
The International Arab Journal of Information Technology, Vol. 9, No. 4, July 2012 373

Verification of Cooperative Transient Fault

Diagnosis and Recovery in Critical

Embedded Systems

Zibouda Aliouat and Makhlouf Aliouat

Department of Computer Science, University of Ferhat Abbes, Algeria

Abstract: The faults caused by ambient cosmic radiation are a growing threat to the dependability of advanced embedded

computer systems. Maintaining availability and consistency in distributed applications is one of the fundamental attribute in

building complex critical systems. To achieve this, a key factor is the ability to detect the fault and handle it by means of

recovery. Such systems can use membership protocols designed to provide this function. The objective of membership protocol

is to give all entities of every node in the cluster a consistent view of the system status, all within a pre-defined time. This paper

describes a formal analysis of an extension of the group membership algorithm implemented in the time-triggered protocol.

The proposed extension is to allow nodes reintegration after transient fault. We provide a detailed analysis of properties of

formal model of the algorithm. The paper is intended to verify the safety and liveness properties that the protocol must satisfy.

The correctness of the protocol is verified by the PVS theorem prover.

Keywords: Group membership protocol, formal verification, fault-tolerant distributed algorithm, node reintegration.

Received February 25, 2010; accepted August 10, 2010

1. Introduction

Fault-tolerant computer systems are being used more

and more in complex and safety critical applications

particularly in sensitive areas like automotive and

aircraft industry, nuclear power plants, process control,

and robotics. Such critical systems claim high

dependability requirements; because even a small

temporal fault occurred in the embedded computer

system may raise failures leading to unacceptable

catastrophic situations. Therefore, it is not sufficient

that such systems meet only hard real-time constraints,

they must also guarantee to meet specified safety

constraints despite of physical fault occurrences [1].

Since these safety critical systems include many

distributed computer nodes, they must have the ability

to ensure a consistent global state over all the system

components.

Recently, has emerged a tendency to increase

vehicles safety by introducing intelligent control

systems like brake-by-wire and steer-by-wire. Such

safety critical systems so-called x-by-wire may be

implemented in a Time Triggered Architecture (TTA)

[2]. At the core of TTA is the Time Triggered Protocol

of Communication (TTP/C) for hard real-time fault-

tolerant distributed systems. In TTP/C, fault tolerance

abilities are implemented in two ways in both hardware

and software components. Whereas the hardware relies

on redundant nodes and duplicated communication

channels, the software uses algorithms that control

such basic services as membership agreement, clique

avoidance [3], and clock synchronization. The

provision of fault tolerance is based on fault

hypothesis, so this paper is devoted to cope with

transient faults caused by ambient cosmic radiation,

which is the most important cause of transient failures

in embedded systems. These kinds of faults [17] are

reported to occur more frequently than permanent

faults. Due to the shrinking size and reduced supply

voltage of embedded systems, the transient fault rate is

predicted to increase dramatically in the near future.

Thus, due to the critical feature of TTP/C services, it is

of great importance to get the maximum reliability of

TTP/C. Therefore, a formal analysis of its behavior

through its membership protocol is required. In order

to increase the survivability of critical embedded

systems, particularly when the number of nodes in

cluster is limited, we consider that node reintegration

must be the indivisible part of an overall GMP and the

formal analysis must be globally performed. Therefore,

in this paper, we focus on the formal verification of a

node reintegration inside TTP/C’s GMP, which

complements the previous work in [5] and extends the

work in [7].

The paper is organized as follows: Sections 2 and 3

present respectively some related work, our system

model and assumption. Section 4 presents informal and

formal description of our proposed algorithm. In

section 5, we develop the configuration diagram used

in the verification part. Verification of the protocol is

presented in section 6. Section 7 shows the verification

results. Finally, section 8 concludes the paper.

374 The International Arab Journal of Information Technology, Vol. 9, No. 4, July 2012

2. Related Work

The evaluation of the reliability of a GMP is very

important because group membership services are

often used as building blocks in the design of fault

tolerant applications. Hence, latest GMPs are always

introduced together with a careful analysis of their

correct functioning. The correctness of the membership

algorithms, introduced by Cristian [7] for the

synchronous system model, are described informally.

The proofs of other algorithms, including those of

Cristian and Schmuck [8] for the timed-asynchronous

model and in particular those for the asynchronous

system model [10, 11], are presented in a rigorous

formal way. Indeed, it has been argued [12] that some

of algorithm specifications proposed in the literature

have flaws or suffer from other deficiencies. There are

some related works in the context of GMPs. For

example, Ramasamy et al. [14] describe a membership

protocol that is part of an intrusion-tolerant group

communication system. They specify the protocol in

the Promela language and use the Spin model checker

to verify the correctness of their protocol. Pascoe et al.

[12], also use Promela and Spin to build an “agreement

problem protocol verification environment” in the

approve project. Recently Bouajjani and Merceron

propose an automatic verification method based on

model checking [5] to verify TTP/C’s clique avoidance

mechanism for an arbitrary number of processors. The

protocol is abstracted in terms of unbounded counter

automata and the clique avoidance property is checked

by using the symbolic reachability analysis tool Alv.

However, what the protocol has addressed is only

cliques avoidance in GMP part, without considering

node reintegration. More recently, in [14] the

agreement is maintained by exchanging a configurable

number of acknowledgments for each node’s message.

The protocol was formally verified by using Spin

model checker. Closely related to our research, the

protocol in [15] deals with permanent failures. Our

protocol, in contrast, handles transient failures.

Furthermore, the protocol in [15] requires the

membership state to be periodically broadcasted to

support node reintegration. In our approach, nodes

recover the membership state by listening on the

network. The membership protocol proposed in this

paper is based on the principal that the resilience to

transient failures should be adjustable to the

development of embedded systems. Our previous work

[5] only gives a formal specification. This paper

focuses on the verification of the protocol and the

properties which must be satisfied by the protocol.

3. System Model and Assumptions

We consider a distributed system composed of a set of

nodes interconnected by a TDMA based real time

communication subsystem. Nodes have their clocks

tightly synchronized, and send messages in their pre-

allocated transmission slots according to a time

triggered cyclic schedule. We assume that faults occur

in the interface to the network of the node, caused by

radiation-induced high-energy ions or external electric

disturbances. These faults lead to send/receive

omission failures. According to the papers [4, 16],

radiation-induced, high-energy ions are the most

important cause of transient failures in future advanced

computer systems. We assume that the fault

occurrences are sufficiently rare [15] to guarantee that

when a processor fails, it flows out an interval of time

at most 2n slots before another processor becomes

faulty. And after being detected faulty, it will

reestablish its view during the following slots.

Therefore, it has to listen at most 2n slots before being

able to send a message. It depends on the type of the

fault that is, sending or receiving failure.

• Transient Sending Failure: A failure of sending

node means missing one message from this node

during its slot. This message is either not received at

all by the nodes or received wrong. The failure will

be detected by other nodes and hence considered as

faulty and excluded from the views of all nodes.

• Transient Receiving Failure: One node fails to

receive a message correctly. This node will be

detected faulty in its own slot.

4. Group Membership Protocol

In a distributed system, an adherence protocol of group

membership is a fault tolerant mechanism, capable of

obtaining a consensus on the identities of non failed

correct processors [6]. Any failed processor must be

excluded from the group at the end of limited time and

will be reintegrated into the group in the following slot

after the fault detection.

4.1. Informal Description of the GMP

We model a distributed computation as a finite set of

processors (or nodes) labeled by 0, 1, …, n-1 and

arranged in a logical ring. Every processor p maintains

a set mem
t
p (the Membership Set (MS) of processor p

at time t) containing all operational processors that p

considers at time t. The broadcast is realized on the

basis of TDMA strategy. In slot t the node with label t

mod n is the broadcaster, denoted by broadcaster (t).

The message being sent contains the broadcaster’s

local view mem
t
b on the membership. A broadcaster p

is detected faulty if the view’s successor (slot t+1) or

next successor (slot t+2) broadcaster does not contain

p. If a processor p was the previous broadcaster (in slot

t) and waits for being acknowledged, the boolean state

variable, prev
t
p is set to true. When the view’s sender

in slot t+1 doesn’t contain p, the node p sets the

boolean state variable, doubt
t
p to true and waits for slot

t+2 to check whether it is faulty. In this case, the

Verification of Cooperative Transient Fault Diagnosis and Recovery in Critical Embedded Systems 375

variable succ
t
p holds p’s first successor which refused

to acknowledge p. If the view’s second successor does

not contain p, p will remove itself from its own MS

and fail silently. A similar mechanism could be used

for diagnosing receive faults. However, each processor

p maintains two counters, acc
t
p and rej

t
p, which count

the number of messages that p has successfully

received and rejected, respectively. A processor p will

increase the counter acc
t
p if it agrees with the

broadcaster’s view. In the next round p checks whether

it has accepted more messages in the last one than it

has rejected. If so, p resets its counters and broadcasts;

otherwise p removes itself from its MS without

broadcasting.

4.2. Formal Analysis of the GMP

Our formal model is described by a set of guarded

commands. In every slot t, every processor executes

exactly one of these commands. The guards are

evaluated in a top-down order. Let NF
t
 be a set of non-

faulty processors at time t, sends
t
b denotes that the

current broadcaster b sends a message; arrives
t
p

indicates that a message arrives at the receiver p, and

integrat
t
p means that a processor p will integrate to the

group. The PVS specification is given as follows:

NF
t
: set[proc]; Sends

t
b:bool; Arrives

t
p:bool; Integrat

t
p:bool

Sending: Axiom Let b=broadcaster(t) In b ∈ mem
t
b⇒sends

t
b

A message sent by the broadcaster b will arrive at a

processor p (p∈NF
t
 ∪ integrator). These axioms also imply

that broadcasts are consistent:

arrival: Axiom Let b=broadcaster(t) In sends
t
b ∧p∈NF

t
 ⇒

arrives
t
p

arrival_int: Axiom Let b=broadcaster(t) In sends
t
b∧integrat

t

p⇒ arrives
t
p

nonarrival: Axiom Let b=broadcaster(t) In ¬ sends
t
b ⇒ ¬

arrives
t
p

The processor that has been detected failed and has emptied

its MS will be integrated:

Integrating: Axiom Let b=broadcaster(t) In mem
t
p=empty ∧

¬integrat
t
p ⇒ integrat

t+1
p

4.3. Group Membership Algorithm

The algorithm is specified by a set of guarded

commands. We explain only those relating to the node

reintegration. The clause 3 describes the behavior of a

processor that has already emptied its MS, of course a

processor detected faulty. Such a processor will be

reintegrated to the group but not immediately. It resets

the integrat flag to true and the counters acc and rej to

2 and 0, respectively. Its MS will then contain only

itself and the current broadcaster. The clause 4

describes the situation of an integrator receiving a

correct message and the current broadcaster has

accepted the previous broadcaster's message.

Therefore, the processor finish the reintegration

process, resets the prev and integrat flags to false and

increases the acc counter. The clause 8 describes the

behavior when the current broadcaster is integrator and

the receiver is a previous broadcaster and has correctly

received a message. The clause 17 is evaluated to true

when the processor receives a message and agrees with

the integrator broadcaster's view on the membership.

Broadcaster

1. accp
t
 > rejp

t
 ∧ accp

t
 ≥ 2 → memp

t+1
= memp

t
 ∧

prevp
t+1

=T ∧ accp
t+1

=1 ∧ rejp
t+1

=0;

2. otherwise → memp
t+1

=emptyset ∧ prevp
t+1

=F ∧

accp
t+1

=0 ∧ rejp
t+1

=0;

Receiver

3. memp
t
=emptyset → integratp

t+1
= T ∧ memp

t+1
={p,b} ∧

accp
t+1

=2 ∧ rejp
t+1

 =0;

4. prevp
t
 ∧ arrivep

t
 ∧ memb

t
=memp

t
 ∪{p} ∧ integratp

t
 →

memp
t+1

=memp
t
 ∧ prevp

t+1
=F ∧ accp

t+1
=accp

t
+1 ∧

integratp
t+1

= F;

5. prevp
t
 ∧ arrivep

t ∧ integratp
t
 → memp

t+1
= memp

t
 ∪ {b} ∧

prevp
t+1

= F ∧ accp
t+1

= accp
t
 + 1;

6. prevp
t
 ∧ arrivep

t
 ∧ memb

t
= memp

t
 ∪{p} → memp

t+1
=

memp
t
 ∧ prevp

t+1
= F ∧ accp

t+1
= accp

t
 + 1;

7. prevp
t
 ∧ arrivep

t
 ∧ memb

t
= memp

t
 \ {p} → memp

t+1
=

memp
t
 \{b} ∧ prevp

t+1
= F ∧ doubtp

t+1
= T ∧ rejp

t+1
= rejp

t

+ 1 ∧ succp
t+1

= b;

8. prevp
t
 ∧ arrivep

t ∧ p ∈ memb
t
 ∧ b ∉ memp

t
 → memp

t+1
=

memp
t
 ∪ {b} ∧ accp

t+1
 = accp

t
 + 1 ∧ prevp

t+1
= F;

9. arrivep
t ∧ p ∉ memb

t
 ∧ b ∉ memp

t
 → memp

t+1
= memp

t
 ∪

{b} ∧ accp
t+1

= accp
t
 + 1;

10. prevp
t
 ∧ nullp

t
 → memp

t+1
= memp

t
 \{b};

11. doubtp
t
 ∧ arrivep

t
 ∧ memb

t
= memp

t
 ∪{p}\{ succp

t
} →

memp
t+1

= memp
t
 ∧ accp

t+1
= accp

t
 + 1 ∧ doubtp

t+1
= F;

12. doubtp
t
 ∧ arrivep

t
 ∧ memb

t
= memp

t
 ∪{ succp

t
 ,b}\ {p} →

memp
t+1

= emptyset ∧ doubtp
t+1

= F ∧ accp
t+1

= accp
t
 + 1;

13. doubtp
t
 ∧ nullp

t
 → memp

t+1
 = memp

t
 \{b};

14. doubtp
t
 → memp

t+1
= memp

t
 \{b}∧ rejp

t+1
= rejp

t
 + 1;

15. arrivep
t
 ∧ integratp

t
 ∧ (memp

t
 = memb

t
) → memp

t+1
=

memp
t
 ∧ accp

t+1
= accp

t
 + 1 ∧ integratp

t+1
= F;

16. arrivep
t
 ∧ integratp

t
 → memp

t+1
= memp

t
 ∪{b} ∧

accp
t+1

= accp
t
 + 1;

17. arrivep
t
 ∧ p ∉ memb

t
 ∧ b ∉ memp

t
 → memp

t+1
= memp

t
 ∪

{b} ∧ accp
t+1

= accp
t
 + 1;

18. arrivep
t ∧ (memp

t
= memb

t
) → memp

t+1
= memp

t
 ∧

accp
t+1

= accp
t
 + 1;

19. nullp
t
 → memp

t+1
= memp

t
 \{b};

20. otherwise → memp
t+1

= memp
t
 \ {b} ∧ rejp

t+1
= rejp

t
 + 1;

4.4. Initial State

We suppose that all the processors are initially not

faulty. Their MSs contain all the processors and so the

properties of validity and agreement are verified in the

initial state. For others state variables, the mechanism

of clique avoidance which is integrated into the

algorithm imposes constraints on the values of acc and

rej of the processor which is going to broadcast in the

following slot and have to be equal to 2 and 0

respectively. As in the GMP, the last broadcaster is

distinguished from the other receivers, because it waits

for its acknowledgment by its successor, and hence its

376 The International Arab Journal of Information Technology, Vol. 9, No. 4, July 2012

variable prev is set true. We suppose that the previous

broadcaster is the processor labeled (n-1); the counters

acc and rej are set to 1 and 0 respectively (no other

message has been accepted except its own). For the

doubt and integrat variables, we assume that no

processor is in doubt or is integrator respectively.

• Definition 1: 1. ∀ p: memp
0
= {p ⁄ T}; 2. ∀ p: (p ≠ n-

1) ⇒ accp
0
 = 2; 3. accn-1

0
= 1; 4. ∀ p: rejp

0
= 0 5. ∀

p: prevp
0
 ⇔ p=(n-1); 6. ∀ p: doubtp

0
= F; 7. ∀ p:

integratp
0
= F

5. Developing the Configuration Diagram

The diagram for the GMP is shown in Figure 1. The

nodes of the diagram represent the configurations, and

arrows denote transitions from one configuration to

others and are labeled with transition conditions.

Configurations are parameterized by the time t and

describe the global state the system is in.

Configurations can have additional parameters such as

processors (x, y, .) that behave differently from the rest

of system, or additional entities necessary to describe

the system state. The labels of transitions express the

preconditions for the system to move from one

configuration to another. The system is said to be in a

stable configuration if the MS of all non-faulty

processors p is equal to NF
t
, and a faulty processor has

already diagnosed its fault and thus removed itself

from its own MS.

• Definition 2: stable (t, z): bool = recent (t, z) ∧ (∀p:

p ∈ NF
 t
 ⇒ mem

t
p= NF

 t
) ∧ (p= z ⇔ acc

t
p > rej

t
p) ∧

(p ≠ z ⇒ acc
t
p > rej

t
p+1) ∧ (prev

t
p= T ⇔ p= z) ∧

doubt
t
p= F ∧ integrat

t
p= F

In the configuration stable (t, z) the counters of non-

faulty processors are set such that acc
t
p > rej

t
p+1. This

is to allow for a non-faulty processor p to cope with a

send fault of other broadcaster in the next round, in

which case, the counter rej
t
p will be increased; this

should not lead to p removing itself from its own MS

in its next sending slot, for which acc
t
p> rej

t
p must

hold. However, the most recent non-faulty broadcaster,

say z, cannot satisfy this condition as in its sending slot

z, sets the counters: acc
t
z=1 and rej

t
z=0.

The expression recent (t, z) denotes that at time t,

processor z is the recent non-faulty broadcaster.

• Assumption 1: At the start time of the algorithm all

processors are non-faulty: ∀p: p∈ NF
 0
.

• Lemma 1: There is a processor z such that the GMP

is in the stable configuration at time 0 with respect

to z: ∃ z: stable (0,z).

• Proof: Let z the processor labeled n-1; the

conditions for the stable configuration follow

immediately from definition 1 and assumption 1.

In order to determine the transition conditions from

the stable configuration, we consider whether or not a

new fault occurs in the next step. For the first, if no

processor becomes faulty, that is NF
 t+1

=NF
 t
 holds, the

system remains in stable, because neither the

broadcaster nor the receivers change their MSs: the

broadcaster will execute command 1, while the

receivers will execute command 18, except for z which

will execute command 6. The broadcaster b now

becomes the most recent non-faulty broadcaster and

the new configuration is stable (t+1, b).

• Lemma 2: Let the system be in the stable

configuration at time t with respect to z and let b

denotes the broadcaster at time t. If b is already

faulty and no new fault occurs in the next step then

the system will be in the stable configuration at time

t +1 with respect to z: stable (t, z) ∧ b∈ NF
t∧

NF
t+1

=NF
t
 ⇒ H stable (t+1, b).

Now we consider the case where a new fault occurs. If

a processor, say x, which was non-faulty at time t

becomes faulty at time t+1, the same commands as

above will be executed. However, the system will not

be in a stable configuration any more, because now the

MSs of both non-faulty processors and x do not only

contain non-faulty processors, but also the newly faulty

processor x. Hence we introduce a new configuration

that we call latent.

• Definition 3: Latent (t, x, z): bool=x ∈ NF
 t-1

 ∧ NF
 t-1

= NF
 t
/{x}∧ recent (t, x, z)

∧ ∀p: (p ∈ NF
 t
 ∨ p=x) ⇒ mem

t
p = NF

 t
 ∪ {x} ∧ (p=

z ⇔ acc
t
p= rej

t
p+1) ∧ (p ≠ z ⇒ acc

t
p > rej

t
p+1) ∧

(prev
t
p= T ⇔ p= z) ∧ doubt

t
p= F ∧ integrat

t
p= F

• Lemma 3: Let the system be in the stable

configuration at time t with respect to z and let b

denote the broadcaster at time t. If the processor x

becomes faulty in the next step then the system will

be in the configuration latent at time t+1 with

respect to x and b: stable (t, z) ∧ NF
t+1

= NF
t
 \ {x} ⇒

latent (t+1, x, b).

It is the duty of the GMP to assure that possibly all the

processors, including x, know about the fault of x and

eliminate it from their MSs and x will reintegrate in the

group and so system returns in the stable configuration.

The hypothesis of fault presumes that no new fault will

occur during this time until system will become again

stable. From the stable configuration to reintegration

configuration, the processors detect the faulty

processor x and eliminate it from their MSs. After that,

faulty processor x will reintegrate in the group and

construct its MS and so the system returns in the stable

configuration. The GMP is said to be in the

reintegration configuration at time t, for t>0, if the MS

of all non faulty processors is equal to NF
 t

 and the

MS’s faulty processor x is empty. The system transits

into the reintegration configuration if x is the current

broadcaster but fails to send a message command 2.

Thus, the non-faulty processors remove x from their

MSs by executing the command 19 or 9 in the case of

z. Therefore, all non-faulty processors have the same

MSs.

Verification of Cooperative Transient Fault Diagnosis and Recovery in Critical Embedded Systems 377

• Definition 4: reintegration (t, x, z): bool= ∃ i: 0 < i ≤

n ⇒ sends(t-i)= x ∧ ∀ p : (p ∈ NF
 t
 ∨ p= x) ⇒

(mem
t
p= ∅ ⇔ p= x) ∧ (mem

t
p= NF

 t
 ⇔ p ≠ x) ∧ (

acc
t
p= rej

t
p +1 ⇔ (p= z ∨ p= x)) ∧ (integrat

t
p= T ⇔

p= x) ∧ (prev
t
p= T ⇔ p= z) ∧ doubt

t
p= F

If a processor, say x, which was detected faulty and has

its MS empty becomes integrator, the system will be

into a new configuration, that we call reintegration-

member.

• Definition 5: reintegration-member (t, x, z, R):

bool= ∃ x, z: x∉ NF
 t
 ∧ z ∈ NF

 t ∧ (∃ i : 0 < i ≤ n

⇒ sends(t-i)= x) ∧ (∃ p : p∈NF
 t
 ∧ before (t, p, z))

∧ ∀ p : (p ∈ NF
 t
 ∨ p= x) ⇒ (mem

t
p= R ⇔ p= x) ∧

(acc
t
p > rej

t
p +1 ⇔ p= x) ∧ (acc

t
p= rej

t
p +1 ⇔ p= z)

∧ (integrat
t
p= T ⇔ p)= x ∧ (prev

t
p= T ⇔ p= z) ∧

doubt
t
p= F

• Lemma 4: Let the system be in the reintegration

configuration at time t with respect to x and z, and

let b denoted the broadcaster at time t. If MS’s x is

empty, and if no new fault occurs in the next step

then the system will be in the reintegration-member

configuration at time t+1 with respect to x, b, and the

set {x, b}.

reintegration(t,x,z) ∧ b ∈ NF
 t
 ∧ NF

 t
= NF

 t+1
 ⇒

reintegration-member(t+1,x,b,{x, b})

By systematically analyzing the possible cases for a

given configuration one proceeds to develop the

configuration diagram. Every transition either leads to

a new configuration or to an already existing one. In

some cases it may be necessary to generalize an

existing configuration in order to establish the proof of

a transition. The ultimate goal in this process is to end

up with a configuration diagram which is closed. After

analyzing of the behavior of the GMP and constructing

the configuration diagram that describes all reachable

states of all processors in the system, we explain how

this diagram, as represented by the various lemmas

described so far, can be used to accomplish the proofs

of the three correctness properties: validity, agreement

and liveness.

Figure 1. Configuration diagram for the global TTP membership algorithm.

6. Verification of the Protocol

6.1. Proving Safety Properties

The purpose to verifying the GMP is to prove that the

safety properties (validity and agreement) hold in

every step of the system. The configurations of the

diagram are defined such that the safety properties hold

for every configuration. For example, for the

reintegration configuration, it is simple to prove the

following lemmas and similar ones for every other

configuration of the diagram.

• Lemma 5: If the GMP is in the configuration

reintegration at time t with respect to processors x, z

and a set R then the validity property holds at time t.

• Proof: From the definition 4, the MS of every non-

faulty processor is equal to the set of all non-faulty

good

b=x

good

agree

missed-rcv

x-not-ack

(t,x,z,S)

good

b ≠ x ∧ x ≠z

 good missed

good missed

x = z

reintegration
(t,x,z,R)

b=x self diag

good missed

b=x self diag

good

Excluded-z-doubt

(t,x,z,S)

b=x

z no ack

good

no ack

good disagree

 b=x

 no message

b ≠ x

good

good
good

b=x

good disagree

Stable(t,z)

integration-member

(t,x,z,R)

integration-member-Two

(t,x,z,R)

integration-1st-succ

(t,x,z,R)

b ≠ x

x = z

b ≠ x

x ≠ z

integration-2nd-succ

(t,x,z)

Missed-rcv
(t,x,z,S)

Latent(t,x,z)

b=x

no message

 b=x

 message rejected

Excluded

(t,x,z,S)

Pending-self-diag

(t,x,z,S)

good

good

good

good

Excluded-doubt

no-2nd-succ

(t,x,z,S)

good

good

good

Excluded-doubt

(t,y,x,z,S)

good

378 The International Arab Journal of Information Technology, Vol. 9, No. 4, July 2012

processors and hence the first constraint of the

validity property is satisfied. The faulty processors x

has emptied its MS and therefore satisfy the second

validity constraint.

• Lemma 6: If the GMP is in the reintegration

configuration at time t with respect to x and z then

the agreement property holds at time t.

• Proof: From the definition 4, the MS of every non-

faulty processor is equal to the set of all non-faulty

processors. Therefore, all non-faulty processors

have the same MSs and hence agreement holds.

As the safety properties hold in every configuration,

the overall proof can be accomplished if we can show

that in every step the GMP is in one of the

configurations of the diagram. In other words, we must

prove that the diagram is complete in the sense that

there are no other transitions than those proved for the

diagram. To this end, we prove for every configuration

a lemma which states all possible configurations

successor the algorithm can move to in the next step.

Consider, for example, the stable configuration, as long

as no new fault occurs, the system will remain in this

configuration. If, however, a new fault occurs, then the

system will move to the latent configuration. The

following lemma states that these are all possible

transitions.

• Lemma 7: Let the system be in the stable

configuration at time t with respect to some

processor z. Then, in the next step at time t + 1, the

algorithm will be either still in stable with respect to

the broadcaster b at time t, or there exists a

processor x such that the algorithm is in the latent

configuration at time t + 1 with respect to x and b.

stable (t, z) ⇒ stable (t+1, b) ∨ ∃ x: latent(t+1, b)

• Proof: Follows directly from the Lemmas 2 and 3.

Similar lemmas can be proved for all other

configuration as well, however, there is one

difference to the proof of the lemma above. The

preconditions of all transitions for configurations

other than stable contain the conjunct NF
t+1

= NF
t

and thus require that the set of non-faulty processors

does not change, i.e., that no new fault occurs. The

GMP is able to tolerate faults provided that they do

not occur too frequently. More specifically, as long

as a newly faulty processor x has not yet been

detected faulty and reintegrated in the group, a new

fault must not occur. We use a slightly different

form of this assumption and assume that faults only

arrive when the system is in the stable

configuration.

• Assumption 2: If the GMP is in the configuration

stable at time t with respect to some processor z,

then the set of non-faulty processors is decreased by

at most one processor x in the next step.
stable (t, z) ⇒ (NF

t+1
 = NF

t
) ∨ ∃ x ∈ NF

t
 : NF

t+1
 = NF

t
\

{x}

• Assumption 3: If the GMP is not in the stable

configuration at time t with respect to some

processor z, then the set of non-faulty processors

does not change in the next step.
 (∀ z : ¬ stable(t, z)) ⇒ NF

t+1
 = NF

t

The proof for the lemmas about the successors of

configurations, however, can still not be completed,

since we must prove that all configurations (except

stable) are in fact different from stable and hence new

faults can be assumed not to occur in these

configurations. For the configuration reintegration, for

example, we must prove the following lemma.

• Lemma 8: If the GMP is in the reintegration

configuration at time t with respect to processors x

and z and the set R, then the algorithm is not in the

stable configuration at time t for any processor p.
reintegration (t, x, z, R) ⇒ ∀p : ¬ stable(t, p)

• Proof: By the definition 4, we have one faulty

processor x which emptied its MS whereas stable

configuration denotes that all processors are non-

faulty and their MSs are equal to NF
t
; so this

violates the definition 2. Similar lemmas are proved

in the same way for all other configurations. This

allows stating and proving a following lemma about

the successor configurations of reintegration.

• Lemma 9: Suppose that the GMP is in the

reintegration configuration at time t with respect to

some processors x and z then, in the next step at

time t+1, the algorithm will be in the reintegration-

member configuration with respect to x, z, the

broadcaster b and the set R= {x, b}.

Reintegration (t, x, z) ⇒ Reintegration-member (t+1, x,

b, {x, b})

• Proof: Follows directly from the lemma 4. Now all

prerequisites are fulfilled to prove that the

configuration diagram completely describes the

behavior of the GMP under the assumed fault

hypotheses. The following definition formally

describes this property and expresses that at all

times the system is in one of the stated

configurations.

• Definition 6: We write total (t) if the GMP is in one

of the following configurations:

stable, latent, missed-rcv-x-not-ack, missed-rcv,

excluded, excluded-z-doubt, excluded-doubt,

excluded-doubt-no-2nd-succ, pending-self-diag,

reintegration, reintegration-member, reintegration-

member-two, reintegration-1st-succ, reintegration-

2nd-succ with respect to appropriate values of

processors and sets.

• Lemma 10: At all times t, the GMP is in one of the

stated configurations: ∀t: total (t).

• Proof: By induction on t, for t = 0 from Lemma 1

the GMP is in the stable configuration with respect

to the processor labeled n - 1. For t → t + 1, suppose

total (t) holds; we can split on the actual

configuration the GMP is in. Suppose the algorithm

is in the stable configuration for some processor z,

then by Lemma 7, the algorithm will be in stable or

Verification of Cooperative Transient Fault Diagnosis and Recovery in Critical Embedded Systems 379

latent at time t +1 and hence total (t+1) holds. The

same argument holds for reintegration by Lemma 9,

and analogously for all other configurations. Now

the safety properties of validity and agreement are

easily proved using the totality proposition above.

• Theorem 1: At all times, the GMP preserves a valid

view on the membership status of the system.

• Proof: By Lemma 10, GMP is in one of the

configurations at all times t. Suppose the algorithm

is in reintegration configuration, validity follows

from Lemma 5. Hence, for all other configurations

similar arguments hold.

• Theorem 2: At all times, the GMP establishes

agreement among the non-faulty processors.

• Proof: Analogously to the proof of the previous

theorem, using lemmas similar to Lemma 6.

6.2. Proving Liveness Properties

The third correctness property that the GMP must meet

is Self diagnosis-reintegration. The maximum number

of slots executed by the algorithm before a faulty

processor diagnoses its fault and reintegrates into the

group is bounded by 3n-1. All configurations other

than stable and reintegration allow for a faulty

processor to be contained in its own MS. We therefore

prove the stronger liveness property which states: The

system remains outside the stable configuration for at

most 3n-1 slots. Once the system leaves the stable

configuration, it takes at most 2n-1 slots for coming to

reintegration configuration detection fault phase and at

most n slots to return to stable configuration

reintegration phase.

• Definition 7: The GMP is said to satisfy the liveness

property at time t, if the algorithm is not in the

stable configuration for at most 3n-1 slots:
∀ z : stable(t, z) ⇒ ∃ z , s : 0 < s ∧ s ≤ 3n-1∧

stable(t+s, z)

For this property, we must show that once the system

leaves the stable configuration it will not remain in

other configuration for more than 3n-1 slots. The proof

will be split into two parts: first, we demonstrate that

every configuration will be eventually left, that is, the

system does not loop forever on one of the

configurations, and second, bound the number of steps

it takes for the system to return to stable from any

given configuration. The proof of the first requirement

that there are no infinite loops in any configuration

other than stable is similar for every configuration and

will be accomplished in two steps. To illustrate these

we consider, for example, the reintegration-member

configuration. From the configuration diagram shown

in Figure 1 we know that in reintegration-member the

system either leaves this configuration in the next step

to reintegration-member-two or stable, or remains in

reintegration-member. We realize that the system can

only loop on reintegration-member if the current

broadcast is not the faulty processor x. Hence we can

deduce that either the system leaves the reintegration-

member configuration after some s steps, or for all

further slots the respective broadcasters are not x.

• Lemma 11: Suppose the GMP is in the

configuration reintegration-member at time t with

respect to some processors x and z and a set R, then

there either exists a number of slots s such that the

algorithm makes a transition to reintegration-

member-two or stable after s slots, or the current

broadcaster (i.e., b= sender (t)) is not x for all next

slots:

reintegration-member
t
(z,x,R) ⇒ ∃ s, z, b, R:

reintegration-member-two
t+s

(z,x,b,R) ∨ ∃ s, z, b:

stable
t+s

(b) ∨ ∀ s: sender(t+s) ≠ x.

The above lemma can be reached as the number of

non-faulty processors is n-1. This implies that the

integrator processor x will eventually become the next

broadcaster. Thus, the system will leave the

reintegration-member configuration and we can prove

the liveness property.

• Lemma 12: Suppose the GMP is in the

configuration reintegration-member at time t with

respect to some processors x and z and a set R, then

there exists either a number of slots s such that the

algorithm makes a transition to reintegration-

member-two or stable after s slots.
reintegration-member

t
(z,x,R) ⇒ ∃ s, z, b, R:

reintegration-member-two
t+s

(z,x,b,R) ∨ ∃ s, z, b:

stable
t+s

(b)

For all configurations, corresponding lemmas can be

proved in the same way that the system leaves on the

broadcast of x. The second part of the proof of the

liveness property is concerned with establishing the

bound on the number of steps for the system to return

to the stable configuration. This is accomplished by

analyzing the length of all possible paths through the

configuration diagram. We proceed backwards and

first consider all configurations from which the system

can only make a transition to stable, such as

reintegration-member and reintegration-2nd-succ. For

this, we have defined on every configuration a

parameter i that either counts the number of slots since

the last broadcasting of the faulty processor x for

excluded configuration and all reachable from there, or

is a lower bound of the number of slots since the last

broadcast of x that can be at most n for other

configurations. For the latter type of configurations,

such as reintegration-member, if the algorithm is in

one of these configurations with a counter value of i

then after at most n-i steps a transition will be made to

exit the configuration.

• Lemma 13: let us suppose the algorithm is in the

reintegration-member configuration at time t with

respect to x, z and R with counter value of i

according to the definition of the configuration; then

after at most n-i slots the algorithm returns to the

stable configuration:

380 The International Arab Journal of Information Technology, Vol. 9, No. 4, July 2012

reintegration-member (t, z, x, R) ⇒ ∃s, z: s ≤ n – i ∧

stable (t+s, b)

The value of i is increased by one on every transition.

• Lemma 14: Suppose the algorithm is in the

reintegration configuration at time t with respect to

x, z, a set R and counter value of i according to the

definition of the configuration; then after at most n-i

slots the algorithm returns to the stable

configuration:
reintegration (t, z, x, R)⇒∃ s, z: s ≤ n – i ∧ stable (t+s, b)

• Lemma 15: Suppose the algorithm is the in missed-

rcv-x-not-ack configuration at time t with respect to

x, z, S and i denotes the counter value according to

the definition of the configuration; then after at most

n - i slots the algorithm makes a transition to the

stable configuration:
missed-rcv-x-not-ack (t, x, z, S) ⇒ ∃ s; z: s ≤ n - i ∧

stable (t+s, z)

The final lemma that has to be proved is the one for the

latent configuration. If the system leaves this

configuration to missed-rcv-x-not-ack then it will

return to the stable configuration within at most n

steps. On the path via missed-rcv it will take at most 3n

-2 steps, as the counter i of missed_rcv set to 1

initially.

• Lemma 16: Suppose the algorithm is the in latent

configuration at time t with respect to x; then after at

most 3n -2 slots the algorithm returns to the stable

configuration:
latent (t, x) ⇒ ∃ s; z : s ≤ 3n - 2 ∧ stable(t+s, z)

• Theorem 3: At all times t, the liveness property

holds for the GMP.

• Proof: Follows from lemma 16. If a new fault

occurs then the system will make a transition to

latent, which adds 1 to the bound established for this

latter configuration.

The original goal was to establish the self-diagnosis-

reintegration property for the GMP which follows

directly from the theorem 3: after a processor x

becomes faulty, the system will return to the stable

configuration, in which x has been detected faulty and

has reintegrated into the group, after at most 3n-1 slots.

7. Verification Results

The obtained results are relative to the verification of

self-diagnosis-reintegration property for a model of

seven, eight, nine and ten nodes. We have stated that

the self-diagnosis-reintegration phase is split into two

parts: detection phase and reintegration phase. Thus,

the Table 1 shows the number of slots taken in each

phase. According to the rank (in the ring) of the faulty

processor, the minimum (min) and the maximum

(max) number of slots taken in the detection phase are:

• In case of sending fault: If a faulty processor is the

first one in the ring, the duration of the detection

phase ddp is minimal. Contrary if it is the last one,

the ddp is maximal;

• In case of receiving fault: The ddp is minimal when

the faulty processor is the last one and is maximal if

the faulty processor is the first one.

Beyond these extreme cases, the ddp is as follows:

4 ≤ ddp ≤ 2n

The duration of the reintegration phase drp is equal to

the number of slots in the round (number of

processors). These results are summarized in the

following Table:

Table1. Detection bound and reintegration duration.

No. Nodes
ddp

drp
Min Max

7 4 13 7

8 4 15 8

9 4 17 9

10 4 19 10

All the transitions in the diagram shown in Figure 1

have been proved with the assistance of the PVS

theorem prover.

8. Conclusions

In this paper, we have addressed the threat

dependability of embedded systems caused by ambient

cosmic radiation. This phenomenon is the most

important cause of transient failures in future advanced

embedded systems. Thus, the transient fault rate is

predicted to increase dramatically in the future. Hence,

the transient fault recovery must be handled

considerably. In the previous GMP of TTP/C, any

detected faulty node, is immediately excluded from the

group. If the node reintegration is not implemented,

this continuous exclusion process risks invalidating the

protocol after n-3 successive failures. Our contribution

in this paper is to solve this serious problem.

Therefore, we have proposed a formal framework to

model the GMP with node reintegration. This

framework allows GMP to get more availability in the

context of critical embedded applications. The proofs

of the main correctness properties of the algorithm

have been constructed and then checked with the PVS.

In the future we intend to generalize the fault model

of the protocol. Thus, we will consider that at most a

given number k of transient faults may occur during

one round.

References

[1] Aliouat Z., “Formal Analysis of Fault-Tolerant

Algorithm in the Time-Triggered Architecture,”

Journal of Computer Science, vol. 3, no. 1, pp.

28-34, 2007.

[2] Anceaume E., Charron-Bost B., Minet P., and

Toueg S., “On the Formal Specification of Group

Verification of Cooperative Transient Fault Diagnosis and Recovery in Critical Embedded Systems 381

Membership Services,” Technical Report,

Cornell University, Unité de Recherche INRIA

Rocquencourt, 1995.

[3] Barbosa R. and Johan Karlsson J., “Formal

Specification and Verification of A Protocol for

Consistent Diagnosis in Real-Time Embedded

Systems,” in Proceedings of the 3
rd

 IEEE

International Symposium on Industrial

Embedded Systems, France, pp. 216-223, 2008.

[4] Bauman R., “Soft Errors in Advanced Computer

Systems,” IEEE Design and Test of Computers,

vol. 22, no. 3, pp. 258-266, 2005.

[5] Bouajjani A. and Merceron A., “Parametric

Verification of a Group Membership Algorithm,”

Journal of Theory and Practice of Logic

Programming Cambridge University, vol. 6, no.

3, pp. 321-353, 2006.

[6] Constantinescu C., “Impact of Deep Submicron

Technology on Dependability of VLSI Circuits,”

in Proceedings of The International Conference

on Dependable Systems and Networks, pp. 205-

209, 2002.

[7] Cristian F., “Reaching Agreement on Processor-

Group Membership in Synchronous Distributed

Systems,” Distributed Computing, vol. 4, no. 4,

pp. 175-187, 1991.

[8] Cristian F. and Schmuck F., “Agreeing on

Processor Group Membership in Timed

Asynchronous Distributed Systems,” Technical

Report, University of California, 1995.

[9] Heiner G. and Thurner T., “Time-Triggered

Architecture for Safety-Related Distributed Real-

Time Systems in Transportation Systems,” in

Proceedings of 28
th
 Annual International

Symposium on Fault-Tolerant Computing,

Germany, pp. 402-407, 1998.

[10] Kopetz H. and Bauer G., “The Time-Triggered

Architecture,” in Proceedings of the IEEE

Special Issue on Modeling and Design of

Embedded Software, pp. 1-14, 2002.

[11] Owre S., Rushby J., Shankar N., and Henke F.,

“Formal Verification for Fault-Tolerant

Architectures: Prolegomena to the Design of

PVS,” IEEE Transactions on Software

Engineering, vol. 21, no. 2, pp. 107-125, 1995.

[12] Pascoe J., Loader R., and Sunderam V., Working

Towards the Agreement Problem Protocol

Verification Environment, in Alan C., Majid M.,

and Henk M., (Eds.), Communication Process

Architectures, IOS Press, UK, 2001.

[13] Pfeifer H., “Formal Verification of the TTP

Group Membership Algorithm,” in Proceedings

of Formal Methods for Distributed System

Development, Tommaso B., and Diego L., (Eds.),

Italy, pp. 3-18, 2000.

[14] Ramasamy H., Cukier M., and Sanders W.,

“Formal Specification and Verification of A

GMP for an Intrusion-Tolerant Group

Communication System,” in Proceedings of the

Pacific Rim International Symposium on

Dependable Computing, USA, pp. 9-18, 2002.

[15] Ricciardi A. and Birman K., “Using Process

Groups to Implement Failure Detection in

Asynchronous Environments,” in Proceedings of

the 10
th
 ACM Symposium on Principles of

Distributed Computing, NY, pp. 341-352, 1991.

[16] Schiper A., “Dynamic Group Communication,”

Distributed Computing, vol. 18, no. 5, pp. 359-

374, 2006.

[17] Ziade H., Ayoubi R., and Velazco R., “A Survey

on Fault Injection Techniques,” The International

Arab Journal for Information Technology, vol. 1,

no. 2, pp. 171-186, 2004.

Zibouda Aliouat obtained her

engineer diploma in 1984 and MSc

in 1993 from Constantine

University. She received her PhD

from Setif University of Algeria.

She was an assistant at Constantine

University from 1985 to 1994. She is

currently an assistant professor in Computer

Engineering Department at Setif University of Algeria.

Her research interests are in the areas of wireless

mobile networks modelling and simulation, wireless

sensor networks and fault tolerance of embedded

systems.

Makhlouf Aliouat received the

engineer diploma degree from

Computer Science Department of

Constantine University, Algeria in

1978, and the MS and PhD degrees

from polytechnic national institute

of Grenoble, France in 1983 and

1986 respectively. He also received the “enabling to

conduct research diploma” from Constantine

University in 2008. He was assistant professor from

1986 to 1990 in Computer Science Department of

Constantine University. Since 1995, he is associate

professor in Computer Science Department of Ferhat

Abbès University of Sétif, Algeria. His areas of

research are operating systems, distributed systems,

wireless mobile computing and wireless network

security.

