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Abstract: With the continuous development of semantic web, especially of the web of data, several knowledge bases expressed 

by ontologies are independently created and added to the Linked Open Data (LOD) cloud, on a daily basis. A major challenge 

for the LOD paradigm is to discover resources that refer to the same real-world object, in order to interlink web resources and 

hold large scale data integration and sharing. In this context, instance matching is a promising solution. It aims to link co-

referent instances belonging to heterogeneous knowledge bases with owl: same as links. Several state-of-the-art existing 

approaches addressing this issue are based on the prior schema-level matching's, which does not avoid the limitation of 

heterogeneity at the property-level. In this paper, we propose a schema-free, scalable and efficient instance matching approach 

that is independent from matching results at the schema-level. We transform the instance matching problem to a document 

similarity problem and we solve it by a Clustering technique that uses an Ascendant Hierarchical Clustering algorithm to group 

similar instances in the same clusters. Furthermore, we design multiple validating patterns that use some structural information 

to validate obtained mappings and eliminate wrong ones. Experiments on instance matching track from Ontology Alignment 

Evaluation Initiative (OAEI) show that our approach gets prominent results compared to several participating systems in 

OAEI’2019, OAEI’2020 and OAEI’2021. 
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1. Introduction  

The ultimate goal of the semantic web is to transform 

the web of documents into a web of linked data that 

behaves much like a global searchable database. The 

web of data is constituted of machine-readable data [5] 

belonging to different datasets from different sources, 

interlinked with each other within the Linked Open Data 

(LOD) project. These datasets are structured and 

published as Resource Description Framework (RDF) 

triples. The links between them may represent different 

types of relationships. One particular type of link, 

known as owl: Same as1 link, interconnects equivalent 

instances that refer to the same real-world object, and 

allows navigating the web of data (by humans and/or by 

machines) just like a global database, enabling efficient 

knowledge discovery and data integration. 

As more and more datasets are added to the LOD 

cloud2 (1301 datasets in May 2021, while there were 

only 12 at the beginning of the project in 2007), it is 

important to identify owl: same as links between the 

new datasets and the already existing ones to ensure 

their appropriate integration in the LOD cloud. To 

construct such links and answer the needs of LOD  

                                                           
1http://www.w3.org/TR/2004/REC-owl-semantics-

20040210/#owl_sameAs/ 
 

2http://lod-cloud.net 

 
paradigm, instance matching, also mentioned as record 

linkage [21], entity linkage [16], data linkage [29], 

entity resolution [8, 4], object co-reference resolution 

[17], reference reconciliation [33], duplicate detection 

[10] and object identification (in the context of 

databases) [27], is of crucial importance. This 

requirement becomes apparent in a multitude of 

domains ranging from science (marine research, 

biology, astronomy, pharmacology, etc.,) to semantic 

publishing and cultural domains. 

Instance matching [12, 20, 35] is the process of 

linking instances that refer to the same real-world 

object. It matches different descriptions of the same 

instance from various datasets. For example, Figure 1. 

Presents two different descriptions of the same person. 

The aim of instance matching process is to detect that 

they refer to the same real world object (the Argentinian 

footballer, Messi) and to link them by owl: same as link. 

Several tools using various approaches for instance 

matching exist in the literature. Among others, we 

mention: Virtual Document Lexical Similarity (VLDS) 

[2], Via Multiple Indexes (VMI) [20], ObjectCoref [17], 

Logical and a Numerical Method for Data 

Reconciliation (LN2R) [33], etc. For more details about 
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instance matching approaches, readers can refer to [13, 

26, 32, 34]. Classical approaches for instance matching 

depend on the quality of the property matching results. 

Property matching is the process that links semantically 

similar properties from various datasets. This process is 

not trivial in the LOD scenario, since each dataset is 

independently designed and structured in a specific 

ontology. For example, the data contained in the 

property “MariageDate” in one dataset can be contained 

in several other properties in another dataset, such as 

(dayOfMariage, monthOfMariage, yearOfMariage). 

Another example: the data contained in the property 

“Province” in a first dataset can be contained in the 

property “Description” in a second dataset. Therefore, 

both properties contain common data but none of the 

existing property matching approaches can detect this 

link. As a result, the common data will be ignored even 

if it may be worth considering for instance matching 

process.

Figure 1. An example of two instances (from different datasets) referring to the same real-world object. 

In this paper, we propose a schema-free instance 

matching approach that is independent from property 

matching results. To this end, each instance from both 

ontologies (datasets) is represented by a virtual 

document structured as a vector of simple and/or 

compound words extracted from the values of some 

specified properties of each instance. The order of these 

words is not important. Two instances from different 

ontologies can be judged as similar if their virtual 

documents (vectors) share some significant words. To 

scale out similar documents (representing similar 

instances), we employ a clustering approach based on 

Ascendant Hierarchical Clustering algorithm. 

Furthermore, we use some structural information to 

filter-out obtained results and eliminate wrong 

mappings to improve the efficiency of our approach. We 

evaluate our approach on datasets from instance 

matching track of the Ontology Alignment Evaluation 

Initiative (OAEI) benchmark. Performed 

experimentations show that our system gets highly 

competitive results compared to participating systems in 

OAEI’2019, OAEI’2020 and OAEI’2021.  

This paper is an extended version of our previous 

work in instance matching [1]. In the current version, 

we add accurate definitions of basic concepts and 

problem statement. Next, we give a brief analysis of 

recent and related works from the literature, we extract 

the main and common steps of their architectures and 

we position our contribution among these works. 

Moreover, in the earlier version, we let the Ascendant 

Hierarchical Clustering algorithm built-up the whole 

dendrogram (that depicts the hierarchical clustering of 

documents), then we cut it according to some heuristic 

rules. In fact, hierarchical clustering of documents is 

unnecessary in our application, and it can increase time 

and space complexity needlessly. To overcome this 

limit, in the current paper, we use one of the most 

popular approaches to stop clusters’ combination in the 

Hierarchical Clustering algorithm. This approach stops 

combining clusters when they reach a specified 

diameter. It reduces significantly the running time as 

well as the memory space used by our system. After 

that, we execute our system on a powerful server and we 

add time performance to the accuracy metrics presented 

in the earlier version [1]. We also compare our system 

to the OAEI’2021 participants in addition to 

OAEI’2019’s and OAEI’2020’s (previously performed 

in the earlier version). Furthermore, we add the main 

benefits and limits of using Ascendant Hierarchical 

Clustering algorithm to solve instance matching 

problem.  

Our major contributions are summarized as follows:  

 Representing each instance from both ontologies as a 

virtual document in the form of a vector of words 

from its property values. 

 Proposing a schema-free instance matching approach 

that is independent from property matching results. 

 Transforming the instance matching problem to a 

clustering issue and solving it by Ascendant 

Hierarchical Clustering algorithm.  
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 Designing multiple validating patterns that use some 

structural information to validate obtained mappings 

and eliminate wrong ones, to enhance the efficiency 

of the proposed approach. 

The remainder of this paper is structured as follows: 

section two outlines some related works existing in the 

literature. In the third section, we give some definitions 

and problem statement. Section four presents an 

overview of our proposed approach. In section five, we 

present the main experimentations conducted and their 

evaluation, essentially the results obtained by our 

system on the instance matching track from the 

benchmark OAEI and their comparison with 

participating systems in OAEI’2019, OAEI’2020 and 

OAEI’2021. Finally, section six concludes the paper 

and discusses future work. 

2. Related Work 

Several approaches for instance matching issue have 

been proposed in the literature. Most of them share the 

following steps to scale out the mappings between 

instances: 

1. Define a formal structure of instances (virtual 

documents, Rdf graphs …). 

2. Design a formal structure for the instance matching 

process. 

3. Specify one or more fields (properties) to be used in 

the matching process. 

4. Use a given threshold to scale out most similar 

instances. 

In the following, we present some of these approaches. 

Then, we position our approach against them to 

underline its main features. (We have chosen to present 

the systems that have participated in OAEI’2019, 

OAEI’2020 and OAEI’2021): 

 AML: [11, 22] is a property-dependent ontology 

matching as well as instance matching system. It is 

based on Agreement Maker Lite [7] and incorporates 

external knowledge such as biomedical ontologies 

and wordNet. It uses lexical and structural matching 

algorithms to construct four matchers: lexical 

matcher, mediating matcher, word matcher and 

parametric string matcher. AML employs its own 

logical repair algorithm to repair mappings and filter-

out inconsistent ones.  

 Lily: [15] is a large scale ontology matching as well 

as instance matching system. Its matching process 

contains three main steps: The pre-processing step 

extracts and prepares necessary information for 

subsequent steps. The similarity computing step 

computes similarities between ontology elements and 

scales-out primary mappings that will be refined in 

the last step of post-processing. To this end, Lily uses 

ontology matching debugging strategy to verify and 

improve the alignment results and ontology matching 

tuning to enhance overall performance. 

 Log Map: [18] is a logic-based ontology matching and 

instance matching system that implements the 

consistency and locality principles [19]. It supports 

user intervention during the matching process. Its 

matching process uses lexical indexation to scale-out 

primary candidate mappings. LogMap incorporates a 

logic-based module extraction to modularize input 

ontologies and reduce the problem size. Furthermore, 

it uses Horn propositional representation to encode 

the relevant modules together with a subset of the 

candidate mappings. Finally, a semantic index and a 

repair algorithm are used to detect and eliminate 

unsatisfiable mappings.  

 FTRLim: [38] is a large scale instance matching 

system based on the FTRL (Follow The Regularized 

Leader) model [24]. It generates a set of indexes for 

instances to scale out the matching candidate pairs 

and calculates the similarities between them, based on 

specified attribute(s) and relationships. After that, 

specific instance pairs are automatically selected as 

training set (using hyper-parameters from a 

configuration file) and the FTRL model is trained. 

Furthermore, previously computed similarities are 

aggregated into a similarity score with the trained 

FTRL model. Finally, aligned instances according to 

the similarity scores and specified threshold are 

selected. 

 RE-Miner: [25] is an instance matching system based 

on Referring Expressions (RE) that uses a given 

subset of class and property mappings. It starts by 

discovering REs (RE is a description that identifies an 

instance unambiguously) for all instances by 

instantiating the key of classes as well as non-key 

properties. These keys are obtained by using SAKey 

[36]. Two instances from different knowledge graphs 

are likely to be similar if they share some REs. If one 

instance from the source knowledge graph is linked to 

more than one instance from the target knowledge 

graph, a voting strategy is used to choose the most 

confident link.  

From the aforementioned, some of these approaches are 

designed for specific domains, and most of them are 

based on schema-level matching (especially, property-

level matching). However, our approach is independent 

of any application domain and it is not based on any 

schema-level matching. These characteristics have been 

adopted to make our system applicable to any domain 

and also to avoid the limitations of schema-level 

matching techniques. 
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3. Definitions and Problem Statement 

In this section, we state the problem of instance 

matching process, targeted by this paper after providing 

the main definitions and basic terminology used in the 

field: 

 Definition 1 (ontology) 

Ontology is a formal, explicit specification of a shared 

conceptualization [14, 31]. Formally, ontology is a six-

tuple O={C, P, Rc, Rp, A, I}, where: 

C: Set of concepts. 

P: Set of properties. 

Rc: Set of « is-a » relationships between concepts. 

Rp: Set of « is-a » relationships between properties. 

A: Set of Axioms. 

I: Set of instances of concepts (individuals). 

The concepts, properties and instances are called 

ontology entities. 

To integrate data from disparate ontologies, we must 

know the semantic mappings (correspondences) 

between their elements [3, 37]. This set of mappings is 

called ontology alignment. and the process that 

generates them is called ontology matching: 

 Definition 2 (Ontology matching) 

Ontology matching is the process that scales out the set 

of semantic mappings between ontology entities. 

Formally, ontology matching process is defined as a 

five-tuple {Id, Es, Et, R, N}, where: 

Id: Unique identifier for the correspondence. 

Es: Source entity. 

Et: Target entity. 

R: The relationship (matching type) between entity pairs 

(Es, Et). R can be of different types (equivalence, 

subsumption, inverse, overlapping, etc.). 

N: A numeric value from [0, 1] describing the 

confidence value. The higher the confidence value is, 

the more reliable the matching result is. 

The process of matching concepts and properties is 

called schema-level matching. and the process of 

matching instances is called instance matching: 

 Definition 3 (instance) 

An instance describes a real-world object through a set 

of (property, value) pairs. 

Formally, an instance (or even a concept) can be 

expressed by Rdf triples, called statements, in the form 

of:<subject, predicate, object>. A subject can be a URI 

or a blank node. an object can be a URI, a blank node or 

a basic value: 

 URI: Unified Resource Identifier is the unique 

identifier of an instance on the web (if two 

instances from different ontologies have the same 

URI, we claim directly that they refer to the same 

real-world object). 

 Blank node: It represents an anonymous entity. 

 Basic value: It represents a data type such as 

string, integer, literal, etc. 

 Predicate or property: it models the relationship 

between the subject and the object. When the 

object is a URI, the predicate is called object 

property. When it is a basic value, it is called data 

type property. The instances related to an instance 

by an object property are called its neighbours. 

The property may be descriptive (such as: Rdfs: 

comment) or discriminative (such as e-mail 

property). In addition to URIs, the label of an 

instance is a highly discriminative property for 

instance matching. It is the human readable name 

of an instance that helps to identify the real-world 

object it corresponds to. Name and label values 

belong to the property Rdfs: label, or to some 

other common properties like foaf: name or a 

fragment of its URI [9]. 

 Meta information: of an instance describes its 

schema information (its class and properties). 

 Formally: the triple <S, Rdf:type, C> indicates that 

the URI “S” is an instance of the class “C” (S can 

appear as a subject or as an object in another 

triple). 

 Definition 4 (instance matching) 

Instance matching aims to identify instances from 

different ontologies that refer to the same real-world 

object [35, 20, 12]. It can be seen as the process of 

building owl:sameAs links between co-referent 

instances. Formally, owl:sameAs links built by instance 

matching process are defined as a four-tuple {Id,Is, It, 

N} where: 

Id: Unique identifier for the correspondence.  

is∈Is, (source instances). 

it∈ It (target instances). 

N∈  [0, 1] is the confidence value, the higher the 

confidence value is the more similar the input instances 

are. The unique matching type in instance matching is 

the equivalence type.  

4. Instance Matching Based on Ascedant 

Hierarchical Clustering Algorithm 

In this section, we provide an overview on how our 

approach uses the clustering approach to group 

similar instances together in same clusters. We start 

by describing the Ascendant Hierarchical Clustering 

algorithm. After that, we detail the whole steps of the 

proposed approach.  

4.1. Ascending Hierarchical Clustering 

Clustering-based algorithms group similar instances 

(objects) in independent clusters (blocs). Numerous 

clustering-based algorithms exist in the literature, among 

which Ascending Hierarchical Clustering, K-means, 

DBSCAN, etc. For more clustering algorithms, the 
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 reader can refer to [28, 23]. 

Ascending Hierarchical Clustering (AHC) [6] is one 

of the oldest and most widely used clustering algorithms. 

It uses a bottom-up strategy. Firstly, each instance forms 

a singleton cluster. After that, the matrix similarity 

between all instances is computed. Next, it iteratively, 

merges the closest two clusters according to some 

similarity measure until all instances are grouped in a 

single cluster. The obtained hierarchical grouping of 

clusters is called dendrogram (see Figure 2). It can be cut 

according to some specific heuristic rules. 

Figure 2. The dendrogram representing the hierarchical grouping of 
instances. 

Figure 3. Pseudo code of the ascending hierarchical clustering 

algorithm. 

The pseudo code of the Ascending Hierarchical 

Clustering algorithm is depicted in Figure 3. 

4.2. Approach Overview 

Our approach for instance matching implemented in 

python is illustrated by Figure 4. It is composed of four 

main steps: Pre-processing, virtual document 

aggregation, ascendant hierarchical clustering and 

filtering. 

1. Pre-Processing: after loading source ontologies and 

extracting their instance data, the pre-processing step 

consists of representing each instance of both 

ontologies by a virtual document which has the form 

of a vector containing a set of simple and/or 

compound words extracted from the property values 

of each instance. In fact, we do not use all the 

information furnished by all the property values of 

instances. For instance, noisy information (such as 

random strings) is eliminated. Furthermore, the most 

discriminative properties are specified to be used in 

the construction of virtual documents, because 

discriminative properties are useful for instance 

matching process. For example, to identify real world 

objects, humans look first at their names (the labels 

of instances). In our system, we follow the same 

mechanism. To specify discriminative properties, we 

first look for the names or labels of instances. They 

may be represented via special properties such as 

Rdfs:label, foaf:name, the suffix of its URI or even, 

it may be extracted from the Description field of the 

instance. If textual fields are not specified in the 

datasets or they contain noisy information (random 

strings), we look for other types of discriminative 

properties which are very suitable for instance 

matching process, such as dates, numbers or links. 

Most discriminative properties and noisy information 

to be eliminated are specified by users in a 

configuration file. For example, basing on the 

specified discriminative properties, the instances 

depicted in Figure 1. will be represented by the 

virtual documents presented in Figure 5. 

The output of pre-processing step is the sets of virtual 

documents of each instance from both source and target 

ontologies. 

2. Virtual Documents: aggregation: to prepare input 

instances (objects) for the clustering algorithm AHC, 

all virtual documents representing all instances from 

both source and target ontologies are aggregated to a 

single dataset. 

3. Ascendant Hierarchical Clustering: this is the core 

step of our system because it gives the main part of 

the mappings between input instances. The input of 

this module is the set of virtual documents 

representing all instances from both source and target 

ontologies. Initially, there are as many clusters as the 

number of virtual documents (instances) and each 

singleton cluster is initialized by only one virtual 

document. Next, the matrix of similarity between all 

instances is computed. Herein, the jaccard similarity 

is used to measure similarity between virtual 

documents. The normal execution of the next steps of 

the Ascendant Hierarchical Clustering algorithm 

consists of repeatedly merging the two closest 

clusters in a single one (see figure 3) and the resulting 

hierarchical grouping of clusters will be given 

through the dendrogram (such as the one depicted in 

figure 2). However, in our application, there is no 

need for the hierarchical grouping of clusters. In 

addition, it can uselessly increase the runtime and 

memory space complexity. To deal with this issue, 

we use an appropriate approach to stop combining 

the clusters in the Hierarchical Clustering algorithm. 

Four popular approaches based on different criteria 

for stopping the combination of clusters in the 

Hierarchical Clustering algorithm exist in the 

literature4: 

1.  Pick several clusters upfront. 

2. Stop clusters combination when the resulting 

cluster has low cohesion. 

3. Stop clusters combination when the resulting 

cluster reaches a specified radius.  
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4. Stop clusters combination when the resulting 

cluster reaches a specified diametere. 

We chose to use the fourth approach, because it is 

the most suitable and applicable one for our 

application. 

 

Figure 4. An overview of the proposed instance matching approach. 

 

Figure 5. An example of virtual documents representing similar 

instances. 

By applying this approach, we stop combining the 

clusters when achieving a specified diameter of clusters. 

The diameter of a cluster is defined as the maximum 

distance between any pair of instances in the cluster. 

The permitted diameter of clusters is specified in the 

configuration file. By applying this approach, we can 

avoid unnecessary hierarchical groupings and thus 

significantly reduce the running time as well as the 

memory space complexity. Finally, each obtained 

cluster of instances is interpreted as a mapping between 

those instances and the set of obtained mappings will be 

filtered in the next step. 

4. Filtering: this step consists of filtering obtained 

mappings to eliminate wrong ones and improve the 

efficiency of our system. To do that, we design three 

validating patterns that use some structural 

information to filter-out obtained mappings and 

eliminate wrong ones, which enhance the efficiency 

of the proposed approach: 

a) If both instances of the same cluster are from the 

same source dataset then the resulting mapping 

will be eliminated.  

b) If both instances of the same cluster are from 

different datasets but belonging to disjoint classes 

then the resulting mapping will be eliminated.  

c) If one instance from the first dataset has more than 

one similar instance from the other dataset then 

these mappings (redundant mappings) are 

eliminated. This case can occur when source 

ontology contains redundant instances (redundant 

error in ontology evaluation).  

5.  Experimental Study 

In this section, we evaluate the efficiency of our 

approach. In the following, we describe the benchmark 

and the datasets used for the experiments, the obtained 

results as well as their comparison with state of the art 

systems: 

1. Benchmark and Data sets 

To improve the efficiency of our system and to enable 

the comparison of obtained results with those of other 

approaches, we have conducted experiments on standard 

and recent benchmarks, OAEI’2019, OAEI’2020 and 

OAEI’2021. we have used datasets from Semantic 

Publishing Instance Matching BENCHmark 

(SPIMBENCH) ontologies of the instance matching 

track: 

 OAEI is an international coordinated initiative that 

yearly organizes the evaluation of increasing number 

of ontology matching systems. Since 2004, OAEI 

aims to compare ontology matching systems on 

different datasets from different tracks. With the 

emergence of instance matching technologies, OAEI 

integrated instance matching track, since 2009. 
The goal of SPIMBENCH task from instance matching 

track is to determine when two owl instances describe 

the same creative work. The datasets are generated and 

transformed using SPIMBENCH by altering a set of 

original data through value-based, structure-based and 

semantics aware transformations. For more details 

about SPIMBENCH ontologies, the reader can refer to 

[30].  

2. Experimentations and Results 

In our experimentations, we have used jaccard similarity 

to measure similarity between instances (virtual 

documents) and Min distance to measure similarity 

between clusters (groups of instances). The clusters 

diameter is equal to 0 ( instance similarity is equal to 1). 

We have excuted our system on a 32 GigaByte (GB) 

Random Access Memory (RAM) and 2.3GigaHertZ 

(GHZ) Central Processing Unit (CPU) server. In 

addition to measuring the time performance, we have 

computed the standard evaluation measures (precision, 

recall and F-measure) against the reference alignments 

given by the campaign OAEI. These measures are 

defined by the following Equations: 
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Where, TP is the number of correct mappings. FP the 

number of wrong mappings and FN the number of 

missed mappings. 

The reference alignment given by OAEI campaign 

contains 299 correct mappings. Our system detects 300 

mappings with TP=298 (correct), FP=2 (wrong) and 

FN=1 (missed). From where: precision =0.9933, 

recall=0.9967 and F-measure=0.9949. 

By analysing wrong mappings, we found that the 

wrong aligned instances have exactly the same property 

values but they do not exist in the reference alignment 

because they are redundant instances in the target 

ontology (Abox2). And the 1 missed mapping cannot be 

detected by our system, because one of its matched 

instances was detected as similar to other instance in the 

same dataset (Abox2). This wrong mapping was filtered 

by the first filtering pattern of our system. Table 1 

compares the results obtained by our system against 

those 3  of the systems participating in OAEI’2019. A 

graphical comparison with these systems is given by 

Figure 6: 

 
Figure 6. Graphical comparison of obtained results with OAEI'2019 

participants. 

Table 1. Obtained results on spimbench ontoldgies compared with 

oaei'2019 participant. 

System Precision Recall F-measure Time performance 

Our 

system 

0,9933 0,9967 0,9949 4216 

LogMap 0,9383 0,7625 0,8413 6919 

AML 0,8349 0,8963 0,8645 6223 

Lily 0,8494 1 0,9186 2032 

FTRLIM 0,8543 1 0,9214 1474 

                                                           
3https://project-hobbit.eu/challenges/om2019/ 
4https://hobbit-project.github.io/OAEI_2020.html 
5https://hobbit-project.github.io/OAEI_2021.html 

 
Figure 7. Graphical comparison of obtained results with 

OAEI'2020 participants. 

Table 2 compares the results obtained by our system 

against those 4  of the systems participating in 

OAEI’2020. A graphical comparison with these systems 

is given by Figure 7. 

Table 2. Obtained results on spimbench ontologies compared with 
OAEI'2020 participants. 

System Precision Recall F-measure Time performance 

Our system 0,9933 0,9967 0,9949 4216 

LogMap 0,9382 0,7625 0,8413 7483 

AML 0,8348 0,8963 0,8645 6446 

Lily 0,9835 1 0,9917 2050 

FTRLIM 0,8542 1 0,9214 1525 

REMiner 1 0,9966 0,9983 7284 

Table 3 compares the results obtained by our system 

against those 5  of the systems participating in 

OAEI’2021. A graphical comparison with these systems 

is given by Figure 8. 

Table 3. Obtained results on spimbench ontologies compared with 
oaei'2021 participants. 

System Precision Recall F-measure Time performance 

Our system 0,9933 0,9967 0,9949 4216 

LogMap 0,9382 0,7625 0,8413 5699 

AML 0,8348 0,8963 0,8645 7966 

Lily 0,9835 1 0,9917 1845 

 
Figure 8. Graphical comparison of obtained results with 

OAEI'2021 participants. 

From Tables 1, 2, 3 we state that our system obtained 

very encouraging and comparable results with 

participating systems. It outperforms OAEI’2019 and 

OAEI’2021 participants in F-measure score and gives 

results very close to the best performer, RE-Miner in 

OAEI’2020. The runtime performance of our system is 

acceptable and comparable with participating systems. 
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6. Conclusions 

In this paper, we proposed a property-independent 

instance matching approach that avoids the problem of 

heterogeneity at the property level. We presented a new 

method for building virtual documents corresponding to 

instances. We also transformed the instance matching 

problem into a document similarity problem and we 

solved it by Ascendant Hierarchical Clustering 

algorithm. The main advantages of using Ascendant 

Hierarchical Clustering algorithm is that the clusters 

containing matched instances can be easily obtained 

from the model itself, automatically. In addition, the 

resulting dendrogram gives us a clear visualization 

which is practical and easy to understand. However, 

hierarchical clustering of clusters is unnecessary in our 

application, and it can increase time and space 

complexity needlessly, (we only need the first iteration 

of clustering that groups each pair of similar instances). 

To better guide the clustering process, we used a popular 

approach to stop cluster combination by achieving a 

specified cluster diameter. This approach significantly 

reduces the running time as well as the memory space 

complexity, compared with sheer ascendant hierarchical 

clustering. Furthermore, we designed multiple 

validation patterns that use some structural information 

to filter-out obtained results and eliminate wrong 

mappings. We compared our approach to state-of-the-

art systems on benchmark datasets, and we achieved 

very promising results.  

As a future work, it will be interesting to use 

contextual information, such as neighboring instances 

(i.e., instances with similar neighbors are similar). This 

will detect more correct mappings and improve the F-

Measure score. It will also be interesting to propose an 

extension for the validating patterns that may eliminate 

more false positives and enhance the quality of the 

results. 
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