
The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012 243

Comparison of Genetic Algorithm and Quantum

Genetic Algorithm

Zakaria Laboudi and Salim Chikhi

SCAL Group of the MISC Laboratory, University Mentouri, Algeria

Abstract: Evolving solutions rather than computing them certainly represents a promising programming approach.

Evolutionary computation has already been known in computer science since more than 4 decades. More recently, another

alternative of evolutionary algorithms was invented: Quantum Genetic Algorithms (QGA). In this paper, we outline the

approach of QGA by giving a comparison with Conventional Genetic Algorithm (CGA). Our results have shown that QGA can

be a very promising tool for exploring search spaces.

Keywords: Genetic algorithm, knapsack problem, quantum genetic algorithm, quantum computing.

Received October 18, 2009; accepted May 20, 2010

1. Introduction

Genetic Algorithms (GA) are a representative example

of a set of methods known as evolutionary algorithms.

This approach started in the 1970s by John Holland,

and knew for a decade strong growth. A GA is an

iterative algorithm based on the notion of generation,

but it is also inherently highly parallel in that it

simulates the evolution of a range of solutions.

Quantum computation is a newly emerging

interdisciplinary science of information science and

quantum science. The first quantum algorithm was

proposed by Shor [10], for number factorization.

Grover [2] also proposed a quantum algorithm for

random search in databases, the complexity of its

algorithm was reduced to be of the order of (N^½).

More recently, quantum computation has attracted a

wide attention, and it becomes a very interest research

field.

QGA is a combination of GA and quantum

computing. There were some efforts to use QGA for

exploring search spaces; we quote for example [3]

where a QGA was used to solve the knapsack problem

[1], where a quantum-inspired differential evolution

algorithm was proposed to solve the N-queens problem

and [11] who proposed a parallel version of QGA. In

[7], a QGA was also used to solve the binary decision

diagram ordering problem. More recently, QGA where

used to evolve Cellular Automata rules (CA) [5, 6] to

solve the density classification problem.

In this work, we propose to make a comparison

between GA and QGA to extract some computational

abilities of QGA to perform processing in an effective

and an efficient manner. We have considered the

classic 0/1 knapsack problem. Indeed, it existed such

work in the literature [4, 11]. But in our case, the 0/1

knapsack problem was tackled from several sides and

with more details.

This paper is organized as follows. Section 2

describes some conventional GA principles. A

description of the basic concept of quantum computing

and QGA principles is presented in section 3. Section 4

tackles the 0/1 knapsack problem and some

conventional GA solving methods. In section 5 we

summarize and analyze the experimental results. We

finish our paper by concluding remarks follow and

some perspectives in section 6.

2. Conventional Genetic Algorithm (CGA)

GA is an exploration algorithm based on genetic

evolution and natural selection. It manipulates a

population of individuals called chromosomes. At each

time step a new generation is constructed by applying

genetic operators between some selected

chromosomes. The structure of a CGA is illustrated in

Figure 1. The simplest way for coding chromosomes is

to represent them by binary strings. The initial

population has to start with random chromosomes

uniformly distributed over the entire search space. The

next step is the evaluation operation. Its role is to mark

the individuals of the population. After that, the

individuals will be sorted according to their marks. The

selection operation has as goal to elect some number of

individuals to enable reproduction. The cross-over

operation can be performed by exchanging some parts

of selected individuals in random positions which leads

to create a new set of chromosomes replacing the old

ones. Before repeating the process, it is recommended

to perform a mutation to correct stochastic errors to

avoid a genetic drift and to ensure a genetic diversity

in the population. It consists of changing some random

244 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

positions of the individuals according to a small

probability (typically between 1% and 0.1%).

Figure 1. CGA structure.

3. Quantum Genetic Algorithm (QGA)

3.1. Quantum Computing

In quantum computing, the smallest unit of

information storage is the quantum bit (qubit) [3]. A

qubit can be in the state 1, in the state 0 or in a

superposition of both. The state of a qubit can be

represented as [3]:

 |Ψ> = α |0> + β |1> (1)

Where |0> and |1> represent the values of classical

bits 0 and 1 respectively, α and β are complex numbers

satisfying:

 |α|
2
 + |β|

2
 = 1 (2)

|α|
2
 is the probability where a qubit is in state 0 and |β|

2

represents the probability where a qubit is in state 1. A

quantum register of m qubits can represent 2
m
 values

simultaneously. However, when the 'measure' is taken,

the superposition is destroyed and only one of the

values becomes available for use. That's why we think

that quantum computers can be used mainly in

applications involving a choice among a multitude of

alternatives.

In general, a quantum algorithm has less complexity

than its classic equivalent algorithm through the

concept of quantum superposition. Among the most

famous quantum algorithms we quote Shore’s

algorithm for number factorization [10] and Grover’s

algorithm for research in a non sorted database [2].

Both algorithms have solved problems which their

complexity was reduced.

3.2. QGA Principles

QGAs are a combination between GA and quantum

computing. They are mainly based on qubits and states

superposition of quantum mechanics. Unlike the

classical representation of chromosomes (binary string

for instance), here they are represented by vectors of

qubits (quantum register). Thus, a chromosome can

represent the superposition of all possible states. The

structure of a QGA is illustrated in Figure 2 [3]:

Figure 2. QGA structure.

3.2.1. Structure of Quantum Chromosomes

A chromosome is simply a string of m qubits that

forms a quantum register. Figure 3 shows the structure

of a quantum chromosome.

Figure 3. Quantum chromosome structure.

3.2.2. Initializing the Population

The easiest way to create the initial population is to

initialize all the amplitudes of qubits by the value

1/(2^ ½) [3]. This means that a chromosome represents

all quantum superposition states with equal probability.

3.2.3. Evaluation of Individuals

The role of this phase is quantifying the quality of each

quantum chromosome in the population to make a

reproduction. The evaluation is based on an objective

function that corresponds to each individual, after

measuring, an adaptation value. It permits to mark

individuals in the population.

Cross-over

Selection

Generation of the initial population P(t= 0)

Mutation

Evaluation of P(t)

t ← t +1

Verified criterion?

Replacement

Save the best solution b

Evaluation of P(t)

Generation of the initial population Q(t= 0)

Q(t) updated by rotation of quantum gates to

obtain Q(t+1)

Generate P(t) by measure of Q(t)

t ← t +1

Verified criterion?

Comparison of Genetic Algorithm and Quantum Genetic Algorithm 245

3.2.4. Quantum Genetic Operations

1. Measuring Chromosomes: In order to exploit

effectively superposed states of qubits, we have to

observe each qubit. This leads us to extract a classic

chromosome as illustrated in Figure 4. The aim is to

enable the evaluation of each quantum

chromosome.

 Figure 4. Measured chromosome.

A simple way to implement this function is given

by the following pseudo code:

Function measure ()

begin

 r := get r in [0,1] ;

 if (r > α
2
)

 return 1 ;

else

return 0 ;

 end if

end

2. Interference: This operation allows modifying the

amplitudes of individuals in order to improve

performance. It mainly consists of moving the state

of each qubit in the sense of the value of the best

solution. This is useful for intensifying the search

around the best solution. It can be performed using a

unit transformation that allows a rotation whose

angle is a function of the amplitudes (ai, bi) and the

value of the corresponding bit in the reference

solution. The value of the rotation angle δθ has to be

chosen so that to avoid premature convergence. It is

often empirically determined and its direction is

determined as a function of the values of ai, bi and

the value of the qubit located at the position i in the

individual being modified [7].

3. Qubit Rotation Gates Strategy: The rotation of

individual’s amplitudes is performed by quantum

gates. Quantum gates can also be designed in

accordance with the present problem. The

population Q(t) is updated with a quantum gates

rotation of qubits constituting individuals. The

rotation strategy adopted is given by the following

equation:



































 −
=

+

+

t
i

t
i

)icos()isin(

)isin()icos(

1t
i

1t
i

β

α

θ∆θ∆

θ∆θ∆

β

α
 (3)

 Where ∆θi is the rotation angle of qubit quantum

gate i of each quantum chromosome. It is often

obtained from a lookup table to ensure convergence.

4. Knapsack Problem

The knapsack problem is one the most combinatorial

algorithms. The knapsack problem can be described as

selecting from among various items those which are

most profitable, given that the knapsack has a limited

capacity. There are many types of knapsack problem,

so the simplest one is called 0/1 knapsack problem. It

is described as: given a set of m items and a knapsack,

select a subset of the items so as to maximize the profit

f(x) [3] as shown in equation 4:

 ∑
=

=
m

1i
ixip)x(f (4)

Subject to:

 C
m

1i
ixiw)x(f ≤∑

=
= (5)

Where x = (x1, x2, …., xm), xi is 0 or 1, pi and wi are the

profit and the weight of the i
th
 item. C is the capacity of

the knapsack.

4.1. Choosing Parameters Values

Since it was found that the difficulty of such problem

is greatly affected by the correlation between profits

and weights [8], three randomly generated sets of data

are considered [8]:

1. Uncorrelated:

wi = (uniformly) random([1..v])

pi = (uniformly) random([1..v])

2. Weakly correlated:

wi = (uniformly) random([1..v])

pi = wi + (uniformly) random([-r..+r])

3. Strongly correlated:

wi = (uniformly) random([1..v])

pi = wi + r

Higher correlation implies smaller value of the

difference:

maxi = 1.. m {pi / wi} - mini = 1.. m {pi / wi};

As reported in [8], higher correlation problems have

higher expected difficulty. The knapsack capacity can

be set according two types (again, following a

suggestion from [8]):

1. Restrictive knapsack capacity (C1): The knapsack

capacity C=2v. In this case, the optimal solution

contains very few items [8].

2. Average knapsack capacity (C2): The knapsack

capacity is determined as shown in equation 6:

 ∑
=

=
m

1i
iw

2

1
)x(f (6)

In this case, the optimal solution contains about half of

the items [8].

246 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

 4.2. Solving Knapsack Problem with

 Conventional GA (CGA)

There are three types of conventional GA algorithms

[8]: algorithms based on penalty functions, algorithms

based on repair methods and algorithms based on

decoders.

In algorithms based on penalty functions, each

solution is coded as a binary string of the length m

representing a chromosome x to the problem. The

profit f(x) of each chromosome is computed as shown

in equation 7:

)x(pen
m

1i
ixip)x(f −∑

=
= (7)

Where Pen(x) is a penalty function. We consider here

the three types of penalties discussed in [8]:

logarithmic penalty, linear penalty, and quadratic

penalty:

()()
()

()()2m

1i
Cixip1)x(3pen

m

1i
Cixip)x(2pen

m

1i
Cixip12log)x(1pen

∑
=

−+=

∑
=

−=

∑
=

−+=

ρ

ρ

ρ

Where ρ is maxi = 1.. m {pi / wi}. The penalty function

Pen(x) is zero for all feasible solutions x, i.e., solutions

that:

 ∑
=

=
m

1i
ixip)x(f (9)

And greater than zero otherwise. In algorithms based

on repair methods, the profit f(x) of each chromosome

is computed as shown in equation 10:

 ∑
=

=
m

i
xipxf

1

,
)((10)

Where x’ is a repaired vector of the original vector x.

Original chromosomes are replaced with a 5%

probability in the experiment (it has been proved that

that 5% is the most appropriate replacement

percentage). We have used the two repair algorithms

mentioned in [8]. The repair algorithms differ only in

selection procedure, which chooses an item for

removal from the knapsack:

1. Random Repair (Rep1): In this case, a random

element is removed from the knapsack.

2. Greedy Repair (Rep2): All items in the knapsack

are sorted in the decreasing order of their profit to

weight ratios. The last item is always chosen for

deletion.

We will not tackle here the third method (decoder

based algorithms), because the chromosome

representation is based on integers while quantum

chromosomes can use only qubit representation.

5. Experimental Results and Discussion

In all our experiments we have coded solutions as

binary strings of the length m for CGA and as qubit

strings of the length m for QGA. The length of both

strings is the same as the number of items. For CGA

the i
th
 item is added to the knapsack if and only if the

i
th
 element in the binary string is 1. Similarly for QGA,

the i
th
 item is added to the knapsack with a probability

of |βi|
2
 where |βi|

is the amplitude of the i

th
 qubit in the

qubit string. Before presenting our experimental

results, we will announce the parameters of both

algorithms and knapsack problem parameters.

5.1. CGA Parameters

The parameter values were chosen according to the

most values found in the literature as mentioned in

Table 1 (for instance Mitchell and al [9] have used the

same parameter values to evolve cellular automata

rules by CGA).

Table 1. List of CGA parameters.

Parameter Value

Cross-over probability 50 %

Mutation probability 1 %

Population size 100

5.2. QGA Parameters

The population size was fixed to be 100. The

amplitudes of the individuals are updated by a rotation

of quantum gates according to the look-up Table 2.

Table 2. Look-up table for quantum gates rotation.

xi bi f (x) > f(b) ∆θi s (ai bi)

ai.bi > 0 ai.bi < 0 ai= 0 bi= 0

0 0 0 0.001π - + ± ±

0 0 1 0.001π - + ± ±

0 1 0 0.08π - + ± ±

0 1 1 0.001π - + ± ±

1 0 0 0.08π + - ± ±

1 0 1 0.001π + - ± ±

1 1 0 0.001π + - ± ±

1 1 1 0.001π + - ± ±

xi and bi are the i-th bits of x and b (the best

solution), respectively. f is the fitness function and s

(ai bi) is the sign of the rotation angle θi. According to

the lookup table, one can easily remark that this

strategy improves, for each individual, the amplitudes

of qubits that are bad according to an angle δθ1=0.08π

while it decreases, those that are good according to an

angle δθ2=0.001π. The amplitude values were

empirically determined (following a suggestion from

[7]). The modification of the amplitudes of qubits is

done according to the signs of the amplitudes, the best

solution and the solution extracted by the individual

container. It is natural that δθ1>>δθ2 because

decreasing amplitudes serves only to correct stochastic

errors to avoid a genetic drift and to ensure a genetic

diversity in the population.

(8)

Comparison of Genetic Algorithm and Quantum Genetic Algorithm 247

For the used Knapsack problem, the parameters’

values were set as shown in table 3.

Table 3. List of knapsack problem parameters.

Parameter Value

V 10

R 5

Repairing replacement percentage 5%

5.3. Experimental Results

We have executed both algorithms (CGA and QGA)

over 25 runs for all possible cases, at each one the

concerned algorithm was iterated for a maximum

number=500 generations. Table 4 shows the

experimental results of the knapsack problem with

100, 250 and 500 items. We have found that executing

both algorithms more than 25 runs doesn’t make

difference.

Table 4. Experimental results of the knapsack problem.

Correl No. of

Items

 Capacity

Type

Method

CGA QGA

Pen1 Pen2 Pen3 Rep1 Rep2 Pen1 Pen2 Pen3 Rep1 Rep2

None

100

C1

m

b

w

-
-

-

*
*

*

*
*

*

70.9
96.5

54.3

71.6
88.4

59.4

-
-

-

*
*

*

*
*

*

70.5
96.6

53.9

71.7
88.4

60.5

C2

m

b

w

-

-
-

401.9

434.5
364.5

403.2

434.8
361.4

401.9

441.1
347.9

408.2

451.0
371.6

-

-
-

403.6

436.5
367.6

404.6

433.9
404.6

402.6

443.0
376.5

408.1

450.6
371.2

250

C1

m

b

w

-

-
-

*

*
*

*

*
*

-

-
-

-

-
-

-

-
-

*

*
*

*

*
*

-

-
-

-

-
-

C2

m

b

w

-

-
-

968.5

1025.4
907.3

971.0

1008.8
937.9

987.8

1048.2
947.2

1041.7

1090.8
987.2

-

-
-

1017.0

1097.6
946.7

1025.4

1068.6
981.6

1025.1

1102.7
980.2

1045.7

1098.5
990.5

500

C1

m

b

w

-

-

-

*

*

*

*

*

*

-

-

-

-

-

-

-

-

-

*

*

*

*

*

*

-

-

-

-

-

-

C2

m

b

w

-

-

-

1835.9

1900.0

1775.5

1831.8

1889.0

1759.3

-

-

-

-

-

-

-

-

-

2000.6

2066.7

1895.2

2000.5

2073.9

1863.2

-

-

-

-

-

-

Weak

100

C1

m

b

w

-
-

-

*
*

*

*
*

*

43.4
57.7

35.8

42.9
52.8

35.0

-
-

-

*
*

*

*
*

*

42.3
57.7

35.4

43.0
52.8

35.0

C2

m

b

w

-
-

-

397.4
430.4

341.7

393.7
418.6

374.7

399.6
437.0

370.8

396.2
427.5

367.2

-
-

-

398.2
431.8

342.6

396.4
420.9

375.7

399.0
436.0

396.3

396.3
427.6

367.3

250

C1

m

b

w

-

-
-

*

*
*

*

*
*

40.8

46.6
36.1

67.1

75.8
52.9

-

-
-

*

*
*

*

*
*

41.0

46.5
35.9

67.1

75.8
52.9

C2

m

b

w

-

-
-

943.5

999.0
866.2

918.3

988.9
873.1

950.9

1005.1
916.1

999.4

1037.7
944.6

-

-
-

997.7

1056.0
919.0

978.2

1041.7
928.0

987.1

1042.8
948.5

999.5

1038.0
944.6

500

C1

m

b

w

-

-

-

*

*

*

*

*

*

-

-

-

-

-

-

-

-

-

*

*

*

*

*

*

-

-

-

-

-

-

C2

m

b

w

-

-

-

1764.4

1847.0

1879.3

1740.7

1789.6

1692.2

1812.4

1880.3

1736.8

1957.9

2055.6

1878.4

-

-

-

1941.4

2008.8

1850.9

1928.3

1984.0

1875.7

1952.8

2032.1

1876.3

1985.5

2087.7

1900.8

Strong

100

C1

m

b

w

-

-

-

*

*

*

*

*

*

81.1

89.9

74.8

79.6

95.0

65.0

-

-

-

*

*

*

*

*

*

81.2

90.0

75.0

79.4

95.0

65.0

C2

m

b

w

-
-

-

605.7
623.4

592.4

605.0
622.6

591.3

609.1
625.2

593.8

612.7
628.7

592.6

-
-

-

607.8
623.4

597.4

609.3
623.0

594.7

609.0
625.2

593.8

611.8
628.7

592.6

250

C1

m

b

w

-
-

-

*
*

*

*
*

*

71.7
75.0

65.0

92.7
95.0

90.0

-
-

-

*
*

*

*
*

*

69.3
74.9

64.3

93.3
100.0

90.0

C2

m

b

w

-

-
-

1471.0

1492.9
1452.4

1461.0

1488.5
1441.8

1493.8

1530.7
1453.9

1525.9

1545.1
1499.8

-

-
-

1523.2

1549.4
1504.2

1523.0

1544.4
1503.5

1527.6

1565.8
1491.1

1532.0

1550.2
1500.9

500

C1

m

b

w

-

-
-

*

*
*

*

*
*

68.1

74.9
64.6

101.6

105.0
95.0

-

-
-

*

*
*

*

*
*

67.3

74.2
59.6

102.2

105.0
95.0

C2

m

b

w

-

-

-

2862.8

2911.8

2833.1

2848.1

2880.8

2802.8

2920.9

2972.7

2875.8

3001.6

3031.5

2962.7

-

-

-

3004.7

3032.3

2981.0

3003.0

3036.5

2963.2

3029.9

3078.5

2988.0

3059.9

3091.5

3023.0

b, m, and w mean best, mean, and worst, respectively.

‘-’ means that an experiment did not made in this case.

‘*’ means that no valid solution has been found within given constraints.

248 The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012

5.4. Discussion

Table 2 shows the experimental results of the knapsack

problem where the number of items was 100, 250 and

500. The hardware and software configuration was as

follows: Intel Pentium 4 (3.4 GHz), 1 Go MB of

memory, Windows XP OS, Java Programming

language (JDK 1.5.0).

In the case of 100 items, both algorithms were

equivalent for all problem instances. This because the

number of items is so small (we have 2^100

possibility). However, augmenting the number of items

(500 items where we have 2^500 possibility) leads

QGA to behave better than CGA, and this in all

problem solution variants.

By using repairing methods, Table 2 shows that for

a small number of items the profits are approximately

close, with some preference for QGA especially in the

case of Rep2 where elements are selectively removed

from the knapsack, in contrast to Rep1 where elements

are randomly removed. In fact, using repairing

methods influences directly the evolution process. For

instance, we can easily compare the best results for

each variant of the problem. By observing penalty

methods, we can then judge that QGA’s performance

is higher than the one of CGA because we have only

used an evolution process.

Moreover, quantum algorithms have generally the

ability to minimize the complexity of equivalent

algorithms that run on classic computers. We can make

a simple comparison between the global complexity of

QGA and the one of GA to estimate the reduction in

complexity we can achieve. Starting with QGA, the

global complexity is of the order of O(N), N is the size

of the population (Evaluation + Interference).

For a standard GA, the global complexity is often

of the order of O(N
2
) (Evaluation + Selection + Cross-

over + Mutation). Therefore, we believe that this result

is very interesting because the complexity here has

been reduced to become linear. Indeed, one can

imagine what happen if we consider a very large

population of chromosomes; it will be very useful to

use QGA instead of GA.

6. Conclusions

In this study we have made a comparison between two

optimization techniques: QGA and CGA. The first one

is based on quantum computing principles such as

concepts of qubits and superposition of states. The

second is based on based on Neo-Darwinism (genetic

evolution and natural selection). Our experimental

results have shown that QGA can be a very promising

tool for exploring large search spaces while preserving

the relation efficiency / performance. Our future work

will focus on comparing different QGA strategies to

study the effect of choosing rotation gate angles.

Another perspective of this work is to study parallel

QGA because QGA are highly parallelizable.

References

[1] Draa A., Meshoul S., Talbi H., and Batouche M.,

“A Quantum-Inspired Differential Evolution

Algorithm for Solving the N-Queens Problem,”

The International Arab Journal of Information

Technology, vol. 7, no. 1, pp. 21-27, 2010.

[2] Grover L., “A Fast Quantum Mechanical

Algorithm for Database Search,” in Proceedings

of 28
th
 Annual ACM Symposium on the Theory of

Computing, USA, pp. 212-221, 1996.

[3] Han K., “Genetic Quantum Algorithm and Its

Application to Combinatorial Optimization

Problem,” in Proceedings of IEEE Congress on

Evolutionary Computation, USA, pp. 1354-1360,

2000.

[4] Han K., Park K., Lee C., and Kim J., “Parallel

Quantum-Inspired Genetic Algorithm for

Combinatorial Optimization Problem,” in

Proceedings of IEEE Congress of Evolutionary

Computation, South Korea, pp. 1422-1429, 2001.

[5] Laboudi Z. and Chikhi S., “Evolution

d’Automates Cellulaires par Algorithmes

Génétiques Quantiques,” in Proceedings of

Conférence Internationale sur l’Informatique et

ses Applications, Algérie, pp. 1-11, 2009.

[6] Laboudi Z. and Chikhi S., “Evolving Cellular

Automata by Parallel Genetic Algorithm,” in

Proceedings of IEEE Conference on Networked

Digital Technologies, Ostrava, pp. 309-314,

2009.

[7] Layeb A. and Saidouni D., “Quantum Genetic

Algorithm for Binary Decision Diagram

Ordering Problem,” International Journal of

Computer Science and Network Security, vol. 7

no. 9, pp. 130-135, 2007.

[8] Michalewicz Z., Genetic Algorithms+Data

Structures=Evolution Programs, Springer-

Verlag, 1999.

[9] Mitchell M., Hraber P., and Crutchfield J.,

“Evolving Cellular Automata to Perform

Computation: Mechanisms and Impediments,”

Journal of Physica D: Lonelier Phenomena, vol.

75, no. 1-3, pp. 361-391, 1994.

[10] Shor P., “Algorithms for Quantum

Computation: Discrete Logarithms and

Factoring,” in Proceedings of the 35
th
 Annual

Symposium on the Foundation of Computer

Sciences, NM, pp. 20-22, 1994.

[11] Shuxia M. and Weidong J., “A New Parallel

Quantum Genetic Algorithm with Probability-

Gate and Its Probability Analysis,” in

Proceedings of International Conference on

Intelligent Systems and Knowledge Engineering,

pp. 1-5, 2007.

Comparison of Genetic Algorithm and Quantum Genetic Algorithm 249

Zakaria Laboudi is a teacher

researcher at Computer Science

Department of Larbi Ben M’hidi

University, Oum El-Bouaghi –

Algeria. Currently, he is a PhD

candidate in complex systems field

at Mentouri University of

Constantine – Algeria. He received his Master’s degree

in computer science in 2009 from Mentouri University

of Constantine – Algeria. In 2010, he joined the SCAL

group of the Laboratory of Complex Systems (MISC)

as a member of its researcher team. His current

research interests include Complex Systems, Artificial

Life, Parallel and Distributed Computing,

Combinatorial Optimization Problems and Meta-

heuristics.

Salim Chikhi received his MSc

degree in computer systems from

University Mentouri – Constantine-

Algeria in collaboration with

Glasgow University, UK. He

received his PhD degree in computer

science from University Mentouri –

Constantine – Algeria in 2005. Currently, he is an

associate professor at the same University and leads

the SCAL group within the MISC laboratory. His

research areas include artificial life and soft computing

techniques applied to complex systems.

