[2] Amihood A., Moshe L., and Ely P.,

“Approximate Subset Matching with Don't

Cares,” in Proceedings of 12
th
 Annual ACM-

SIAM Symposium on Discrete Algorithms, USA,

pp. 305-306, 2001.

[3] Andersson A. and Thorup M., “Dynamic String

Searching,” in Proceedings of 12
th
 Annual ACM-

SIAM Symposium on Discrete Algorithms, USA,

pp. 307-308, 2001.

[4] Bao R., “Distributed Computing via RMI and

CORBA,” in Proceedings of Department

Computer Since, USA, pp. 24-33, 2001.

[5] Bishop P. and Warren N., JavaSpaces in

Practice, Addison Wesley, 2002.

[6] Boyer R. and Moore J., “A Fast String Searching

Algorithm,” Computer Journal of

Communications of the ACM, vol. 20, no. 10, pp.

762-772, 1977.

[7] Deitel P. and Deitel H., Java How to Program,

Prentice Hall, 2003.

[8] Freeman E., Hupfer S., and Arnold K.,

JavaSpaces Principles Patterns and Practice,

Addison Wesley, 2004.

[9] Gonzalo N., “A Guided Tour to Approximate

String Matching,” Association for Computing

Machinery Computing Surveys, vol. 33, no. 1,

pp. 31-88, 2001.

[10] Huston1 L., “Dynamic Load Balancing for

Distributed Search, High Performance

Distributed Computing,” in Proceedings of 14
th

IEEE International Symposium, USA, pp. 157-

166, 2005.

[11] Jin H. and Bernard A., “High Performance

Pattern Matching with Dynamic Load Balancing

on Heterogeneous Systems,” in Proceedings of

14
th
 Euromicro International Conference on

Parallel, Distributed and Network-Based

Processing, USA, pp. 285-290, 2006.

[12] Jonathan L., “Analysis of Fundamental Exact

and Inexact Pattern Matching Algorithms,”

Technical Document, Stanford University, 2004.

[13] Juval L., Programming NET Components,

O’Reilly and Associates, 2005.

[14] Knute D., Morris J., and Pratt V., “Fast Pattern

Matching in Strings,” SIAM Journal of

Computing, vol. 6, no. 2, pp. 323-350, 1977.

[15] Lecroq T. and Charras C., Handbook of Exact

String Matching Algorithms, King's College

London Publications, 2004.

[16] Mattern F., “Tuning Distributed Control

Algorithms for Optimal Functioning,” Computer

Journal of Global Optimization, vol. 2, no. 2,

1992.

[17] Mhashi M., Rawashdeh A., and Hammouri A.,

“A Fast Approximate String Searching

Algorithm,” Computer Journal of Science

Publication, vol. 1, no. 3, pp. 405-412, 2005.

[18] Michailidis P. and Margaritis K., “On-Line

Approximate String Searching Algorithms:

Survey and Experimental Results,” International

Journal of Computer Mathematics, vol. 79, no.

8, pp. 867-888, 2002.

[19] Badoiu M. and Indyk P., “Fast Approximate

Pattern Matching with Few Indels via

Embeddings,” in Proceedings of 15
th
 Annual

ACM-SIAM Symposium on Discrete Algorithms,

Louisiana, pp. 651-652, 2004.

[20] Newmarch J., A Programmer's Guide to Jini™

Technology, Springer-Verlag New York, 2000.

[21] Panagiotis D. and Konstantinos G.,

“Performance Analysis of Approximate String

Searching Implementations for Heterogeneous

Computing Platform,” in Proceedings of IEEE

International Conference on Parallel Processing

Workshops, Berlin, pp. 173-180, 2003.

[22] Sedgewick R., Algorithms, Addison Wesley,

1983.

[23] Galvin S. and Gagne P., Operating Systems

Concepts, John Wiley, 2004.

[24] Simon Y. and Inayatullah M., “Improving

Approximate Matching Capabilities for Meta

Map Transfer Applications,” in Proceedings of

3
rd

 International Symposium on Principles and

38 The International Arab Journal of Information Technology, Vol. 9, No. 1, January 2012

Practice of Programming in Java, Dublin, pp.

143-147, 2004.

[25] Steven S., The Algorithm Design Manual,

Springer-Verlag, New York, 1997.

[26] Sun Microsystems Incorporation,

“Multithreading in the Solaris Operating

Environment,” Technical Paper, 2002.

[27] Thierry L. and Christian C., Handbook of Exact

String Matching Algorithms, ACM

Medium: Paperback, 2004.

[28] Yates R. and Neto B., Modern Information

Retrieval, First Edition, Addison Wesley, 1999.

Najib Kofahi is a professor of

computer science at Yarmouk

University (YU). He received his

PhD in computer science from the

University of Missouri-Rolla, USA

in 1987. Currently, he is the Dean of

the Faculty of Information

Technology and Computer Sciences at YU, Jordan. He

has several journal and conference research

publications in a number of research areas including e-

learning, operating systems, distributed systems, and

performance evaluation. His teaching interests focus

on operating systems, algorithms and data structures,

computer organization and assembly language

programming, and computer architecture.

Ahmed Abusalama is currently

working as a lecturer at Al Qassim

University, The Kingdom of Saudi

Arabia (KSA). He is teaching

various compute modules at the

preparatory year college. He

received his Master in computer

science from Yarmouk University, Jordan in 2006. He

received his Bachelor degree in computer science from

Al Albayt University, Jordan in 2004. He worked as a

lecturer at Yarmouk University from 2006 to 2007

where he taught advanced object oriented analysis and

design and basic computer skills courses (windows,

MS office and internet).

