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Abstract: The problem we tackle concerns forecasting time series in financial markets. AutoRegressive Moving-Average 

(ARMA) methods and computational intelligence have also been used to tackle this problem. We propose a novel method for 

time series forecasting based on a hybrid combination of ARMA and Gene Expression Programming (GEP) induced models. 

Time series from financial domains often encapsulate different linear and non-linear patterns. ARMA models, although 

flexible, assume a linear form for the models. GEP evolves models adapting to the data without any restrictions with respect to 

the form of the model or its coefficients. Our approach benefits from the capability of ARMA to identify linear trends as well 

as GEP’s ability to obtain models that capture nonlinear patterns from data. Investigations are performed on real data sets. 

They show a definite improvement in the accuracy of forecasts of the hybrid method over pure ARMA and GEP used 

separately. Experimental results are analyzed and discussed. Conclusions and some directions for further research end the 

paper.  
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1. Introduction 

Financial time series modeling has been an active area 

of research for decades. The interest is two-fold. 

Firstly, time series models may shed light into the laws 

governing the behavior of the data generating process, 

providing a description of the variation of price over 

time. Secondly, good models may lead to accurate 

predictions of the future behavior, therefore, to 

profitable trading strategies [5, 20]. 

The classical economic theory of the Efficient 

Market Hypotheses (EMH) states that the market is 

efficient. Consequently, no profit can ever be made 

based on any kind of information. The main 

assumptions of the EMH include: all players on the 

market make rational decisions, they have access to all 

available information, and they have the same abilities 

to process and analyze this information. In its current 

form, the EMH is summarized by Lo [13], by the 

“three P’s”: prices, probabilities, and preferences.  

Many critiques of this theory come from different 

angles, such as behavioral economists or psychologists. 

They state that decisions are not always rational, hence 

not considering the emotions of the agents in a market 

faults the entire promoted model of that market. 

Moreover, from a computational perspective, it is very 

clear that the data mining methods and computational 

resources are very diverse among market players, thus 

there may be ways to find a trading edge to beat the 

market and make profit. 

Recently, a new theory has been proposed the 

Adaptive Market Hypotheses (AMH) [13]. It brings the 

principles of Darwin’s evolution theory into the 

economic scenery. The AMH promotes the idea of an 

evolving market, where dynamism allows for brief 

periods when market efficiency can be surpassed, 

patterns appear and profit can be made by acting upon 

these patterns. Lo [13] states that the market follows an 

evolutionary model, driven by the basic principles of 

natural evolution-competition, adaptation and natural 

selection. The financial environment is continuously 

changing, while the individuals in this environment 

struggle to adapt. 

There are numerous reports that combat the EMH 

even in its weak-form, using run tests or tests based on 

trading rules [17]. Our study is aligned to these results. 

We obtain accurate models of time series, based on 

past knowledge of stock price time series. The method 

used for this purpose relies on the use of a solid 

statistical technique combined with a novel 

evolutionary method. Our intention is to verify 

empirically whether the combination brings any 

improvement over the two traditional methods. 

 

1.1. Related Work 

There exists a multitude of methods to perform time 

series modeling, stemming from various areas like 

signal processing, dynamical systems, statistics, 

technical analysis, or artificial intelligence. The 

traditional methods come from the statistics literature, 

and include exponential smoothing, autoregressive, 

nonlinear threshold or autoregressive conditional 

heteroscedastic models. Modern methods rely on the 
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use of Artificial Neural Networks (ANN) [10, 16] or 

algorithms that belong to the field of Evolutionary 

Computation (EC) [21]. Belov et al. [4] investigate the 

usefulness of stable models in the stock market. De-

Gooijer [9] provide an extensive review of the 

development in this field in the last 25 years. They 

account for the importance of parsimony along with 

accuracy in modeling, a fact that impairs the use of 

nonlinear models, such as ANN.  

The Box-Jenkins methodology is a very powerful 

and expressive branch of research. ARMA models are 

easily interpretable and their applications are diverse 

and successful [5]. Yet, the methodology comes with 

some limitations. It assumes the stationarity of the time 

series, the normality and independence of the residuals. 

In addition, these models lack the ability to identify 

complex non-linear traits in the data. Nonlinearities are 

often “at fault” for the interestingness and difficulty 

behind financial time series [13].  

Heuristic approaches based on ANN or EC have 

been shown to obtain amazing results in time series 

modeling and forecasting. ANNs construct “black box” 

models of time series [10], useful for forecasting, 

useless for characterization of the system. They have 

good approximation capacities, but are often poor at 

generalization, due to overfitting [23]. Evolutionary 

algorithms appear in two contexts when time series are 

concerned. One of them is when genetic algorithms are 

used to enhance the performance of ANNs, by 

evolving the weights or the architecture of the network 

[24]. 

The other involves genetic programming (or its 

variants), either for evolving informational structures 

of the time series such as decision trees, or for 

evolving analytical functions that provide point 

forecasts of the time series, based on a number of past 

values. The genetic programming approach in [19] 

reported results that outperformed AutoRegressive 

(AR) and Generalized AutoRegressive Conditional 

Heteroskedasticity (GARCH) models constructed for 

the same financial time series. In addition, the GP 

system described in [21] obtained good predictions 

when applied in a dynamic financial setting.  

Gene Expression Programming (GEP) is a recently 

introduced evolutionary technique, targeted towards 

automatic induction of models for data [7, 8]. One of 

GEP’s main strengths is the nonlinear modeling 

capability. As opposed to usual statistical techniques, 

GEP obtains model of no-predefined form, finding 

both the appropriate shape of the function and its 

coefficients through evolution. GEP was used to 

develop a system that obtains simple mathematical 

models of the temporal behavior of data in [14]. Good 

results were reported when combining statistical data 

analysis with GEP modeling for meteorological time 

series [3].  

 

 

1.2. Motivation 

Typically, time series modeling is an iterative process: 

several models of different classes are built, analyzed, 

and usually, the one that obtains the smallest errors is 

chosen. The downside is that error based criteria that 

characterize an entire model by a single number, 

leaving a lot of space for forecasting errors.  

A common approach to obtain robustness of time 

series models is to build them using more than one 

technique. Moreover, in situations where time series 

reflect both linear and nonlinear traits, the best 

approach is to try and model them individually. Since 

there exists no universal method to obtain the best 

models with the best forecasts, attempts are constantly 

being made to find the most appropriate method, 

depending on the occasion. 

 The technique of combining several models for the 

same time series has been used intensely. Early reports 

come from Clemen [6], while good and more recent 

reviews are offered by Armstrong and De-Gooijer [2, 

9]. Studies have shown the increase in prediction 

efficiency especially when combining. Liang [12] uses 

a hybrid method that combines in a serial manner 

seasonal AutoRegressive Integrated Moving-Average 

(ARIMA) modeling with a neural network. 

 The combined model reduces the prediction error in 

comparison to a pure neural network model. A similar 

approach is used in [15], where ARMA modeling is 

combined with a Support Vector Machine (SVM) in 

the analysis of some financial time series. Comparisons 

between the computational results of the base methods 

(ARMA and SVM) and those of the hybrid method 

indicate that the hybrid outperforms both traditional 

approaches. In [1], the authors provide empirical 

results that a combination of an ARIMA model and an 

ANN has improved forecasting accuracy over the plain 

ARIMA and ANN approaches. 

In this paper, we propose a novel approach using a 

hybrid combination of ARMA and GEP. To the best of 

our knowledge, no approach like this was reported in 

the literature. The motivation of our study is to 

investigate to what extent two different time series 

modeling methods ARMA and GEP can complement 

each other in the analysis of financial time series. We 

decompose the time series into two components: one 

that captures linear behavior and one for the non linear 

one. We intend to take advantage of ARMA’s capacity 

to model the linear component and then to derive a 

model for the residuals obtained from the ARMA 

modeling using GEP. This way, if it exists, the 

nonlinear behavior would be reflected in the residuals 

obtained after extracting the linear component and they 

would be captured by means of GEP modeling. The 

resulting combined model is expected to be more 

robust and fit more accurately. 
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2. Time Series Models 

2.1. ARMA Models 

A time series model for the observed data xt is a 

specification of the joint distributions of a sequence of 

random variables Xt of which xt is postulated to be a 

realization. Let Xt be a discrete process in time and let 

us consider the operators defined by: 

 
1tX)tB(X −=            (1) 

 0p, 
p

Bp...B
1

1Φ(B) ≠−−−= ϕϕϕ  (2) 

 0qθ, 
q

Bqθ...B
1

θ1Θ(B) ≠−−−=  (3) 

 

tX is said to be an ),( qpARMA  process if 

( ) tt Θ(B)εXBΦ = , where the absolute values of the 

roots of Φ and Θ  are greater than 1 and tε  is a white 

noise. An ),( qpARMA  process is called an )(pAR  

process if 0q = . An ),( qpARMA  process is called a 

)(qMA  process if 0p =  [5]. 

The Box-Jenkins methodology of finding the 

appropriate ARMA model for a time series contains 

three steps: the first is concerned with identifying the 

model type (i.e., its order), the second with identifying 

the suitable parameters, and the third consists in 

checking the model. When the time series is not 

stationary, some processing (differencing, 

transformation) may be performed in order to reach the 

desired statistical properties. In order to determine the 

process type, the autocorrelation properties of the 

series are investigated.  

 

2.2. Gene Expression Programming 

Evolutionary computation is a branch of artificial 

intelligence dedicated to meta heuristics that use ideas 

from biological evolution to solve optimization 

problems. Many techniques are part of this field (e.g., 

genetic algorithms, evolutionary strategies, genetic and 

evolutionary programming). The common trait to all 

these methods is that they are governed by the 

principles of natural evolution. Amongst them, the lead 

is the principle of natural selection: the individual that 

is best adapted to the environment has the greatest 

chances to survive, reproduce and therefore pass his 

genetic traits to the next generations. A population of 

candidate solutions is initialized and then goes through 

a process of selection, recombination in a loop, until 

some termination criterion is met. 

Genetic programming appeared around the 90’s 

with the purpose of achieving automatic programming 

[18]. Empowered by the good results of GP, many 

improved variants of the technique were proposed. 

Among them lies GEP, as being one of the most 

successful paradigms. 

GEP is a flavour of GP that uses a novel 

representation that also takes advantage of some 

features of the classical GA. It works with a population 

of candidate solutions, in our case complex 

mathematical functions obtained as compositions of 

elementary functions, with variables and constants. 

Individuals are complex functions, free from any 

constraints regarding their form. GEP individuals are 

fixed size strings of symbols of the same length. 

Nonetheless, they encode non-linear expressions. An 

individual is composed of one or more genes of equal 

length; the number of genes is constant throughout the 

population over all generations and is given as a 

parameter of the algorithms, as is the gene size.  

The symbols that may appear in a GEP chromosome 

are functions or terminals. By functions we understand 

mathematical functions, while the terminals are either 

constants or variables. The variables are the same as 

they would be for any other time series modeling 

method: they represent lagged values of the time 

series. The number of past values used by GEP is a 

parameter of the algorithm. 

If we denote the values in the series by
nttx
,1

)(
∈

, and 

the values estimated by the GEP model by
nttx
,1

)ˆ(
∈

, 

we are interested in finding a function f that predicts 

the values of a time series as accurately as possible: 

  ( ) ntwtx
t

x
t

xftx ≤−−−= ,...,,
2

,
1

ˆ                   (4) 

The function has no predefined analytical form, nor 

specific coefficients- it is obtained entirely by evolving 

mathematical expressions in a GEP algorithm. The 

accuracy of a model for a series of n observations is 

measured in terms of Mean Squared Error (MSE):  

                                                       ( )∑
=

−=
n

i
ixix

n
MSE

1

2
ˆ

1
                                                                                                                      (5) 

Better models are those with smaller error. The fitness 

assigned to GEP individuals is this error, thus the 

algorithm works towards minimizing the fitness. For 

details on the inner workings of GEP see [7, 8].  

 

3. The Hybrid ARMA-GEP Approach 

ARMA and GEP have abilities to focus on different 

aspects of time series data. In this study, they are 

combined in order to provide more robust and accurate 

models of time series. To this end, the time series is 

modeled by a sum of a linear and a nonlinear 

component: 

 ttatx Ẑˆˆ +=                                                (6) 

The first component will be determined by an ARMA 

model in order to catch the linear structure of data. The 

tâ  symbolizes the approximation obtained by the 

linear model for the series value at the moment t. Then, 
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a GEP model will be fit. In fact, the residuals of he 

ARMA model, )ˆ( tt ax −  are the ones to be fit by GEP 

models. Residuals are very important in ARMA 

modeling, since the existence of nonlinear patterns in 

the residuals series compromise the ARMA model. 

Therefore, modeling the residuals in order to identify 

nonlinear patterns strengthens the ARMA models 

obtained, complementing it. This separate modeling 

helps to identify different patterns in the series. 

The resulted models benefit from both ARMA’s 

capacity to model the linear component and the 

complex nonlinear structures evolved by GEP. If it 

exists, the nonlinear behavior of the original time 

series is reflected in the residuals obtained after 

extracting the linear component and it would be 

captured by means of GEP modeling. Armstrong [2] 

details some conditions favoring combinations of 

forecasts resulted from different methods. He mentions 

that the use of combinations of models is 

recommended for time series when the most 

appropriate model is not known, or when it is 

important to avoid large errors. This combination has 

the features that recommend it as providing 

improvements with respect to the individual models. 

 

4. Empirical Results 

We are interested to establish whether the combination 

of ARMA modeling with GEP for financial time series 

brings improvement over the models obtained by 

ARMA or GEP alone. 

 

4.1. Input Data 

The experiments reported in this paper are performed 

on time series of monthly close stock prices∗  coming 

from both mature and emergent markets. This way we 

investigate the usefulness of modeling techniques 

employed in diverse settings, since market efficiency 

influences drastically the predictability of stock [13]. 

Four important indices were studied: 

1. New York Stock Exchange (NYSE) - between 

12.1965 and 07.2009 (526 values). 

2. Bucharest Exchange Trading (BET) - between 

10.2000 and 06.2009 (105 values).  

3. Bursa Malaysia KLCI Index (KLSE) - between 

12.1993 and 06.2009 (187 values). 

4. Dow Jones Industrial Average (DJIA) index-

between 05.1896 and 06.2009 (1354 values). 

The first and the last indices come from mature 

financial markets. The second and third indices come 

from emerging markets (BET and KLSE). The last 

index is the oldest existent index, coming from the 

mature American stock market (DJIA). Expectations 

are that the BET and KLSE indices are easier to model 

                                                 
∗ Data downloaded from http://www.stooq.com. 

than the first and last, given that the American stock 

market is expected to be more efficient than new 

markets (more players, more experienced, a greater 

transactions volume). Moreover, we expect the results 

for the first index to be influenced by the length of the 

time series, which is bigger than BET and KLSE 

series. 

The settings for GEP parameters were done as 

recommended in [8] for symbolic regression problems. 

All experiments were performed with chromosomes up 

to 5 genes, with the number of symbols in the head set 

to 5. The function set used is { , ,*, /, sin}+ − . All GEP 

models used up to 12 historical values. The best results 

were obtained for small window sizes (less than equal 

to 3). We include here the models for a window size of 

2, because they are good in terms of error, and still of a 

manageable complexity. The models were chosen from 

the best solutions encountered in 50 independent runs 

(distinct random seeds on each run), with the condition 

that its residuals are independent and normally 

distributed. 

 

4.2. Models 

4.2.1. NYSE Series 

The NYSE series is not gaussian and the normality can 

not be reached through variable transformations. Also, 

the series is correlated. After the mean subtractation, 

the model for the new series, is an AR(2): 

tε
2t1tt 0.2215X1.219 XX +−−−=   

where tε  has the variance of 27250.3. 

Since the residuals’ variance was too big and the 

residuals are correlated and not normal, another model 

was determined for the series obtained after taking 

logarithms, and denoted by tY . The best model 

identified, applying the Akaike selection criterion, was: 

 t1tt ZY0.998Y += −                                     (8) 

where the variance of the white noise Zt was 0.002651. 

The residuals from equation 8 were modeled with GEP 

Figure 1. 

 

 
 

Figure 1. The GEP model of the residuals for the 1n(NYSE) series 

(obtained with a window size of 2). 

 

(7) 
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The analytical solution is: 

                                            
1tZ2tZ2

2t
Z

2tZ0.154
2tZ1tZ

tZ −−−+
−

+
−+
−−−=ˆ            (9) 

The hybrid model resulted by combining the two 

methods is depicted in Figure 2. The corresponding 

residuals have a mean of -0.017 and a standard 

deviation of 0.08. 

 

 
 

Figure 2. Models of the transformed 1n(NYSE) series. 

 

4.2.2. BET Series 

The Kolmogorov-Smirnov test of normality lead us to 

reject the normality hypothesis on BET series. This 

series presents autocorrelation (noted from the chart of 

ACF). The form of the partial ACF chart Figure 3 

recommends an AR type model. The best model was 

chosen, based on Akaike criterion, after the mean 

extraction. It has the equation:  

  tt
XtX ε+−=

1
 983.0                         (10)  

where tε  was a white noise with the variance of 

07.2.6E +  

 

 
 

Figure 3. PACF of BET series. 

 

Since the variance of the residuals in equation 10 is 

very high and a delay between the model and the 

observed data can be seen Figure 4, the data underwent 

a logarithmic transformation.  The new series tY , is not 

normally distributed and the normality could not be 

reached through new transformations. After the mean 

subtraction, the best model determined is of ARMA (1, 

1) type: 

 
1248.01994.0 −++−= tZtZtYtY                      (11) 

where the white noise tZ has a variance of 0.011.  

 
 

Figure 4. Models of BET after the extraction of the mean. 

 

The GEP model of the residuals of equation 11 was 

obtained for a history window size of 2 and its 

analytical expression is: 

              
2tZ3

1t
Z2.28

0.74
1tZ

1tZ2tZ0.72tZ −⋅
−

⋅−−+−⋅−−−=ˆ                (12) 

 

 
 

Figure 5. Models of 1n(BET)-the original series, the ARMA model, 

the hybrid model. 

 

Although the nature of the residual series is 

observably complex, the model obtained captures the 

nonlinear pattern and, most of all, the trend of the data. 

The models of transformed series, denoted by 

1n(BET), are plotted in Figure 5. The hybrid not only 

looks as a better fit for the original series, it also brings 

an improvement in the MSE of 6% for the prediction 

over the first 7 months of year 2009. The residual in 

(11) is also plotted in Figure 6. It obviously portrays a 

good fit for the nonlinear pattern shown by the tZ . 

 

 
 

Figure 6. The ARMA residual and its values computed by the GEP 

model. 
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The advantage is that, while using only the ARMA 

model for forecasting, one would predict the next value 

to be the previous value in the series, the hybrid 

approach models also the residual part (the difference 

between the two), enabling the prediction to be more 

focused and closer to the real value. Hybridization thus 

improves the prediction, and provides further insight 

than only taking the most recent observation as a guide 

for the next prediction. 

 

4.2.3. KLSE Series 

The hypothesis that the series follows the normal law 

was accepted after performing Kolmogorov-Smirnov 

and Shapiro- Wilk tests. Applying the rank correlation 

test, the null hypothesis (randomness of time series) is 

rejected at the confidence level of 95%. No further 

transformation of the series is needed. The best model 

obtained for the raw series is an ARMA (1, 1):  

 
1017.01996.0 −++−= tttXtX εε               (13) 

where the variance of the residual tε  is 3592.95. The 

residuals are normal, but correlated. The hybrid 

combination with the GEP model for tε succeeds in 

removing the delay (the ARMA model was visibly 

delayed). The improvement in MSE of the hybrid over 

the pure ARMA is only 1% when predicting for the 

year 2008 Figure 7.  

 

 
 

Figure 7. Models for the original KLSE series. 

 

In order to obtain a better result, after a logarithmic 

transformation the series obtained tY , was also 

investigated. The hypothesis that it is normally 

distributed was rejected at the confidence level of 95%. 

Also, the new series has some outliers, which might 

represent some rare events that influenced the 

behaviour of the time series.  

Since we are interested in finding a model that 

follows the general trend, the new series without the 

outliers was considered. The best model determined 

with respect to the AIC criterion is an ARMA (1, 1):  

           
1

 1817.0
1

9997.0 −++−= tZtZtYtY                         (14) 

where tZ  has the variance of 5470. The residuals tZ  

are correlated and not normal. The model found by 

GEP for them captures the nonlinearities and predicts 

quite well: 

 

2

1
26.0202.0ˆ

−

−−−⋅−=

t
Z

t
Z

tZtZ                      (15) 

when combined with the ARMA model, the hybrid is a 

good fit of the original series Figure 8. 

 

 
 

Figure 8. Models for 1n(KLSE). 

 

4.2.4. DJIA Series  

The series is not normally distributed, but the 

normality can be reached by a Box-Cox transformation 

with .38.1=λ  The values of ACF are strictly 

decreasing and the first value of the Partial ACF is 

outside the confidence interval, at 95% confidence 

level. After performing the rank correlation test, the 

null hypothesis of time series randomness was rejected 

at the confidence level of 95%. The series reveals a 

large number of outliers, as expected, because the time 

span for this series covered many important events that 

had direct impact on the economic environment, hence 

reflected in the evolution of the stock price. 

Given the length of the series, there is a high chance 

that structural breaks affected the time series. Indeed, 

applying Buishard and Bayesian (Lee and Heghinian) 

methods, the hypothesis that there is no break in the 

time series is rejected at the confidence level of 95%. 

Still, since we are not interested in modeling the series 

in a piecewise model, we will ignore the breaks for the 

moment and concentrate ourselves on obtaining an 

overall fit model for the entire series. The best model 

encountered by the Box-Jenkins methodology was an 

AR (1):  

           ttXtX ε+−= 1999.0       

where the residuals tε  have the variance of 24596.3 

and they are not normal, nor correlated. They are 

modeled further by GEP. A complex model is derived, 

that reflects the nonlinearities, yet doesn’t explain all 

the amplitude. Combining the AR model with the GEP 

model, the MSE of the resulted hybrid model is not 

improved. Hence, we look for a better model. We 

apply a logarithmic transformation; the resulted series, 

is not normal, it is correlated, but has no outliers. 

Pettitt test leads us to accept the hypothesis that there is 

(16) 
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no break in the new time series. We further extract the 

mean, and model the resulted series tY , by a )12(MA  

model: 

12t 3.254 Z11t 3.228 Z 10t 3.011 Z

 9t 3.103 Z 8t 2.994 Z 7t 2.592 Z

 6t 2.502 Z 5t 2.662 Z 4t 2.721 Z

 3t2.588 Z2t2.903 Z1t2.988 Zt Z tY

−+−+−+

+−+−+−+

+−+−+−+

+−+−+−+=

                              (17) 

where residual tZ  is a white noise. Modeling tZ  by 

GEP the equation was obtained:  

            
2tZ1tZ2

2t
Z

3.99t-1Z-0.15 
2tZ1tZ

tZ −−−+
−

+
+⋅
−−−=ˆ                                     (18) 

  

 
 

Figure 9. Models for the transformed DJIA by logarithm, then 

mean extraction. 

 

Figure 9 reflects the models quality. Although it is 

not obvious from the plot (given the picture size and 

the fact that it plots over 1300 values), the hybrid 

model induced an improvement in prediction 

performance. Another advantage offered is that it 

models the residual and helps to predict it, fact that can 

be crucial for larger horizons predictions.  

 

 
 

Figure 10. Predicted values for DJIA. 

 

The MSE over the period Nov. 2004- Jul. 2009 (55 

months) was improved by 18% by the hybrid by 

comparison to (17). Considered only over the year 

2008 (12 months), the improvement was of only 9%. 

Contrary to our expectations, the models obtained for 

the long DJIA are fit. Figure 10 depicts the predictions 

over the last 55 months in the series. 

5. Conclusions 

Despite its difficulty, time series forecasting is a 

problem that attracts much interest from researchers in 

mathematics, computer science or economy. Although 

both ARMA and GEP gave good results in problems of 

model identification, neither of them is an universal 

modeling technique. While ARMA models offer 

simple, interpretable formulae [5] that characterize the 

linear behaviour in data, they rely on certain statistical 

properties that have to be met in order to obtain a good 

model.  

In addition, the success of an ARMA model 

depends highly on the level of expertise of the human 

researcher. On the other hand, GEP models offer the 

flexibility of modeling series without any constraints 

imposed on the shape or the size of the model [8]. The 

expressions derived are, most of the times, complex 

and need to be processed before being interpretable. 

Numerous studies in the literature reported the AR 

models obtained for stock price time series resemble 

the random walk model of predicting the next value 

based on the nearest previous value [5]. The results 

presented in this paper make no exception. By 

comparison, our results are consistent with the results 

presented by Zhang, Pai and Lin in [15, 22]. For every 

series studied, the models followed the same path. 

Every time, the shape of the ARMA model is a good fit 

to the original, with a delay of one time interval. Yet, 

these models are far from being the most useful in a 

forecasting scenario.  

GEP helps with forecasting since it models the 

differenced series obtained by removing the 

autoregressive part from the original data. GEP derives 

models that detect the nonlinearities in the series and 

offer analytical even though quite complex formulae 

that fit well the residuals and help the hybrid achieve 

predictions better than pure ARMA models. 

The hybrid models reflect both linear and nonlinear 

patterns in the time series. The empirical results with 

real stock data confirm the hybrid approach to be a fair 

competitor for the classical methods for modeling time 

series.  

Future work will focus on the dynamic aspect of the 

data that comes from the financial domain. Thus, 

procedures to identify breaks in the series will be used 

and the subsequent segments will be modelled. An 

important direction of our study is to devise a method 

that adaptively combines change point detection 

methods and modeling techniques in order to provide 

better forecasts on the short run, and moreover, to 

predict important structural changes in the data 

generating process of a time series. 
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