
422 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

An Efficient Parallel Version of Dynamic Multi-

Objective Evolutionary Algorithm

Maroua Grid

Computer Science Department,

Barika University Centre, Algeria

maroua.grid@gmail.com

Leyla Belaiche

Computer Science Department,

Biskra University, Algeria

leila.belaiche@gmail.com

Laid Kahloul

Computer Science Department,

Biskra University, Algeria

 l.kahloul@univ-biskra.dz

Saber Benharzallah

Computer Science Department,

 Batna 2 University, Algeria

sbharz@yahoo.fr

Abstract: Multi-Objective Optimization Evolutionary Algorithms (MOEAs) belong to heuristic methods proposed for solving

Multi-objective Optimization Problems (MOPs). In fact, MOEAs search for a uniformly distributed, near-optimal, and near-

complete Pareto front for a given MOP. However, several MOEAs fail to achieve their aim completely due to their fixed

population size. To overcome this shortcoming, Dynamic Multi-Objective Evolutionary Algorithm (DMOEA) [20] was proposed.

Although DMOEA has the distinction of dynamic population size, it still suffers from a long execution time. To deal with the last

disadvantage, we have proposed previously a Parallel Dynamic Multi-Objective Evolutionary Algorithm (PDMOEA) [10] to

obtain efficient results in less execution time than the sequential counterparts, in order to tackle more complex problems. This

paper is an extended version of [10] and it aims to demonstrate the efficiency of PDMOEA through more experimentations and

comparisons. We firstly compare DMOEA with other multi-objective evolutionary algorithms Non-Dominated Sorting Genetic

Algorithm (NSGA-II) and Strength Pareto Evolutionary Algorithm (SPEA-II), then we present an exhaustive comparison of

PDMOEA versus DMOEA and discuss how the number of used processors influences the efficiency of PDMOEA. As

experimental results, PDMOEA enhances DMOEA in terms of three criteria: improving the objective space, minimizing the

computational time, and converging to the desired population size. Finally, the paper establishes a new formula relating the

suitable number of processes, required in PDMOEA, and the number of necessary generations to converge to the optimal

solutions.

Keywords: Multi-objective problems, pareto front, multi-objective evolutionary algorithms, dynamic MOEA, parallel DMOEA.

Received April 10, 2022; accepted April 28, 2022

https://doi.org/10.34028/iajit/19/3A/2

1. Introduction

Nowadays, real-world problems have more than one

objective to be achieved because of their complexity.

Such that, each objective is specified using a

mathematical formula called the objective function. The

resolution process of these problems requires

performing a procedure of decision making because it

looks simultaneously for a set of approximated solutions

to each objective function, and these functions may be

in conflict. To get the optimal decision, some trade-offs

between the conflicting objectives are required. This

kind of problem is called a Multi-objective

Optimization Problem (MOPs). Multi-objective

Evolutionary Algorithms (MOEAs) are one of the

heuristic methods which are intended for MOPs.

MOEAs share the common purpose which is

searching for a uniformly distributed, near-optimal, and

well-extended Pareto front for a given MOP. Figure 1

[7] depicts graphically the concept of Pareto optimal

solutions. In this case, two variables x1, x2 and two

objective functions f1, f2 are considered. Thus, the

objective space is defined in the space of objective

functions and the space of variables defines what we call

the decision space. Indeed, many researchers have

exploited MOEAs to resolve several kinds of MOPs,

such as works in the optimization of reconfigurable

manufacturing systems [4, 13, 19].

Figure 1. Graphical depiction of pareto optimal solution [10].

mailto:maroua.grid@gmail.com
mailto:leila.belaiche@gmail.com
mailto:l.kahloul@univ-biskra.dz
mailto:sbharz@yahoo.fr
https://doi.org/10.34028/iajit/19/3A/2

An Efficient Parallel Version of Dynamic Multi-Objective Evolutionary Algorithm 423

However, finding a suitable Pareto front was difficult

to reach by several of the existing MOEAs. Their most

important reason for not achieving their aim completely

is the fixed population size which makes evolutionary

algorithms suffer from premature convergence if the

population size is too small, whereas an overestimated

population size will result in a heavy burden on

computation and a long computational time for fitness

improvement. For this reason, the dynamic multi-

objective evolutionary algorithm (i.e., DMOEA) [20]

was proposed, in the literature, with population size

varying dynamically during the run-time of the

algorithm using adaptive cell-based rank density

estimation.

DMOEA was proposed to obtain a Pareto front with

a desired resolution because the shape and size of the

true Pareto front are unknown a priory for most of the

MOPs. Although DMOEA gives excellent results

compared to other MOEAs Non-Dominated Sorting

Genetic Algorithm (NSGA-II) and Strength Pareto

Evolutionary Algorithm (SPEA-II), being an

evolutionary algorithm means that it will certainly be

characterized by a long execution time. It cannot be

ignored that the user is always looking for the best

results in less time. On another hand, MOEAs

algorithms (including DMOEA) require many cycles to

reach their convergence. To overcome these

shortcomings, one issue is to propose parallel versions

of those algorithms. One of the main reasons for using

Parallel Evolutionary Algorithms (PEAs) is to obtain

efficient results with an execution time less than one of

their sequential counterparts in order to tackle more

complex problems. This naturally leads to measuring

the speedup of the PEA. PEAs have sometimes been

reported to provide super-linear performances for

different problems.

In our previous published paper [10], we have

proposed a new parallel version of DMOEA (i.e.,

PDMOEA). Indeed, PDMOEA enhances DMOEA in

terms of three criteria (i.e., improving the objective

space, minimization of computational time, and

converging to the desired population size) for satisfying

the user requirements (i.e., getting optimal solutions in

minimum execution time). This paper is an extended

version of [10] which aims to provide more

experimentations on the use of DMOEA and its parallel

version PDMOEA. We provide firstly a comparison

between DMOEA and two other existing algorithms

NSGA-II [8] and SPEA-II. [21]. after that, we provide

an experimental comparison between the sequential

version DMOEA and the parallel version PDMOEA. In

this comparison, we work on changing the number of

processes (2, 4, and 8) implied in the parallel version, in

order to study how the performance of PDMOEA

depends on the number of processes and which gain will

be better. Finally, this paper establishes a new formula

that relates the suitable processes number to be used in

PDOMA to the generation's number required for the

convergence of the algorithm.

The rest of this paper is organized as follows. Section

2 presents the most relevant related work. Section 3

introduces DMOEA. Section 3 presents the proposed

parallel version of DMOEA (i.e., PDMOEA). After that,

the results and an experimental study are discussed in

Section 5. Finally, Section 6 provides the conclusion

that evaluates the results and discusses some

perspectives.

2. Literature Review

Many researchers were interested to propose,

implement and parallelize multi-objective algorithms

[2, 3, 4]. Indeed, in the literature, many state-of-the-art

multi-objective evolutionary algorithms were

parallelized. In the following paragraphs, we discuss

some of the most relevant work in the parallelization of

MOEA.

González-Álvarez et al. [9], address the discovery of

repeated common patterns as a multi-objective

optimization problem by means of a hybrid MPI/Open

MP [1] (i.e., Message Passing Interface/Open Multi-

Processing) approach which parallelizes a well-known

multi-objective meta-heuristic, the fast NSGA-II. Their

main objective was to combine the benefits of shared-

memory and distributed-memory programming

paradigms to discover patterns in an accurate and

efficient manner. They have proposed a hybrid parallel

approach based on MPI and Open MP to parallelize a

modified version of NSGA-II when finding common

patterns on a set of amino acid sequences. This new

modified algorithm, named Hybrid Non-Dominated

Sorting Genetic Algorithm (H-NSGA-II), combines the

evolutionary properties of the well-known NSGA-II

with a local search function specialized in improving the

quality of the predictions. The complexity of the

addressed optimization problem Nondeterministic

Polynomial Time Hardness (NP-hard: ppv) has

motivated this research, mainly designed to take

advantage of current hardware architectures Symmetric

Multiprocessing (SMP) clusters with many cores.

In [17], two parallel multi-objective meta-heuristics,

NSGA-II and Strength Pareto Evolutionary Algorithm

(SPEA2), have been applied to tackle the inference of

phylogenetic trees considering two criteria: maximum

parsimony and maximum likelihood. These algorithms

were implemented with Open MP to take advantage of

multi-core processor systems, with the aim of

distributing time-consuming inference/evaluation

operations among execution threads. The resulting

parallel approaches were evaluated by conducting

experimentation on four real data sets, examining

speedup factor and phylogenetic results by means of

well-known parallel and multi-objective metrics.

Dagostino et al. [6], presented a fine-grained

parallelization of the Fast NSGA-II for The Compute

Unified Device Architecture (CUDA). In particular,

424 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

they discussed how this solution can be exploited to

solve multi-objective optimization tasks in the field of

computational and systems biology.

Most of the well-known MOEAs have been

parallelized using different parallel technologies for

improving their performance. Compared to state-of-the-

art MOEAs, DMOEA is found to be competitive in

terms of maintaining diversity and improving the

objective space [20]. However, DMOEA suffers from a

long computational time. In this work, we propose a

parallel version of DMOEA (i.e., PDMOEA) to enhance

DMOEA in terms of three criteria:

1. Improving the objective space.

2. Minimizing the computational time.

3. Converging to the desired population size.

 For implementing PDMOEA, we adopted the threads

model of parallel computing. Experimentations are

provided in this work to demonstrate the performance of

the parallel proposed version versus the sequential

existing one.

3. Dynamic Multi-Objective Optimization

Evolutionary Algorithm (Dmoea)

MOEAs common purpose is to find a set of optimal

solutions by using several strategies, to balance the

diversity, and the convergence to the Pareto-optimal

solutions. However, this ultimate goal is far from being

accomplished by all MOEAs. One of the negative

aspects that made them move away from their goals, is

the fixed population size to initiate the evolutionary

process. Indeed, it is often hard and inefficient to solve

MOPs by MOEAs with fixed population sizes, since

they have to homogeneously distribute the

predetermined computation resource to all the possible

directions in the objective space [16]. In fact, MOEAs

may suffer from premature convergence if the

population size is too small, whereas if the population

size is too large, undesired computational resources may

be incurred and the computational time for a fitness

improvement may be too long in practice [18].

 Dynamic multi-objective evolutionary algorithm

(DMOEA) is an evolutionary algorithm, which was

proposed by Lu and Yen in [15]. DMOEA’s aim is to

obtain a Pareto front with a desired resolution because

the shape and size of the true Pareto front are unknown

a priory for most of the MOPs [20].

DMOEA is based on adaptive cell-based rank density

estimation, where the objective space is considered as a

grid; the number of its cells depends on the dimension

of the MOP and the grid-scale in each dimension.

DMOEA consists of four main functions; the first

function is the initial cell-based rank density calculation

scheme which initializes principal variables as initial

population size to create a population of initial

individuals, calculates cells width, initializes objective

functions, and creates a grid that contains a number of

cells defined in each dimension depending on the grid-

scale given by the multi-objective problem. The second

function is a population growth strategy which aims to

make the population size bigger than the initial one to

increase the probability of obtaining better individuals.

After that, DMOEA uses crossover and mutation

functions to create new offspring. These functions are

good for creating more individuals which means an

increase in the population size. However, this increase

will not stop without the intervention of another

function to reduce the continuous reproduction of

individuals. This function is the population declining

strategy which represents the third main function of

DMOEA. It reverses the work of the population growth

strategy by decreasing population size by using the

killing technique to kill each individual that has an age

bigger than the age threshold defined by the MOP, to get

finally the desired population with the desired size. The

last main function is the objective space compression

strategy to get the real objective space of Pareto front

individuals.

DMOEA should stop by examining the 3 stopping

criteria [20]:

• The rank values of all cells are one,

• The objective space cannot be compressed anymore,

• And finally, each resulting non-dominated cell

contains ppv individuals (ppv stands for a given

population size per unit volume).

The reason for this step is due to the fact that another

criterion, the Pareto ranks of all resulting individuals

equal to one, should be satisfied as well to guarantee

there is no dominance relationship among the resulting

Pareto solutions at the final generation. Taking into

consideration all procedures of DMOEA, Figure 2

shows the flowchart of DMOEA algorithm steps.

Figure 2. DMOEA algorithm flowchart [10].

YES

YES NO

NO

Population initialisation

Cell-based rank density estimation schema

Population growing strategy

Population declining strategy

Start

Objective space compression strategy

max rank=1

Exit all Rank=1 & all

Density=ppv

An Efficient Parallel Version of Dynamic Multi-Objective Evolutionary Algorithm 425

4. A Parallel Version of Dynamic Multi-

Objective Optimization Evolutionary

Algorithm (Pdmoea)

The proposed Parallel Dynamic Multi-Objective

Optimization Evolutionary Algorithm (PDMOEA) is

based on a multiprocessing framework and master\slave

technique. The master process creates n processes. As it

is shown in Figure 3 PDMOEA divides the Generations

Number (NbG) into n processes, and each process

executes DMOEA with NbG/n generations. Then, the

best results of one of the processes are selected.

Figure 3. Division framework of generations’ number of PDMOEA

[10].

PDMOEA algorithm has the same main functions as

DMOEA but the only difference is that PDMOEA

divides generation's number into n threads. After

dividing the generation number by the n threads each

process will create an initial population and makes it

grow and decline until it gets the desired population size

with the best solutions. Figure 4 depicts the global

architecture of the PDMOEA implemented system.

Figure 4. Parallel global design [10].

Indeed, in this work, we have already implemented a

sequential version of DMOEA following an object

programming style. Then, in the parallel version we

have added a new method, called PDMOEA, to the class

Population of the program (See Figure 5).

Figure 5. Parallel DMOEA version classes diagram [10].

Master process

PDMOEA(NbG)

Process2

PDMOEA(NbG/n)

Slaves

Process1

PDMOEA(NbG/n)

.

.

.

. Processn

PDMOEA(NbG/n)

Process3

PDMOEA(NbG/n)

Decline
populatio

n

Choose

the best

desired

Generation
number

Grid scale

Initial

population

size

Age

threshold

ppv

Initial

populatio

n

Growing

populatio
n

N desired

populatio
n

Generations number

N threads

Parallel

version

Tkinter

Extends

Extends

Extends

Individual

+ age : int
+ h : array

+ F : array

+ representation : array
+ offsprigs: array

+ desision_var : array

+ ind_rank : int
+ ind_density : int

+ Function1(): float

+ Function2(float): float
+ Coding_initial_chromosom :

(float): float

+ generate_individual(float):

float

Population

+ population_size : int

+ initial_generations : int
+ population: array

+ objective_point: array

+ cell_width : int
+ k_grid_scale : array

+ m_dimension : int

+ Age threshold : int
+ ppv : int

+ grid : array

+ generations_number : int
+ run_number : int

+ generate_initial_grid(self)
+generate_initial_population(

self)

+Initial_cel_based_rank_dens
ity_estimation(self)

+ cal_home_add(indv)

+update_rank_density(sing,in
dv)

+forbiden_region(offspring,p

arent) : int
+ pop_growing(self)

+ population_decline(n)

+ DMOEA()
+ PDMOEA()

Cell

+ indv_nbr : int
+ cell_rank : int

+ cell_density:

int

+ indv_arrayt:

array

+ position:
array

+generate_cell

 (self)

Problem

main()

426 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

Algorithm 1 PDMOEA method

q:=mp.Queue()

poolprocess:=[]

i:=1

while i<=n do

p:=mp.Process(target=self.mainloop)

p.start()

poolprocess.append(q.get())

p.join()

i:=i+1

end while

5. Experimental Study

In this experimental study, we aim to compare the

performance of the two versions of DMOEA; the

sequential one versus the parallel one PDMOEA. For

testing the proposed Parallel DMOEA (i.e., PDMOEA),

the multi-objective problem presented in [30] is used as

a case study. This problem was designed by Deb as the

preliminary test function that has a discontinuous Pareto

front. Equations 1 and 2 give the two objective functions

of the considered problem. This problem represents a

minimization problem. It aims to minimize f1(x1, x2) and

f2(x1, x2), where:

𝑓1(𝑥1, 𝑥2) = 𝑥1

𝑓2(𝑥1, 𝑥2) = (1 + 𝑥2) × (1 −
𝑥1

1+𝑥2
)

2
−

𝑥1

1+𝑥2
× 10𝜋

𝑥1

1+𝑥2

Subject to 0 ≤ x1, x2 ≤ 1.

5.1. Parameter Settings

Both DMOEA and PDMOEA are implemented using

the Oriented Object Programming (OOP) paradigm and

using a set of software and hardware which are

summarized in Table 1.

Table 1. Software/hardware versions [10].

Software/Hardware Version

OS Microsoft Windows 10
Professional, 64bits, version

version 10.0.17134

CPU Intel(R) Core(TM) i7-4500U

CPU
@1.80GHz 2.40GHz

RAM 8.00Go

Python Interpreter 3.7.0

PyCharm 2016.3.1

matplotlib 2.0.0

Tkinter 8.6

5.2. Comparative factors

Comparative factors mean indexes that we observe each

time as outputs of each execution. These factors are, in

fact, the results obtained every time we execute both

versions. They will be mentioned in the following

subsections in this experimental study.

1. Desired population size: as mentioned in paper [30]

the desired population size at generation n noted

dps(n), with the desired population size per unit

volume ppv (a user-specified parameter), and an

approximated number of trade-offs hyper-areas Ato,

is defined as:

𝑙𝑜𝑤𝑏𝑝𝑠 < 𝑑𝑝𝑠(𝑛) = 𝑝𝑝𝑣 × 𝐴𝑡0(𝑛) < 𝑢𝑝𝑏𝑝𝑠

Where low bps and up bps are the lower and upper

bounds for the desired population size dps(n),

respectively. In paper [5], the authors applied a method

used to estimate the approximated number of hyper-

areas by:

 𝐴𝑡0 ≈
𝜋(𝑚−1)

2
𝑚−1

2
!

× (
𝑑(𝑛)

2
)

(𝑚−1)

Where m is the number of objectives and d(n) is the

diameter of the hypersphere at generation n. In

DMOEA, instead of estimating the trade-off hyper-

areas Ato at each generation n, we concentrate on

searching for a uniformly distributed and well extended

final set of trade-off hyper-areas and ensure that each of

these areas contains ppv number of non-dominated

individuals. Therefore, by using DMOEA, the optimal

population size and final Pareto front will be found

simultaneously at the final generation.

Desired population size dps(n) is approximated and

when we approach it will be better. To get a fair

comparison, this value is calculated in the same way in

both versions in DMOEA and PDMOEA.

2. Improving the objective space: MOEAs are often run

with the goal of approximating the whole Pareto front

and most MOEAs are designed to do this on

problems of arbitrary parameter space and objective

space dimension [11]. Today, some test functions are

scalable in both parameter and objective dimension;

and some performance indicators are also suitable for

many objective problems. These advances have made

it possible to compare performance of MOE

algorithms when the number of objectives is scaled

up beyond the typical two or three. As our studied

MOP is to minimize the objective space, the best

result will be the result of the one who minimized

more than the other as an improvement of the

objective space. We can explain it as the standard

definition of Pareto dominance in the objective space

is used. Assuming minimization, without loss of

generality: x dominates y.

3. Computational time: one of the main reasons for

using PEAsis to obtain efficient algorithms with an

execution time much lower than that of their

sequential counter parts in order to tackle more

complex problems. This naturally leads to measuring

the speedup of the PEA. PEAs have sometimes been

reported to provide super-linear performances for

different problems [12].

(1)

(3)

(2)

(4)

An Efficient Parallel Version of Dynamic Multi-Objective Evolutionary Algorithm 427

5.3. Results and Discussion

Indeed, several multi-objective optimization

evolutionary algorithms (MOEA) are proposed to

search for a uniformly distributed, near-optimal, and

near-complete Pareto front for a given MOP. However,

this common goal is far from being accomplished by all

MOEAs. In this study, we have implemented two other

MOEAs (NSGA-II and SPEA-II) which do not use

dynamic population size. Using these implementations,

we provide a comparative study of sequential DMOEA

versus (NSGA-II and SPEA-II), then a comparative

study between DMOEA and PDMOEA. Finally, we

studied how the increase of processes number in

PDMOEA influences its performance.

1. DMOEA Versus NSGA-II and SPEA-II

In this section, we compare DMOEA with two other

multi-objective evolutionary algorithms namely NSGA-

II and SPEA-II. Table 2 lists the specific parameter

settings for the function of the studied MOP [20]. Table

3 illustrates the parameters setting for all the test

functions as global parameters.

Table 2. Specific parameter setting for mop 1.

Initial

pop size

External

pop size
ppv Grid Scale Age threshold

Tourn-

ament

size

DMOEA 2 - 3 (30,30) 10 -

NSGA-II 100 0 - - - 2

SPEA-II 80 20 - - - -

Table 3. Specific parameter setting for all the test functions.

Crossover rate 0.7

Maximum number of generations 10000

Number of runs 50

The results of this comparison are represented in the

following Figures 6, 7, 8. Figure 6 represents the final

objective space and the Pareto front of NSGA-II, Figure

7 represents the objective space as a final result of

SPEA-II, and Figure 8 shows the result of executing

DMOEA based on previous setting parameters in Tables

2, 3.

Figure 6. NSGA-II pareto front.

Figure 7. SPEA-II pareto front

Figure 8. DMOEA pareto front.

Considering the three figures, it is clear by a visual

observation that the objective space was improved in

DMOEA better than the other MOEAs.

2. DMOEA Versus PDMOEA

In order to compare the efficiency and the performance

of our parallel version PDMOEA to the sequential

DMOEA, using the implementation of the studied MOP

[20], we adopt the parameters in Table 4.

Table 4. Specific parameter setting for DMOEA and PDMOEA.

Initial population size 30

Grid scale 1 50

Grid scale 2 100

Dimension 2

Generation number 10000

Age threshold 10

ppv 5

Runs number 30

It is worth noting that the most important thing we

have talked about is the generation number input

because as we had seen before in PDMOEA the number

of a generation will be divided into four processes, thus

each process takes a quarter of this generations number.

Hence, we start with a big generation's number of

DMOEA and PDMOEA to avoid that division into four

threads will not be adversely affected by the desired

population that we will have.

We have compared the results of both versions and

we concluded that in each execution of both versions

using the same inputs, PDMOEA performs better than

DMOEA at least in one of the three outputs that the user

aims to improve. To prove the power of the evolutionary

Sequential Execution
Time=156.2923698009995

Desired population size = 83.0

0.2 0.4 0.6

0.8 10000

F
2

0
.

0
.

0

.

1

.

0.
8

428 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

algorithm using parallel computing, we have to use the

formula in eq. 4 to calculate the trade-off hyper-areas Ato

of the last generation based on the desired population

number dps (n). Whenever the trade-off hyper-areas Ato

is bigger, the PDMOEA will be better in desired

population size comparison factor. Also, time is

considered better when it was moreminimized. We

recall that we keep using the same parameters illustrated

in Table 2 for both DMOEA and PDMOEA.

Figure 9. Population size comparison (DMOEA vs PDMOEA).

Figure 10. Average rank comparison (DMOEA vs PDMOEA).

Figure 11. Average density comparison (DMOEA vs PDMOEA).

Figure 12. Objective space comparison (DMOEA vs PDMOEA).

The obtained results are represented in Figure 6

collecting DMOEA and PDMOEA curves. These

results depict the comparison of performance metrics

(i.e., population size, rank, density, and the objective

space). In both DMOEA and PDMOEA, rank converges

to be one, density converges to the desired population

size per unit volume ppv and the desired population size

is obtained finally. However, DMOEA executes all the

generations (i.e., 10000 generations) but PDMOEA

executes just 2500 generations which improves the CPU

running time. The obtained population size from

running PDMOEA achieves a smaller size than in

DMOEA. The objective space obtained by running

PDMOEA is improved better than DMOEA because

PDMOEA guarantees the convergence to smaller

values.

Figure 13. Objective space and running CPU time comparison.

Figure 13 represents the improvement of objective

space and the running CPU time. PDMOEA

outperforms DMOEA such that it improves the

objective space in a short running CPU time. However,

the number of solutions in the Pareto front obtained

from running PDMOEA is smaller than those obtained

from running DMOEA.

5.0

2.5

0

7.5

10.0

0 2500 5000 7500 10000

 Generation

DMOEA Average rank

PDMOEA Average rank

A
v

er
ag

e
ra

n
k

0
.

0.5

-0.5

F1

PDMOEA Execution

Time = 141.515735521

Desired population size=62.0

 0.0 0.2 0.4 0.6 0.8

0.5

0.0

1

1.
5

F
2

 0.0 0.2 0.4 0.6

0.8

F1

DMOEA Execution

Time = 477.19583850100005

Desired population size=203.0

Sequential

DMOEA
Pareto front

PDMOEA

Pareto front

An Efficient Parallel Version of Dynamic Multi-Objective Evolutionary Algorithm 429

From Figure 13 in DMOEA the desired population

size dps (n) is 62. Using eq.3, the trade-off hyper-areas

Ato is approximately equal to 12 based on the desired

population per unit volume ppv supposed to be 5 (see

Table 5. While the desired population size dps (n)

obtained from PDMOEA is 203 and the trade-off hyper-

areas Ato is approximately equal to 40. Thus, the desired

population size of PDMOEA is better than DMOEA. On

another hand, the execution time in PDMOEA is better

four times than DMOEA, and the objective space of

PDMOEA is improved compared to DMOEA.

3. The effect of the processes number on the

performance of PDMOEA

Programming distributed-memory multiprocessors and

networks of workstations requires deciding what can be

executed concurrently, how processes communicate,

and where data is placed. These decisions can be made

statically by a programmer or the compiler, or they can

be made dynamically at run time [14].

In this paper, we have experimented PDMOEA on

the Mutli-Objective Problem described in [20]. In the

previous sections, we have provided experimentation

results with a number of processes fixed to 4. This

section aims to study the impact of increasing the

number of processes on the performance of PDOMEA.

Three configurations are compared: 2, 4, and 8

processes. Table 5. Shows settings used in this

experimentation. The results of this experimentation are

illustrated in Figures 8, 9, 10.

Table 5. Specific parameter setting for PDMOEA.

Initial population size 2

Grid scale 1 50

Grid scale 2 100

Dimension 2

Generation number 16000

Age threshold 10

ppv 5

Run number 1

Processes number 2, 4, 8

Figure 8. Shows the results of DMOEA versus

PDMOEA when the number of processes in parallel

version is 2.

Figure 14. Results when processes number = 2.

Figure 15 shows the results of DMOEA versus

PDMOEA when the number of processes in parallel

version is 4.

Figure 15. Results when processes number = 4.

Figure 15 shows the results of DMOEA versus

PDMOEA when the number of processes in parallel

version is 8.

Figure 16. Results when processes number = 8.

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟
 > 1000

We observe that each time we increase the number of

processes, we get better results especially the

computational time. However, this benefit is limited by

a a threshold (a specific number of processes) which

makes the generations number in each process converge

to be less than 1000 because the decline population

strategy starts when the number of generations is more

than 500 and it takes around 500 generations to get the

desired population size. We conclude that the increase

of processes number is beneficial while the number of

each process achieves formula in equation5.

6. Conclusions

Multi-Objective Optimization Evolutionary Algorithms

(MOEAs) may be computationally quite demanding

because instead of searching for a single optimum, one

generally wishes to find the whole front of Pareto-

optimal solutions.

We have implemented a DMOEA on the same test

functions proposed in [20] to get the optimal set of

results compared with other evolutionary algorithms.

Without forgetting that the main objective of this study

is not limited to implement this DMOEA with its

sequential version and being satisfied with its results,

(5)

430 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

but the main aim is to search for improved results in

term of minimizing computational time, improving

objective space and converging to the desired

population size. Thus, we have proposed and

implemented a first parallel version of the DMOEA

namely PDMOEA.

We consider that the parallel implementations of

MOEAs is an appropriate way for improving results in

terms of improving objective space and minimizing

computational time. PDMOEA is the first parallel

version of the dynamic DMOEA in literature. The

proposed PDMOEA outperforms DMOEA in terms of

three criteria: improving objective space, minimizing

computational time and converging to the desired

population size. The increase of processes number in

PDMOEA is beneficial while the number of each

process achieves a given formula (equation 5 in this

paper).

As a future research direction, we intend to apply

PDMOEA on a real-world problem and compare it with

other state-of the- art parallel MOEAs.

References

[1] Barker B., “Message Passing Interface (MPI),”

Workshop: High Performance Computing on

Stampede, Ithaca, vol. 262, 2015.

[2] Belaiche L. and Kahloul L., “The Optimal Process

Planning for Reconfigurable Manufacturing

Systems,” in Proceeding of the International

Conference on Mathematics and Information

Technology, Adrar, pp. 309-316, 2017.

[3] Belaiche L., Kahloul L., Benharzallah S., and

Hafidi Y., “Multi-objective Optimization-Based

Approach for Throughput Maximization in

Reconfigurable Manufacturing Systems,” in

Proceeding of the 5th International Symposium on

Innovation in Information and Communication

Technology, United States, pp. 1-8, 2018.

[4] Belaiche L., Kahloul L., Benharzallah S., and

Hafidi Y., “Bi-Objective Framework For Planning

A Supply Chain Process in Reconfigurable

Manufacturing Systems,” IFAC-PapersOnLine,

vol. 52, no. 13, pp. 1675-1680, 2019.

[5] Czarnul P., Parallel Programming for Modern

High Performance Computing Systems, Chapman

and Hall/CRC, 2018.

[6] Dagostino D., Pasquale G., and Merelli I., “A

Fine-Grained Cuda Implementation of the Multi-

Objective Evolutionary Approach Nsga-Ii

Potential Impact for Computational and Systems

Biology Applications,” in Proceeding of the

International Meeting on Computational

Intelligence Methods for Bioinformatics and

Biostatistics, Cambridge, pp. 273-284, 2014.

[7] Deb K., Multi-objective Optimization Using

Evolutionary Algorithms, John Wiley and Sons,

2001.

[8] Deb K., Pratap A., Agarwal S., and Meyarivan T.,

“A Fast Elitist Non-Dominated Sorting Genetic

Algorithm for Multi-Objective Optimization:

NSGA-2,” IEEE Transactions on Evolutionary

Computation, vol. 6, n. 2, pp. 182-197, 2002.

[9] González-Álvarez D., Vega-Rodríguez M., and

Rubio-Largo Á., “A Hybrid Mpi/Openmp Parallel

Implementation of Nsga-Ii for Finding Patterns in

Protein Sequences,” Journal of Supercomputing,

vol. 73, no. 6, Pp. 2285-2312, 2017.

[10] Grid M., Belaiche L., Kahloul L., and

Benharzallah S., “Parallel Dynamic Multi-

Objective Optimization Evolutionary Algorithm,”

in Proceeding of the International Arab

Conference on Information Technology, Muscat,

pp. 1-6, 2021.

[11] Gropp W., Lusk E., and Skjellum A., Using MPI:

Portable Parallel Programming with the

Message-Passing Interface, MIT Press, 1999.

[12] Gropp W., Tutorial on Mpi: The Message Passing

Interface, Argonne National Laboratory, 1995.

[13] Houimli M., Kahloul L., and Khalgui M., “Multi-

Objective Optimization and Formal Specification

Of Reconfigurable Manufacturing System Using

Adaptive NSGA-II,” in Proceeding of the 1st

International Conference on Embedded and

Distributed Systems, Oran, pp. 1-6, 2017.

[14] Lowenthal D., Freeh V., and Andrews G., “Using

Fine-Grain Threads and Run-Time Decision

Making in Parallel Computing,” Journal of

Parallel and Distributed Computing, vol. 37, no.

1, pp. 41-54, 1996.

[15] Lu H. and Yen G., “Dynamic Population Size in

Multiobjective Evolutionary Algorithms,” in

Proceeding of the Congress on Evolutionary

Computation, Honolulu, pp. 1648-1653, 2002.

[16] Mitchell M., an Introduction to Genetic

Algorithms, MIT Press, 1998.

[17] Santander-Jiménez S. and Vega-Rodríguez M.,

“Applying Openmpbased Parallel

Implementations of Nsga-Ii and Spea2 To Study

Phylogenetic Relationships,” in Proceeding of the

IEEE International Conference on Cluster

Computing, Madrid, pp. 305-313, 2014.

[18] Tan K., Lee T., and Khor E., “Evolutionary

Algorithms with Dynamic Population Size and

Local Exploration for Multiobjective

Optimization,” IEEE Transactions on

Evolutionary Computation, vol. 5, no. 6, pp. 565-

588, 2001.

[19] Torki F., Kahloul L., Hamani N., Belaiche L., and

Benharzallah S., “Products Scheduling in

Reconfigurable Manufacturing System

Considering the Responsiveness Index,” in

Proceeding of the 22nd International Arab

Conference on Information Technology, Muscat,

pp. 1-6, 2021.

https://ieeexplore.ieee.org/author/37087824997
https://ieeexplore.ieee.org/author/37086133042
https://ieeexplore.ieee.org/author/37991022300
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235

An Efficient Parallel Version of Dynamic Multi-Objective Evolutionary Algorithm 431

[20] Yen G. and Lu H., “Dynamic Multiobjective

Evolutionary Algorithm: Adaptive Cell-Based

Rank and Density Estimation,” IEEE

Transactions on Evolutionary Computation, vol.

7, no. 3, pp. 253-274, 2003.

[21] Zitzler E., Laumanns M., and Thiele L., “SPEA2:

Improving the Strength Pareto Evolutionary

Algorithm,” TIK-report, vol. 103, 2001.

Maroua Grid is Assistant Professor

at “Si El House” university center in

Barika (Batna city). Holder of a

doctorate degree (3rd cycle, LMD),

in computer science, “image

technologies and artificial

intelligence”, at Mohamed Khider

Biskra university in 2018. A member of LESIA

Laboratory of Mohamed Khider Biskra University from

2012 to 2018 and currently affiliated with LINFI

Laboratory, at Mohamed Khider Biskra University. Her

research interests include bio-inspired optimization

approaches, Parallel programming, and Deep Learning.

Leyla Belaiche is a PhD student in

Biskra University. Holder of a

master's degree, in computer science,

“Software engineering and distributed

systems,” at Mohamed Khider Biskra

University in 2018. She is a member

of the LINFI Laboratory of Mohamed

Khider Biskra University. Her research domains include

bio-inspired optimization approaches, Parallel

programming, and reconfigurable manufacturing

systems. (https://orcid.org/0000-0003-1128-0725).

Laid Kahloul is a professor and

researcher in the computer science

department of Biskra University

(Algeria). Received his Ph. D degree

in 2012 from Biskra University

(Algeria). Prof. KAHLOUL is

currently attached to LINFI (Biskra

University). His research interests include software

engineering, formal methods, optimization,

reconfigurable manufacturing systems, security, IoT,

and deep learning applications. He published several

papers in his research fields, in ranked conferences and

journals. He participated as a reviewer and organizer in

several international conferences and he is a reviewer in

several indexed journals. (https://orcid.org/0000-0002-

9739-7715).

Saber Benharzallah is a professor

and researcher in the computer science

department of Batna 2 University

(Algeria). Received his Ph. D degree

in 2010 from Biskra University

(Algeria). Prof. Benharzallah is

currently the director of laboratory

LAMIE (Batna 2 University). His research interests

include the Internet of things, service-oriented

architecture, and context-aware systems. He published

several papers in ranked conferences and journals.

(https://orcid.org/0000-0002-3870-4383).

https://orcid.org/0000-0003-1128-0725
https://orcid.org/0000-0002-9739-7715
https://orcid.org/0000-0002-9739-7715

