
432 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

A Schema-Free Instance Matching Algorithm

Based on Virtual Document Similarity

Siham Amrouch

LIM Laboratory,

Souk Ahras University,

Algeria

sihamamrouch@yahoo.fr

Sihem Mostefai

MISC Laboratory,

Constantine University,

Algeria

sihem.mostefai@univ-constantine2.dz

Abstract: With the continuous development of semantic web, especially of the web of data, several knowledge bases expressed

by ontologies are independently created and added to the Linked Open Data (LOD) cloud, on a daily basis. A major challenge

for the LOD paradigm is to discover resources that refer to the same real-world object, in order to interlink web resources and

hold large scale data integration and sharing. In this context, instance matching is a promising solution. It aims to link co-

referent instances belonging to heterogeneous knowledge bases with owl: same as links. Several state-of-the-art existing

approaches addressing this issue are based on the prior schema-level matching's, which does not avoid the limitation of

heterogeneity at the property-level. In this paper, we propose a schema-free, scalable and efficient instance matching approach

that is independent from matching results at the schema-level. We transform the instance matching problem to a document

similarity problem and we solve it by a Clustering technique that uses an Ascendant Hierarchical Clustering algorithm to group

similar instances in the same clusters. Furthermore, we design multiple validating patterns that use some structural information

to validate obtained mappings and eliminate wrong ones. Experiments on instance matching track from Ontology Alignment

Evaluation Initiative (OAEI) show that our approach gets prominent results compared to several participating systems in

OAEI’2019, OAEI’2020 and OAEI’2021.

Keywords: Ontology, LOD, instance matching, ascendant hierarchical clustering, OAEI.

Received April 9, 2022; accepted April 28, 2022

https://doi.org/10.34028/iajit/19/3A/3

1. Introduction

The ultimate goal of the semantic web is to transform

the web of documents into a web of linked data that

behaves much like a global searchable database. The

web of data is constituted of machine-readable data [5]

belonging to different datasets from different sources,

interlinked with each other within the Linked Open Data

(LOD) project. These datasets are structured and

published as Resource Description Framework (RDF)

triples. The links between them may represent different

types of relationships. One particular type of link,

known as owl: Same as1 link, interconnects equivalent

instances that refer to the same real-world object, and

allows navigating the web of data (by humans and/or by

machines) just like a global database, enabling efficient

knowledge discovery and data integration.

As more and more datasets are added to the LOD

cloud2 (1301 datasets in May 2021, while there were

only 12 at the beginning of the project in 2007), it is

important to identify owl: same as links between the

new datasets and the already existing ones to ensure

their appropriate integration in the LOD cloud. To

construct such links and answer the needs of LOD

1http://www.w3.org/TR/2004/REC-owl-semantics-

20040210/#owl_sameAs/

2http://lod-cloud.net

paradigm, instance matching, also mentioned as record

linkage [21], entity linkage [16], data linkage [29],

entity resolution [8, 4], object co-reference resolution

[17], reference reconciliation [33], duplicate detection

[10] and object identification (in the context of

databases) [27], is of crucial importance. This

requirement becomes apparent in a multitude of

domains ranging from science (marine research,

biology, astronomy, pharmacology, etc.,) to semantic

publishing and cultural domains.

Instance matching [12, 20, 35] is the process of

linking instances that refer to the same real-world

object. It matches different descriptions of the same

instance from various datasets. For example, Figure 1.

Presents two different descriptions of the same person.

The aim of instance matching process is to detect that

they refer to the same real world object (the Argentinian

footballer, Messi) and to link them by owl: same as link.

Several tools using various approaches for instance

matching exist in the literature. Among others, we

mention: Virtual Document Lexical Similarity (VLDS)

[2], Via Multiple Indexes (VMI) [20], ObjectCoref [17],

Logical and a Numerical Method for Data

Reconciliation (LN2R) [33], etc. For more details about

https://doi.org/10.34028/iajit/19/3A/3
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/#owl_sameAs/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/#owl_sameAs/
http://lod-cloud.net/

A Schema-Free Instance Matching Algorithm Based on Virtual Document Similarity 433

instance matching approaches, readers can refer to [13,

26, 32, 34]. Classical approaches for instance matching

depend on the quality of the property matching results.

Property matching is the process that links semantically

similar properties from various datasets. This process is

not trivial in the LOD scenario, since each dataset is

independently designed and structured in a specific

ontology. For example, the data contained in the

property “MariageDate” in one dataset can be contained

in several other properties in another dataset, such as

(dayOfMariage, monthOfMariage, yearOfMariage).

Another example: the data contained in the property

“Province” in a first dataset can be contained in the

property “Description” in a second dataset. Therefore,

both properties contain common data but none of the

existing property matching approaches can detect this

link. As a result, the common data will be ignored even

if it may be worth considering for instance matching

process.

Figure 1. An example of two instances (from different datasets) referring to the same real-world object.

In this paper, we propose a schema-free instance

matching approach that is independent from property

matching results. To this end, each instance from both

ontologies (datasets) is represented by a virtual

document structured as a vector of simple and/or

compound words extracted from the values of some

specified properties of each instance. The order of these

words is not important. Two instances from different

ontologies can be judged as similar if their virtual

documents (vectors) share some significant words. To

scale out similar documents (representing similar

instances), we employ a clustering approach based on

Ascendant Hierarchical Clustering algorithm.

Furthermore, we use some structural information to

filter-out obtained results and eliminate wrong

mappings to improve the efficiency of our approach. We

evaluate our approach on datasets from instance

matching track of the Ontology Alignment Evaluation

Initiative (OAEI) benchmark. Performed

experimentations show that our system gets highly

competitive results compared to participating systems in

OAEI’2019, OAEI’2020 and OAEI’2021.

This paper is an extended version of our previous

work in instance matching [1]. In the current version,

we add accurate definitions of basic concepts and

problem statement. Next, we give a brief analysis of

recent and related works from the literature, we extract

the main and common steps of their architectures and

we position our contribution among these works.

Moreover, in the earlier version, we let the Ascendant

Hierarchical Clustering algorithm built-up the whole

dendrogram (that depicts the hierarchical clustering of

documents), then we cut it according to some heuristic

rules. In fact, hierarchical clustering of documents is

unnecessary in our application, and it can increase time

and space complexity needlessly. To overcome this

limit, in the current paper, we use one of the most

popular approaches to stop clusters’ combination in the

Hierarchical Clustering algorithm. This approach stops

combining clusters when they reach a specified

diameter. It reduces significantly the running time as

well as the memory space used by our system. After

that, we execute our system on a powerful server and we

add time performance to the accuracy metrics presented

in the earlier version [1]. We also compare our system

to the OAEI’2021 participants in addition to

OAEI’2019’s and OAEI’2020’s (previously performed

in the earlier version). Furthermore, we add the main

benefits and limits of using Ascendant Hierarchical

Clustering algorithm to solve instance matching

problem.

Our major contributions are summarized as follows:

 Representing each instance from both ontologies as a

virtual document in the form of a vector of words

from its property values.

 Proposing a schema-free instance matching approach

that is independent from property matching results.

 Transforming the instance matching problem to a

clustering issue and solving it by Ascendant

Hierarchical Clustering algorithm.

Owl :sameAs
ns :person2

Argentinian

messi.com

footBaller

Lionel Messi

24-06-1987 72k

g

1.69m 10

link

nationality Number

rdf :type

foaf :name

Weight BirthDate

Height

Argentina

Lionel Messi

24-06-1987 72kg

1.69m 10

hasWebOfficial

hasTeam
hasNumber

rdf :type

rdf :label

hasWeight
hasBirthDate

hasHeight

player

 messi.com

ns :person1

434 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

 Designing multiple validating patterns that use some

structural information to validate obtained mappings

and eliminate wrong ones, to enhance the efficiency

of the proposed approach.

The remainder of this paper is structured as follows:

section two outlines some related works existing in the

literature. In the third section, we give some definitions

and problem statement. Section four presents an

overview of our proposed approach. In section five, we

present the main experimentations conducted and their

evaluation, essentially the results obtained by our

system on the instance matching track from the

benchmark OAEI and their comparison with

participating systems in OAEI’2019, OAEI’2020 and

OAEI’2021. Finally, section six concludes the paper

and discusses future work.

2. Related Work

Several approaches for instance matching issue have

been proposed in the literature. Most of them share the

following steps to scale out the mappings between

instances:

1. Define a formal structure of instances (virtual

documents, Rdf graphs …).

2. Design a formal structure for the instance matching

process.

3. Specify one or more fields (properties) to be used in

the matching process.

4. Use a given threshold to scale out most similar

instances.

In the following, we present some of these approaches.

Then, we position our approach against them to

underline its main features. (We have chosen to present

the systems that have participated in OAEI’2019,

OAEI’2020 and OAEI’2021):

 AML: [11, 22] is a property-dependent ontology

matching as well as instance matching system. It is

based on Agreement Maker Lite [7] and incorporates

external knowledge such as biomedical ontologies

and wordNet. It uses lexical and structural matching

algorithms to construct four matchers: lexical

matcher, mediating matcher, word matcher and

parametric string matcher. AML employs its own

logical repair algorithm to repair mappings and filter-

out inconsistent ones.

 Lily: [15] is a large scale ontology matching as well

as instance matching system. Its matching process

contains three main steps: The pre-processing step

extracts and prepares necessary information for

subsequent steps. The similarity computing step

computes similarities between ontology elements and

scales-out primary mappings that will be refined in

the last step of post-processing. To this end, Lily uses

ontology matching debugging strategy to verify and

improve the alignment results and ontology matching

tuning to enhance overall performance.

 Log Map: [18] is a logic-based ontology matching and

instance matching system that implements the

consistency and locality principles [19]. It supports

user intervention during the matching process. Its

matching process uses lexical indexation to scale-out

primary candidate mappings. LogMap incorporates a

logic-based module extraction to modularize input

ontologies and reduce the problem size. Furthermore,

it uses Horn propositional representation to encode

the relevant modules together with a subset of the

candidate mappings. Finally, a semantic index and a

repair algorithm are used to detect and eliminate

unsatisfiable mappings.

 FTRLim: [38] is a large scale instance matching

system based on the FTRL (Follow The Regularized

Leader) model [24]. It generates a set of indexes for

instances to scale out the matching candidate pairs

and calculates the similarities between them, based on

specified attribute(s) and relationships. After that,

specific instance pairs are automatically selected as

training set (using hyper-parameters from a

configuration file) and the FTRL model is trained.

Furthermore, previously computed similarities are

aggregated into a similarity score with the trained

FTRL model. Finally, aligned instances according to

the similarity scores and specified threshold are

selected.

 RE-Miner: [25] is an instance matching system based

on Referring Expressions (RE) that uses a given

subset of class and property mappings. It starts by

discovering REs (RE is a description that identifies an

instance unambiguously) for all instances by

instantiating the key of classes as well as non-key

properties. These keys are obtained by using SAKey

[36]. Two instances from different knowledge graphs

are likely to be similar if they share some REs. If one

instance from the source knowledge graph is linked to

more than one instance from the target knowledge

graph, a voting strategy is used to choose the most

confident link.

From the aforementioned, some of these approaches are

designed for specific domains, and most of them are

based on schema-level matching (especially, property-

level matching). However, our approach is independent

of any application domain and it is not based on any

schema-level matching. These characteristics have been

adopted to make our system applicable to any domain

and also to avoid the limitations of schema-level

matching techniques.

A Schema-Free Instance Matching Algorithm Based on Virtual Document Similarity 435

3. Definitions and Problem Statement

In this section, we state the problem of instance

matching process, targeted by this paper after providing

the main definitions and basic terminology used in the

field:

 Definition 1 (ontology)

Ontology is a formal, explicit specification of a shared

conceptualization [14, 31]. Formally, ontology is a six-

tuple O={C, P, Rc, Rp, A, I}, where:

C: Set of concepts.

P: Set of properties.

Rc: Set of « is-a » relationships between concepts.

Rp: Set of « is-a » relationships between properties.

A: Set of Axioms.

I: Set of instances of concepts (individuals).

The concepts, properties and instances are called

ontology entities.

To integrate data from disparate ontologies, we must

know the semantic mappings (correspondences)

between their elements [3, 37]. This set of mappings is

called ontology alignment. and the process that

generates them is called ontology matching:

 Definition 2 (Ontology matching)

Ontology matching is the process that scales out the set

of semantic mappings between ontology entities.

Formally, ontology matching process is defined as a

five-tuple {Id, Es, Et, R, N}, where:

Id: Unique identifier for the correspondence.

Es: Source entity.

Et: Target entity.

R: The relationship (matching type) between entity pairs

(Es, Et). R can be of different types (equivalence,

subsumption, inverse, overlapping, etc.).

N: A numeric value from [0, 1] describing the

confidence value. The higher the confidence value is,

the more reliable the matching result is.

The process of matching concepts and properties is

called schema-level matching. and the process of

matching instances is called instance matching:

 Definition 3 (instance)

An instance describes a real-world object through a set

of (property, value) pairs.

Formally, an instance (or even a concept) can be

expressed by Rdf triples, called statements, in the form

of:<subject, predicate, object>. A subject can be a URI

or a blank node. an object can be a URI, a blank node or

a basic value:

 URI: Unified Resource Identifier is the unique

identifier of an instance on the web (if two

instances from different ontologies have the same

URI, we claim directly that they refer to the same

real-world object).

 Blank node: It represents an anonymous entity.

 Basic value: It represents a data type such as

string, integer, literal, etc.

 Predicate or property: it models the relationship

between the subject and the object. When the

object is a URI, the predicate is called object

property. When it is a basic value, it is called data

type property. The instances related to an instance

by an object property are called its neighbours.

The property may be descriptive (such as: Rdfs:

comment) or discriminative (such as e-mail

property). In addition to URIs, the label of an

instance is a highly discriminative property for

instance matching. It is the human readable name

of an instance that helps to identify the real-world

object it corresponds to. Name and label values

belong to the property Rdfs: label, or to some

other common properties like foaf: name or a

fragment of its URI [9].

 Meta information: of an instance describes its

schema information (its class and properties).

 Formally: the triple <S, Rdf:type, C> indicates that

the URI “S” is an instance of the class “C” (S can

appear as a subject or as an object in another

triple).

 Definition 4 (instance matching)

Instance matching aims to identify instances from

different ontologies that refer to the same real-world

object [35, 20, 12]. It can be seen as the process of

building owl:sameAs links between co-referent

instances. Formally, owl:sameAs links built by instance

matching process are defined as a four-tuple {Id,Is, It,

N} where:

Id: Unique identifier for the correspondence.

is∈Is, (source instances).

it∈ It (target instances).

N∈ [0, 1] is the confidence value, the higher the

confidence value is the more similar the input instances

are. The unique matching type in instance matching is

the equivalence type.

4. Instance Matching Based on Ascedant

Hierarchical Clustering Algorithm

In this section, we provide an overview on how our

approach uses the clustering approach to group

similar instances together in same clusters. We start

by describing the Ascendant Hierarchical Clustering

algorithm. After that, we detail the whole steps of the

proposed approach.

4.1. Ascending Hierarchical Clustering

Clustering-based algorithms group similar instances

(objects) in independent clusters (blocs). Numerous

clustering-based algorithms exist in the literature, among

which Ascending Hierarchical Clustering, K-means,

DBSCAN, etc. For more clustering algorithms, the

436 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

 reader can refer to [28, 23].

Ascending Hierarchical Clustering (AHC) [6] is one

of the oldest and most widely used clustering algorithms.

It uses a bottom-up strategy. Firstly, each instance forms

a singleton cluster. After that, the matrix similarity

between all instances is computed. Next, it iteratively,

merges the closest two clusters according to some

similarity measure until all instances are grouped in a

single cluster. The obtained hierarchical grouping of

clusters is called dendrogram (see Figure 2). It can be cut

according to some specific heuristic rules.

Figure 2. The dendrogram representing the hierarchical grouping of
instances.

Figure 3. Pseudo code of the ascending hierarchical clustering

algorithm.

The pseudo code of the Ascending Hierarchical

Clustering algorithm is depicted in Figure 3.

4.2. Approach Overview

Our approach for instance matching implemented in

python is illustrated by Figure 4. It is composed of four

main steps: Pre-processing, virtual document

aggregation, ascendant hierarchical clustering and

filtering.

1. Pre-Processing: after loading source ontologies and

extracting their instance data, the pre-processing step

consists of representing each instance of both

ontologies by a virtual document which has the form

of a vector containing a set of simple and/or

compound words extracted from the property values

of each instance. In fact, we do not use all the

information furnished by all the property values of

instances. For instance, noisy information (such as

random strings) is eliminated. Furthermore, the most

discriminative properties are specified to be used in

the construction of virtual documents, because

discriminative properties are useful for instance

matching process. For example, to identify real world

objects, humans look first at their names (the labels

of instances). In our system, we follow the same

mechanism. To specify discriminative properties, we

first look for the names or labels of instances. They

may be represented via special properties such as

Rdfs:label, foaf:name, the suffix of its URI or even,

it may be extracted from the Description field of the

instance. If textual fields are not specified in the

datasets or they contain noisy information (random

strings), we look for other types of discriminative

properties which are very suitable for instance

matching process, such as dates, numbers or links.

Most discriminative properties and noisy information

to be eliminated are specified by users in a

configuration file. For example, basing on the

specified discriminative properties, the instances

depicted in Figure 1. will be represented by the

virtual documents presented in Figure 5.

The output of pre-processing step is the sets of virtual

documents of each instance from both source and target

ontologies.

2. Virtual Documents: aggregation: to prepare input

instances (objects) for the clustering algorithm AHC,

all virtual documents representing all instances from

both source and target ontologies are aggregated to a

single dataset.

3. Ascendant Hierarchical Clustering: this is the core

step of our system because it gives the main part of

the mappings between input instances. The input of

this module is the set of virtual documents

representing all instances from both source and target

ontologies. Initially, there are as many clusters as the

number of virtual documents (instances) and each

singleton cluster is initialized by only one virtual

document. Next, the matrix of similarity between all

instances is computed. Herein, the jaccard similarity

is used to measure similarity between virtual

documents. The normal execution of the next steps of

the Ascendant Hierarchical Clustering algorithm

consists of repeatedly merging the two closest

clusters in a single one (see figure 3) and the resulting

hierarchical grouping of clusters will be given

through the dendrogram (such as the one depicted in

figure 2). However, in our application, there is no

need for the hierarchical grouping of clusters. In

addition, it can uselessly increase the runtime and

memory space complexity. To deal with this issue,

we use an appropriate approach to stop combining

the clusters in the Hierarchical Clustering algorithm.

Four popular approaches based on different criteria

for stopping the combination of clusters in the

Hierarchical Clustering algorithm exist in the

literature4:

1. Pick several clusters upfront.

2. Stop clusters combination when the resulting

cluster has low cohesion.

3. Stop clusters combination when the resulting

cluster reaches a specified radius.

A Schema-Free Instance Matching Algorithm Based on Virtual Document Similarity 437

4. Stop clusters combination when the resulting

cluster reaches a specified diametere.

We chose to use the fourth approach, because it is

the most suitable and applicable one for our

application.

Figure 4. An overview of the proposed instance matching approach.

Figure 5. An example of virtual documents representing similar

instances.

By applying this approach, we stop combining the

clusters when achieving a specified diameter of clusters.

The diameter of a cluster is defined as the maximum

distance between any pair of instances in the cluster.

The permitted diameter of clusters is specified in the

configuration file. By applying this approach, we can

avoid unnecessary hierarchical groupings and thus

significantly reduce the running time as well as the

memory space complexity. Finally, each obtained

cluster of instances is interpreted as a mapping between

those instances and the set of obtained mappings will be

filtered in the next step.

4. Filtering: this step consists of filtering obtained

mappings to eliminate wrong ones and improve the

efficiency of our system. To do that, we design three

validating patterns that use some structural

information to filter-out obtained mappings and

eliminate wrong ones, which enhance the efficiency

of the proposed approach:

a) If both instances of the same cluster are from the

same source dataset then the resulting mapping

will be eliminated.

b) If both instances of the same cluster are from

different datasets but belonging to disjoint classes

then the resulting mapping will be eliminated.

c) If one instance from the first dataset has more than

one similar instance from the other dataset then

these mappings (redundant mappings) are

eliminated. This case can occur when source

ontology contains redundant instances (redundant

error in ontology evaluation).

5. Experimental Study

In this section, we evaluate the efficiency of our

approach. In the following, we describe the benchmark

and the datasets used for the experiments, the obtained

results as well as their comparison with state of the art

systems:

1. Benchmark and Data sets

To improve the efficiency of our system and to enable

the comparison of obtained results with those of other

approaches, we have conducted experiments on standard

and recent benchmarks, OAEI’2019, OAEI’2020 and

OAEI’2021. we have used datasets from Semantic

Publishing Instance Matching BENCHmark

(SPIMBENCH) ontologies of the instance matching

track:

 OAEI is an international coordinated initiative that

yearly organizes the evaluation of increasing number

of ontology matching systems. Since 2004, OAEI

aims to compare ontology matching systems on

different datasets from different tracks. With the

emergence of instance matching technologies, OAEI

integrated instance matching track, since 2009.
The goal of SPIMBENCH task from instance matching

track is to determine when two owl instances describe

the same creative work. The datasets are generated and

transformed using SPIMBENCH by altering a set of

original data through value-based, structure-based and

semantics aware transformations. For more details

about SPIMBENCH ontologies, the reader can refer to

[30].

2. Experimentations and Results

In our experimentations, we have used jaccard similarity

to measure similarity between instances (virtual

documents) and Min distance to measure similarity

between clusters (groups of instances). The clusters

diameter is equal to 0 (instance similarity is equal to 1).

We have excuted our system on a 32 GigaByte (GB)

Random Access Memory (RAM) and 2.3GigaHertZ

(GHZ) Central Processing Unit (CPU) server. In

addition to measuring the time performance, we have

computed the standard evaluation measures (precision,

recall and F-measure) against the reference alignments

given by the campaign OAEI. These measures are

defined by the following Equations:

Dataset 1

Dataset 2

Pre-

processing

Virtual

document

Aggregation

nts

aggregation

filtering

Ascendant

Hierarchical

Clustering

Target virtual

documents

Source virtual

documents

Dataset 1

Dataset 2
Configuration

file

438 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

FPTP

TP
precision

FNTP

TP
recall

recallprecision

recallprecision
measureF

2

Where, TP is the number of correct mappings. FP the

number of wrong mappings and FN the number of

missed mappings.

The reference alignment given by OAEI campaign

contains 299 correct mappings. Our system detects 300

mappings with TP=298 (correct), FP=2 (wrong) and

FN=1 (missed). From where: precision =0.9933,

recall=0.9967 and F-measure=0.9949.

By analysing wrong mappings, we found that the

wrong aligned instances have exactly the same property

values but they do not exist in the reference alignment

because they are redundant instances in the target

ontology (Abox2). And the 1 missed mapping cannot be

detected by our system, because one of its matched

instances was detected as similar to other instance in the

same dataset (Abox2). This wrong mapping was filtered

by the first filtering pattern of our system. Table 1

compares the results obtained by our system against

those 3 of the systems participating in OAEI’2019. A

graphical comparison with these systems is given by

Figure 6:

Figure 6. Graphical comparison of obtained results with OAEI'2019

participants.

Table 1. Obtained results on spimbench ontoldgies compared with

oaei'2019 participant.

System Precision Recall F-measure Time performance

Our

system

0,9933 0,9967 0,9949 4216

LogMap 0,9383 0,7625 0,8413 6919

AML 0,8349 0,8963 0,8645 6223

Lily 0,8494 1 0,9186 2032

FTRLIM 0,8543 1 0,9214 1474

3https://project-hobbit.eu/challenges/om2019/
4https://hobbit-project.github.io/OAEI_2020.html
5https://hobbit-project.github.io/OAEI_2021.html

Figure 7. Graphical comparison of obtained results with

OAEI'2020 participants.

Table 2 compares the results obtained by our system

against those 4 of the systems participating in

OAEI’2020. A graphical comparison with these systems

is given by Figure 7.

Table 2. Obtained results on spimbench ontologies compared with
OAEI'2020 participants.

System Precision Recall F-measure Time performance

Our system 0,9933 0,9967 0,9949 4216

LogMap 0,9382 0,7625 0,8413 7483

AML 0,8348 0,8963 0,8645 6446

Lily 0,9835 1 0,9917 2050

FTRLIM 0,8542 1 0,9214 1525

REMiner 1 0,9966 0,9983 7284

Table 3 compares the results obtained by our system

against those 5 of the systems participating in

OAEI’2021. A graphical comparison with these systems

is given by Figure 8.

Table 3. Obtained results on spimbench ontologies compared with
oaei'2021 participants.

System Precision Recall F-measure Time performance

Our system 0,9933 0,9967 0,9949 4216

LogMap 0,9382 0,7625 0,8413 5699

AML 0,8348 0,8963 0,8645 7966

Lily 0,9835 1 0,9917 1845

Figure 8. Graphical comparison of obtained results with

OAEI'2021 participants.

From Tables 1, 2, 3 we state that our system obtained

very encouraging and comparable results with

participating systems. It outperforms OAEI’2019 and

OAEI’2021 participants in F-measure score and gives

results very close to the best performer, RE-Miner in

OAEI’2020. The runtime performance of our system is

acceptable and comparable with participating systems.

0

0.5

1

1.5

Precision

Recall

F-measure

0

0.5

1

1.5

Precision

Recall

F-measure

0

0.5

1

1.5

Precision

Recall

F-measure

(2)

(3)

(1)

https://project-hobbit.eu/challenges/om2019/
https://hobbit-project.github.io/OAEI_2020.html
https://hobbit-project.github.io/OAEI_2021.html

A Schema-Free Instance Matching Algorithm Based on Virtual Document Similarity 439

6. Conclusions

In this paper, we proposed a property-independent

instance matching approach that avoids the problem of

heterogeneity at the property level. We presented a new

method for building virtual documents corresponding to

instances. We also transformed the instance matching

problem into a document similarity problem and we

solved it by Ascendant Hierarchical Clustering

algorithm. The main advantages of using Ascendant

Hierarchical Clustering algorithm is that the clusters

containing matched instances can be easily obtained

from the model itself, automatically. In addition, the

resulting dendrogram gives us a clear visualization

which is practical and easy to understand. However,

hierarchical clustering of clusters is unnecessary in our

application, and it can increase time and space

complexity needlessly, (we only need the first iteration

of clustering that groups each pair of similar instances).

To better guide the clustering process, we used a popular

approach to stop cluster combination by achieving a

specified cluster diameter. This approach significantly

reduces the running time as well as the memory space

complexity, compared with sheer ascendant hierarchical

clustering. Furthermore, we designed multiple

validation patterns that use some structural information

to filter-out obtained results and eliminate wrong

mappings. We compared our approach to state-of-the-

art systems on benchmark datasets, and we achieved

very promising results.

As a future work, it will be interesting to use

contextual information, such as neighboring instances

(i.e., instances with similar neighbors are similar). This

will detect more correct mappings and improve the F-

Measure score. It will also be interesting to propose an

extension for the validating patterns that may eliminate

more false positives and enhance the quality of the

results.

References

[1] Amrouch S. and Mostefai S.,“Ascendant

Hierarchical Clustering for Instance Matching,” in

proceeding of the 22nd International Arab

Conference on Information Technology, Oman,

pp. 1-6, 2021.

[2] Assi A., Mcheick H., Karawash A., and Dhifli W.,

“Context-aware Instance Matching Through

Graph Embedding in Lexical Semantic Space,”

Knowledge-Based Systems, vol. 186, p. 422-433,

2019.

[3] Berners-Lee T., Hendler J. and Lassila O.,“The

Semantic Web,” Scientific American, vol. 284, no.

5, pp. 34-43, 2001.

[4] Bhattacharya I. and Getoor L., Mining Graph

Data, Wiley and Sons, 2006.

[5] Bizer C., Heath T., and Berners-Lee T., “Linked

Data-The Story So Far,” Semantic Web and

Information Systems, vol. 5, no. 3, pp. 1-22, 2009.

[6] Bruynooghe M., Large Data Set Clustering

Methods Using the Concept of Space Contraction,

Physika Verlag, 1978.

[7] Cruz I., Antonelli F., and Stroe, C.,

“AgreementMaker: Efficient Matching for Large

Real-World Schemas and Ontologies,” Journal of

VLDB, vol. 2, no. 2, pp. 1586-1589, 2009.

[8] Efthymiou V., Papadakis G., Stefanidis K., and

Christophides V., “Minoaner: Schema-Agnostic,

Non-Iterative, Massively Parallel Resolution of

Web Entities,” in Proceeding of the 22nd

International Conference on Extending Database

Technology, lisbon, pp. 373-384, 2019.

[9] Ell B., Vrandecic D., and Simperl E., “Labels in

the Web of Data,” in Proceeding of the 10th

International Semantic Web Conference , Bonn,

pp. 162-176, 2011.

[10] Elmagarmid A., Ipeirotis P., and Verykios V.,

“Duplicate Record Detection: A Survey,” IEEE

Transactions on Knowledge and Data

Engineering, vol. 19, no. 1, pp. 1-16, 2007.

[11] Faria D., Pesquita C., Santos E., Palmonari M.,

Cruz I., and Couto F., “The

AgreementMakerLight Ontology Matching

System”, in Proceeding of the On the Move to

Meaningful Internet System, pp. 527-541, 2013.

[12] Ferrara A., Nikolo A., Noessner J., and Scharffe

F., “Evaluation of Instance Matching Tools: The

Experience of Oaei,” Journal of Web Semantics,

vol. 21, pp. 49-60, 2013.

[13] Ferrara A., Nikolov A., and Scharffe F.,“Data

Linking for the Semantic Web,” International

journal on Semantic Web and Information

systems, vol. 7, no. 3, pp. 46-76, 2011.

[14] Gruber T., “A Translation Approach to Portable

Ontology Specifications,” Knowledge Acquisition,

vol. 5, no. 2, pp. 199-220, 1993.

[15] Hu Y., Bai S., Zou S., and Wang P., “Lily Results

for OAEI 2020,” in Proceeding of the 15th

International Semantic Web Conference, Athens,

pp. 194-200, 2020.

[16] Hu W . and Jia C., “Bootstrapping Approach to

Entity Linkage on the Semantic Web,” Journal of

Web Semantics, vol. 34, pp. 1-12, 2015.

[17] Hu W., Chen J., and Qu Y., “Self-Training

Approach for Resolving Object Coreference on

The Semantic Web,” in Proceeding of the 20th

International Conference on World Wide Web,

Hyderabad, pp. 87-96, 2011.

[18] Jimenez-Ruiz E., “LogMap Family Participation

in the OAEI 2020,” in Proceeding of the 15th

International Semantic Web Conference,

Workshop on Ontology Matching, Athens, pp.

201-203, 2020.

[19] Jimenez-Ruiz E., Grau B., Horrocks I., and

Berlanga R., “Logic-based Assessment of the

Compatibility of UMLS Ontology Sources,”

https://scholar.google.com/citations?view_op=view_citation&hl=fr&user=2vVQndEAAAAJ&citation_for_view=2vVQndEAAAAJ:zYLM7Y9cAGgC
https://scholar.google.com/citations?view_op=view_citation&hl=fr&user=2vVQndEAAAAJ&citation_for_view=2vVQndEAAAAJ:zYLM7Y9cAGgC
https://www.sciencedirect.com/science/article/abs/pii/S0950705119303739#!
https://www.sciencedirect.com/science/article/abs/pii/S0950705119303739#!
https://www.sciencedirect.com/science/article/abs/pii/S0950705119303739#!
https://link.springer.com/chapter/10.1007/978-3-642-41030-7_38#auth-Catia-Pesquita
https://link.springer.com/chapter/10.1007/978-3-642-41030-7_38#auth-Emanuel-Santos
https://link.springer.com/chapter/10.1007/978-3-642-41030-7_38#auth-Matteo-Palmonari
https://link.springer.com/chapter/10.1007/978-3-642-41030-7_38#auth-Isabel_F_-Cruz
https://link.springer.com/chapter/10.1007/978-3-642-41030-7_38#auth-Francisco_M_-Couto
https://www.sciencedirect.com/science/article/abs/pii/S1570826813000206#!
https://www.sciencedirect.com/science/article/abs/pii/S1570826813000206#!
https://www.sciencedirect.com/science/article/abs/pii/S1570826813000206#!
https://www.semanticscholar.org/author/Shaochen-Bai/2047497158
https://www.semanticscholar.org/author/Shaochen-Bai/2047497158
https://www.semanticscholar.org/author/Shiyi-Zou/2047425373
https://www.semanticscholar.org/author/Peng-Wang/2155304230
https://jbiomedsem.biomedcentral.com/articles/10.1186/2041-1480-2-S1-S2#auth-Bernardo_Cuenca-Grau
https://jbiomedsem.biomedcentral.com/articles/10.1186/2041-1480-2-S1-S2#auth-Ian-Horrocks
https://jbiomedsem.biomedcentral.com/articles/10.1186/2041-1480-2-S1-S2#auth-Rafael-Berlanga

440 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

Journal of Biomedical Semantics, vol. 2, no. 1, pp.

1-16, 2011.

[20] Li J., Wang z., Zhang x., and Tang j., “Large Scale

Instance Matching Via Multiple Indexes and

Candidate Selection,” Knowledge-Based Systems,

vol. 50, pp. 112-120, 2013.

[21] Li C., Jin L., and Mehrotra S., “Supporting

Efficient Record Linkage For Large Data Sets

Using Mapping Techniques,” World Wide Web,

vol. 9, no. 4, pp. 557-584, 2006.

[22] Lima B., Faria D., Couto F., Cruz I., and Pesquita

C., “Results for OAEI 2020 AML and AMLC,” in

Procceding of the 15th International Semantic Web

Conference, Athens, pp. 154-160, 2020.

[23] Madhulatha T., “An Overview on Clustering

Methods, IOSR,” Journal of Engineering, vol. 2,

no. 4, pp. 719-725, 2012.

[24] McMahan H., Holt G., Sculley D., Young M.,

Ebner D., Grady J., Nie L., Phillips T., Davydov

E., Golovin D., Chikkerur S., Liu D., Wattenberg

M., Hrafnkelsson A., Boulos T., and Kubica J.,

“Ad Click Prediction: A View From the

Trenches,” in Proceeding of the 19th International

Conference on Knowledge Discovery and Data

Mining, Chicago, pp. 1222-1230, 2013.

[25] Nassiri A., Pernelle N., Saïs F., and Quercini G.,

“RE-miner for Data Linking Results For OAEI

2020,” in Proceeding of the 15th International

Semantic Web Conference, workshop on Ontology

Matching, Athens, pp. 211-215, 2020.

[26] Nentwig M ., Hartung M., Ngomo A., and Rahm

E., “A Survey Of Current Link Discovery

Frameworks,” Journal of Semantic Web, vol. 8,

no. 3, pp. 419-436, 2017.

[27] Noessner J., Niepert M., Meilicke C., and

Stuckenschmidt H., “Leveraging Terminological

Structure for Object Reconciliation,” in

Proceeding of the 7th Extended Semantic Web

Conference, Heraklion, pp. 334-348, 2010.

[28] Omran M., Engelbrecht A., and Salman, A., “An

Overview of Clustering Methods,” Intelligent

Data Analysis, vol. 11, no. 6, pp. 583-605, 2007.

[29] Pernelle N., Saïs F., and Symeonidou D., “An

Automatic Key Discovery Approach for Data

Linking,” Journal of Web Semantics, vol. 23, pp.

16-30, 2013.

[30] Pour M., Algergawy A., Amini R., Faria D.,

Fundulaki I., Harrow I., Hertling S., Jimenez-Ruiz

E., Jonquet C., Karam N., Khiat A., Laadhar A.,

Lambrix P., Li H., Li Y., Hitzler P., Paulheim H.,

Pesquita C., Saveta T., Shvaiko P., Splendiani A.,

Thieblin E., Trojahn C., VatascinovA J., Yaman

B., Zamazal O., and Zhou L., “Results of the

Ontology Alignment Evaluation Initiative 2020,”

in Proceeding of the 15th International Workshop

on Ontology Matching, Athens, PP. 42-138, 2020.

[31] Pulido J., Ruiz M., Herrera R., Cabello C.,

Legrand S., and Elliman D., “Ontology Languages

For The Semantic Web: A Never Completely

Updated Review.” Knowledge-Based Systems,

vol. 19, no. 7, pp. 489-497, 2006.

[32] Raimond Y., Sutton C., and Sandler M.,

“Automatic Interlinking of Music Datasets on the

Semantic Web,” in Proceeding of the 1st

Workshop about Linked Data on the Web, Beijing,

2008.

[33] Saïs F., Pernelle N., and Rousset M-C.,

“Combining A Logical and A Numerical Method

for Data Reconciliation,” Data Semantics XII, vol.

12, no. 12, pp. 66-94, 2009.

[34] Sleeman J. and Finin T., “Computing Foaf Co-

Reference Relations With Rules And Machine

Learning,” in proceeding of the 3rd International

Workshop on Social Data on the Web, China,

2010.

[35] Suchanek F., Abiteboul S., and Senellart P.,

“Paris: Probabilistic Alignment Of Relations,

Instances, And Schema,” Proceedings of the

VLDB Endowment, vol. 5, no. 3, pp. 157-168,

2011.

[36] Symeonidou D., Armant V., Pernelle N., and Saïs

F., “Sakey: Scalable Almost Key Discovery In

Rdf Data,” in Procceding of the 13th International

Semantic Web Conference, Riva del Garda, pp.

33-49, 2014.

[37] Uschold M., “Where Is the Semantics in the

Semantic Web?,” AI Magazine, vol. 24, no. 3, pp

25-36, 2003.

[38] Wang X., Jiang Y., Fan H., Zhu H., and Liu Q.,

“FTRLIM results for OAEI 2020”, in Proceeding

of the 15th International Semantic Web

Conference, Workshop on Ontology Matching,

Athens, pp. 187-193, 2020.

https://www.sciencedirect.com/science/article/abs/pii/S0950705113001809#!
https://www.sciencedirect.com/science/article/abs/pii/S0950705113001809#!
https://www.sciencedirect.com/science/article/abs/pii/S0950705113001809#!
https://dl.acm.org/toc/wwwj/2006/9/4
https://dl.acm.org/toc/wwwj/2006/9/4
https://dl.acm.org/toc/wwwj/2006/9/4
https://www.semanticscholar.org/author/N.-Pernelle/1718164
https://www.semanticscholar.org/author/Fatiha-Sa%C3%AFs/7291776
https://www.semanticscholar.org/author/Gianluca-Quercini/2857970
https://link.springer.com/chapter/10.1007/978-3-642-13489-0_23#auth-Mathias-Niepert
https://link.springer.com/chapter/10.1007/978-3-642-13489-0_23#auth-Christian-Meilicke
https://link.springer.com/chapter/10.1007/978-3-642-13489-0_23#auth-Heiner-Stuckenschmidt
https://dl.acm.org/toc/inda/2007/11/6
https://dl.acm.org/toc/inda/2007/11/6
https://dl.acm.org/toc/inda/2007/11/6
https://dl.acm.org/toc/inda/2007/11/6
https://scholar.google.com/citations?user=lm5tbyQAAAAJ&hl=ar&oi=sra
https://scholar.google.com/citations?user=zeBXvx4AAAAJ&hl=ar&oi=sra
https://scholar.google.com/citations?user=kUV5TwwAAAAJ&hl=ar&oi=sra
https://www.sciencedirect.com/science/article/abs/pii/S0950705106000736#!
https://www.sciencedirect.com/science/article/abs/pii/S0950705106000736#!
https://link.springer.com/chapter/10.1007/978-3-319-11964-9_3#auth-Vincent-Armant
https://link.springer.com/chapter/10.1007/978-3-319-11964-9_3#auth-Nathalie-Pernelle
https://link.springer.com/chapter/10.1007/978-3-319-11964-9_3#auth-Fatiha-Sa_s
https://dl.acm.org/toc/aima/2003/24/3
http://ceur-ws.org/Vol-2788/oaei20_paper8.pdf

A Schema-Free Instance Matching Algorithm Based on Virtual Document Similarity 441

Siham Amrouch graduated from

Badji Mokhtar University, Annaba,

Algeria, as a state engineer in

Computer Science. She received a

Magistere degree in Artificial

Intelligence, then, she obtained her

PhD in the field of ontology matching

and merging from the same university. Currently, she is

Associate professor, and full researcher at LIM

Laboratory in Souk Ahras University, Algeria. Her

research areas comprise: ontology matching and

merging, knowledge management, semantic web

technology and Arabic handwriting recognition.

Sihem Mostefai graduated from

Mentouri University, Constantine,

Algeria as a state engineer in

Computer Science. She obtained a

Magistere degree in computer

graphics, then she received a PhD in

the field of Information integration

applied to PLM (Product Lifecycle Management) from

the same university. She is presently Associate

professor, and full researcher at MISC Laboratory in

Constantine 2 University, Algeria. Her research

interests include: semantic web technology, ontology

engineering, information retrieval and network security.

