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Abstract: Multi-Objective Optimization Evolutionary Algorithms (MOEAs) belong to heuristic methods proposed for solving 

Multi-objective Optimization Problems (MOPs). In fact, MOEAs search for a uniformly distributed, near-optimal, and near-

complete Pareto front for a given MOP. However, several MOEAs fail to achieve their aim completely due to their fixed 

population size. To overcome this shortcoming, Dynamic Multi-Objective Evolutionary Algorithm (DMOEA) [20] was proposed. 

Although DMOEA has the distinction of dynamic population size, it still suffers from a long execution time. To deal with the last 

disadvantage, we have proposed previously a Parallel Dynamic Multi-Objective Evolutionary Algorithm (PDMOEA) [10] to 

obtain efficient results in less execution time than the sequential counterparts, in order to tackle more complex problems. This 

paper is an extended version of [10] and it aims to demonstrate the efficiency of PDMOEA through more experimentations and 

comparisons. We firstly compare DMOEA with other multi-objective evolutionary algorithms Non-Dominated Sorting Genetic 

Algorithm (NSGA-II) and Strength Pareto Evolutionary Algorithm (SPEA-II), then we present an exhaustive comparison of 

PDMOEA versus DMOEA and discuss how the number of used processors influences the efficiency of PDMOEA. As 

experimental results, PDMOEA enhances DMOEA in terms of three criteria: improving the objective space, minimizing the 

computational time, and converging to the desired population size. Finally, the paper establishes a new formula relating the 

suitable number of processes, required in PDMOEA, and the number of necessary generations to converge to the optimal 

solutions. 
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1.  Introduction 

Nowadays, real-world problems have more than one 

objective to be achieved because of their complexity. 

Such that, each objective is specified using a 

mathematical formula called the objective function. The 

resolution process of these problems requires 

performing a procedure of decision making because it 

looks simultaneously for a set of approximated solutions 

to each objective function, and these functions may be 

in conflict. To get the optimal decision, some trade-offs 

between the conflicting objectives are required. This 

kind of problem is called a Multi-objective 

Optimization Problem (MOPs). Multi-objective 

Evolutionary Algorithms (MOEAs) are one of the 

heuristic methods which are intended for MOPs. 

MOEAs share the common purpose which is 

searching for a uniformly distributed, near-optimal, and 

well-extended Pareto front for a given MOP. Figure 1 

[7] depicts graphically the concept of Pareto optimal 

solutions. In this case, two variables x1, x2 and two  

 

objective functions f1, f2 are considered. Thus, the 

objective space is defined in the space of objective 

functions and the space of variables defines what we call 

the decision space. Indeed, many researchers have 

exploited MOEAs to resolve several kinds of MOPs, 

such as works in the optimization of reconfigurable 

manufacturing systems [4, 13, 19]. 

 

 

Figure 1. Graphical depiction of pareto optimal solution [10]. 
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However, finding a suitable Pareto front was difficult 

to reach by several of the existing MOEAs. Their most 

important reason for not achieving their aim completely 

is the fixed population size which makes evolutionary 

algorithms suffer from premature convergence if the 

population size is too small, whereas an overestimated 

population size will result in a heavy burden on 

computation and a long computational time for fitness 

improvement. For this reason, the dynamic multi-

objective evolutionary algorithm (i.e., DMOEA) [20] 

was proposed, in the literature, with population size 

varying dynamically during the run-time of the 

algorithm using adaptive cell-based rank density 

estimation. 

DMOEA was proposed to obtain a Pareto front with 

a desired resolution because the shape and size of the 

true Pareto front are unknown a priory for most of the 

MOPs. Although DMOEA gives excellent results 

compared to other MOEAs Non-Dominated Sorting 

Genetic Algorithm (NSGA-II) and Strength Pareto 

Evolutionary Algorithm (SPEA-II), being an 

evolutionary algorithm means that it will certainly be 

characterized by a long execution time. It cannot be 

ignored that the user is always looking for the best 

results in less time. On another hand, MOEAs 

algorithms (including DMOEA) require many cycles to 

reach their convergence. To overcome these 

shortcomings, one issue is to propose parallel versions 

of those algorithms. One of the main reasons for using 

Parallel Evolutionary Algorithms (PEAs) is to obtain 

efficient results with an execution time less than one of 

their sequential counterparts in order to tackle more 

complex problems. This naturally leads to measuring 

the speedup of the PEA. PEAs have sometimes been 

reported to provide super-linear performances for 

different problems. 

In our previous published paper [10], we have 

proposed a new parallel version of DMOEA (i.e., 

PDMOEA). Indeed, PDMOEA enhances DMOEA in 

terms of three criteria (i.e., improving the objective 

space, minimization of computational time, and 

converging to the desired population size) for satisfying 

the user requirements (i.e., getting optimal solutions in 

minimum execution time). This paper is an extended 

version of [10] which aims to provide more 

experimentations on the use of DMOEA and its parallel 

version PDMOEA. We provide firstly a comparison 

between DMOEA and two other existing algorithms 

NSGA-II [8] and SPEA-II. [21]. after that, we provide 

an experimental comparison between the sequential 

version DMOEA and the parallel version PDMOEA. In 

this comparison, we work on changing the number of 

processes (2, 4, and 8) implied in the parallel version, in 

order to study how the performance of PDMOEA 

depends on the number of processes and which gain will 

be better. Finally, this paper establishes a new formula 

that relates the suitable processes number to be used in 

PDOMA to the generation's number required for the  

convergence of the algorithm.  

The rest of this paper is organized as follows. Section 

2 presents the most relevant related work. Section 3 

introduces DMOEA. Section 3 presents the proposed 

parallel version of DMOEA (i.e., PDMOEA). After that, 

the results and an experimental study are discussed in 

Section 5. Finally, Section 6 provides the conclusion 

that evaluates the results and discusses some 

perspectives. 

2. Literature Review 

Many researchers were interested to propose, 

implement and parallelize multi-objective algorithms 

[2, 3, 4]. Indeed, in the literature, many state-of-the-art 

multi-objective evolutionary algorithms were 

parallelized. In the following paragraphs, we discuss 

some of the most relevant work in the parallelization of 

MOEA. 

González-Álvarez et al. [9], address the discovery of 

repeated common patterns as a multi-objective 

optimization problem by means of a hybrid MPI/Open 

MP [1] (i.e., Message Passing Interface/Open Multi-

Processing) approach which parallelizes a well-known 

multi-objective meta-heuristic, the fast NSGA-II. Their 

main objective was to combine the benefits of shared-

memory and distributed-memory programming 

paradigms to discover patterns in an accurate and 

efficient manner. They have proposed a hybrid parallel 

approach based on MPI and Open MP to parallelize a 

modified version of NSGA-II when finding common 

patterns on a set of amino acid sequences. This new 

modified algorithm, named Hybrid Non-Dominated 

Sorting Genetic Algorithm (H-NSGA-II), combines the 

evolutionary properties of the well-known NSGA-II 

with a local search function specialized in improving the 

quality of the predictions. The complexity of the 

addressed optimization problem Nondeterministic 

Polynomial Time Hardness (NP-hard: ppv) has 

motivated this research, mainly designed to take 

advantage of current hardware architectures Symmetric 

Multiprocessing (SMP) clusters with many cores.  

In [17], two parallel multi-objective meta-heuristics, 

NSGA-II and Strength Pareto Evolutionary Algorithm 

(SPEA2), have been applied to tackle the inference of 

phylogenetic trees considering two criteria: maximum 

parsimony and maximum likelihood. These algorithms 

were implemented with Open MP to take advantage of 

multi-core processor systems, with the aim of 

distributing time-consuming inference/evaluation 

operations among execution threads. The resulting 

parallel approaches were evaluated by conducting 

experimentation on four real data sets, examining 

speedup factor and phylogenetic results by means of 

well-known parallel and multi-objective metrics. 

Dagostino et al. [6], presented a fine-grained 

parallelization of the Fast NSGA-II for The Compute 

Unified Device Architecture (CUDA). In particular, 
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they discussed how this solution can be exploited to 

solve multi-objective optimization tasks in the field of 

computational and systems biology. 

Most of the well-known MOEAs have been 

parallelized using different parallel technologies for 

improving their performance. Compared to state-of-the-

art MOEAs, DMOEA is found to be competitive in 

terms of maintaining diversity and improving the 

objective space [20]. However, DMOEA suffers from a 

long computational time. In this work, we propose a 

parallel version of DMOEA (i.e., PDMOEA) to enhance 

DMOEA in terms of three criteria: 

1. Improving the objective space. 

2. Minimizing the computational time. 

3. Converging to the desired population size. 

 For implementing PDMOEA, we adopted the threads 

model of parallel computing. Experimentations are 

provided in this work to demonstrate the performance of 

the parallel proposed version versus the sequential 

existing one. 

3. Dynamic Multi-Objective Optimization 

Evolutionary Algorithm (Dmoea) 

MOEAs common purpose is to find a set of optimal 

solutions by using several strategies, to balance the 

diversity, and the convergence to the Pareto-optimal 

solutions. However, this ultimate goal is far from being 

accomplished by all MOEAs. One of the negative 

aspects that made them move away from their goals, is 

the fixed population size to initiate the evolutionary 

process. Indeed, it is often hard and inefficient to solve 

MOPs by MOEAs with fixed population sizes, since 

they have to homogeneously distribute the 

predetermined computation resource to all the possible 

directions in the objective space [16]. In fact, MOEAs 

may suffer from premature convergence if the 

population size is too small, whereas if the population 

size is too large, undesired computational resources may 

be incurred and the computational time for a fitness 

improvement may be too long in practice [18]. 

 Dynamic multi-objective evolutionary algorithm 

(DMOEA) is an evolutionary algorithm, which was 

proposed by Lu and Yen in [15]. DMOEA’s aim is to 

obtain a Pareto front with a desired resolution because 

the shape and size of the true Pareto front are unknown 

a priory for most of the MOPs [20]. 

DMOEA is based on adaptive cell-based rank density 

estimation, where the objective space is considered as a 

grid; the number of its cells depends on the dimension 

of the MOP and the grid-scale in each dimension. 

DMOEA consists of four main functions; the first 

function is the initial cell-based rank density calculation 

scheme which initializes principal variables as initial 

population size to create a population of initial 

individuals, calculates cells width, initializes objective 

functions, and creates a grid that contains a number of 

cells defined in each dimension depending on the grid-

scale given by the multi-objective problem. The second 

function is a population growth strategy which aims to 

make the population size bigger than the initial one to 

increase the probability of obtaining better individuals. 

After that, DMOEA uses crossover and mutation 

functions to create new offspring. These functions are 

good for creating more individuals which means an 

increase in the population size. However, this increase 

will not stop without the intervention of another 

function to reduce the continuous reproduction of 

individuals. This function is the population declining 

strategy which represents the third main function of 

DMOEA. It reverses the work of the population growth 

strategy by decreasing population size by using the 

killing technique to kill each individual that has an age 

bigger than the age threshold defined by the MOP, to get 

finally the desired population with the desired size. The 

last main function is the objective space compression 

strategy to get the real objective space of Pareto front 

individuals. 

DMOEA should stop by examining the 3 stopping 

criteria [20]: 

• The rank values of all cells are one, 

• The objective space cannot be compressed anymore, 

• And finally, each resulting non-dominated cell 

contains ppv individuals (ppv stands for a given 

population size per unit volume). 

The reason for this step is due to the fact that another 

criterion, the Pareto ranks of all resulting individuals 

equal to one, should be satisfied as well to guarantee 

there is no dominance relationship among the resulting 

Pareto solutions at the final generation. Taking into 

consideration all procedures of DMOEA, Figure 2 

shows the flowchart of DMOEA algorithm steps. 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

Figure 2. DMOEA algorithm flowchart [10]. 
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4. A Parallel Version of Dynamic Multi-

Objective Optimization Evolutionary 

Algorithm (Pdmoea) 

The proposed Parallel Dynamic Multi-Objective 

Optimization Evolutionary Algorithm (PDMOEA) is 

based on a multiprocessing framework and master\slave 

technique. The master process creates n processes. As it 

is shown in Figure 3 PDMOEA divides the Generations 

Number (NbG) into n processes, and each process 

executes DMOEA with NbG/n generations. Then, the 

best results of one of the processes are selected. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

Figure 3. Division framework of generations’ number of PDMOEA 

[10]. 

PDMOEA algorithm has the same main functions as 

DMOEA but the only difference is that PDMOEA 

divides generation's number into n threads. After 

dividing the generation number by the n threads each 

process will create an initial population and makes it 

grow and decline until it gets the desired population size 

with the best solutions. Figure 4 depicts the global 

architecture of the PDMOEA implemented system. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Figure 4. Parallel global design [10]. 

Indeed, in this work, we have already implemented a 

sequential version of DMOEA following an object 

programming style. Then, in the parallel version we 

have added a new method, called PDMOEA, to the class 

Population of the program (See Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Parallel DMOEA version classes diagram [10]. 
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Algorithm 1 PDMOEA method 

q:=mp.Queue() 

poolprocess:=[] 

i:=1 

while i<=n do 

p:=mp.Process(target=self.mainloop) 

p.start() 

poolprocess.append(q.get()) 

p.join() 

i:=i+1 

end while 

5. Experimental Study 

In this experimental study, we aim to compare the 

performance of the two versions of DMOEA; the 

sequential one versus the parallel one PDMOEA. For 

testing the proposed Parallel DMOEA (i.e., PDMOEA), 

the multi-objective problem presented in [30] is used as 

a case study. This problem was designed by Deb as the 

preliminary test function that has a discontinuous Pareto 

front. Equations 1 and 2 give the two objective functions 

of the considered problem. This problem represents a 

minimization problem. It aims to minimize f1(x1, x2) and 

f2(x1, x2), where: 

𝑓1(𝑥1, 𝑥2) = 𝑥1  

𝑓2(𝑥1, 𝑥2 ) = (1 + 𝑥2 ) × (1 −
𝑥1 

1+𝑥2 
)

2
−

𝑥1 

1+𝑥2 
× 10𝜋

𝑥1 

1+𝑥2 
    

Subject to 0 ≤ x1, x2 ≤ 1. 

5.1. Parameter Settings 

Both DMOEA and PDMOEA are implemented using 

the Oriented Object Programming (OOP) paradigm and 

using a set of software and hardware which are 

summarized in Table 1. 

Table 1. Software/hardware versions [10]. 

Software/Hardware Version 

OS Microsoft Windows 10 
Professional, 64bits, version 

version 10.0.17134 

CPU Intel(R) Core(TM) i7-4500U 

CPU 
@1.80GHz 2.40GHz 

RAM 8.00Go 

Python Interpreter 3.7.0 

PyCharm 2016.3.1 

matplotlib 2.0.0 

Tkinter 8.6 

5.2. Comparative factors 

Comparative factors mean indexes that we observe each 

time as outputs of each execution. These factors are, in 

fact, the results obtained every time we execute both 

versions. They will be mentioned in the following 

subsections in this experimental study. 

1. Desired population size: as mentioned in paper [30] 

the desired population size at generation n noted 

dps(n), with the desired population size per unit 

volume ppv (a user-specified parameter), and an 

approximated number of trade-offs hyper-areas Ato, 

is defined as: 

𝑙𝑜𝑤𝑏𝑝𝑠 < 𝑑𝑝𝑠(𝑛) = 𝑝𝑝𝑣 × 𝐴𝑡0(𝑛) < 𝑢𝑝𝑏𝑝𝑠 

Where low bps and up bps are the lower and upper 

bounds for the desired population size dps(n), 

respectively. In paper [5], the authors applied a method 

used to estimate the approximated number of hyper-

areas by: 

 𝐴𝑡0 ≈
𝜋(𝑚−1)

2
𝑚−1

2
!

× (
𝑑(𝑛)

2
)

(𝑚−1)

               

Where m is the number of objectives and d(n) is the 

diameter of the hypersphere at generation n. In 

DMOEA, instead of estimating the trade-off hyper-

areas Ato at each generation n, we concentrate on 

searching for a uniformly distributed and well extended 

final set of trade-off hyper-areas and ensure that each of 

these areas contains ppv number of non-dominated 

individuals. Therefore, by using DMOEA, the optimal 

population size and final Pareto front will be found 

simultaneously at the final generation. 

Desired population size dps(n) is approximated and 

when we approach it will be better. To get a fair 

comparison, this value is calculated in the same way in 

both versions in DMOEA and PDMOEA. 

2. Improving the objective space: MOEAs are often run 

with the goal of approximating the whole Pareto front 

and most MOEAs are designed to do this on 

problems of arbitrary parameter space and objective 

space dimension [11]. Today, some test functions are 

scalable in both parameter and objective dimension; 

and some performance indicators are also suitable for 

many objective problems. These advances have made 

it possible to compare performance of MOE 

algorithms when the number of objectives is scaled 

up beyond the typical two or three. As our studied 

MOP is to minimize the objective space, the best 

result will be the result of the one who minimized 

more than the other as an improvement of the 

objective space. We can explain it as the standard 

definition of Pareto dominance in the objective space 

is used. Assuming minimization, without loss of 

generality: x dominates y. 

3. Computational time: one of the main reasons for 

using PEAsis to obtain efficient algorithms with an 

execution time much lower than that of their 

sequential counter parts in order to tackle more 

complex problems. This naturally leads to measuring 

the speedup of the PEA. PEAs have sometimes been 

reported to provide super-linear performances for 

different problems [12]. 

(1) 

(3) 

(2) 

(4) 
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5.3. Results and Discussion 

Indeed, several multi-objective optimization 

evolutionary algorithms (MOEA) are proposed to 

search for a uniformly distributed, near-optimal, and 

near-complete Pareto front for a given MOP. However, 

this common goal is far from being accomplished by all 

MOEAs. In this study, we have implemented two other 

MOEAs (NSGA-II and SPEA-II) which do not use 

dynamic population size. Using these implementations, 

we provide a comparative study of sequential DMOEA 

versus (NSGA-II and SPEA-II), then a comparative 

study between DMOEA and PDMOEA. Finally, we 

studied how the increase of processes number in 

PDMOEA influences its performance. 

1. DMOEA Versus NSGA-II and SPEA-II 

In this section, we compare DMOEA with two other 

multi-objective evolutionary algorithms namely NSGA-

II and SPEA-II. Table 2 lists the specific parameter 

settings for the function of the studied MOP [20]. Table 

3 illustrates the parameters setting for all the test 

functions as global parameters. 

Table 2. Specific parameter setting for mop 1. 

 
Initial 

pop size 

External 

pop size 
ppv Grid Scale Age threshold 

Tourn-

ament 

size 

DMOEA 2 - 3 (30,30) 10 - 

NSGA-II 100 0 - - - 2 

SPEA-II 80 20 - - - - 

Table 3. Specific parameter setting for all the test functions. 

Crossover rate 0.7 

Maximum number of generations 10000 

Number of runs 50 

The results of this comparison are represented in the 

following Figures 6, 7, 8. Figure 6 represents the final 

objective space and the Pareto front of NSGA-II, Figure 

7 represents the objective space as a final result of 

SPEA-II, and Figure 8 shows the result of executing 

DMOEA based on previous setting parameters in Tables 

2, 3. 

 

Figure 6. NSGA-II pareto front. 

 

Figure 7. SPEA-II pareto front 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. DMOEA pareto front. 

Considering the three figures, it is clear by a visual 

observation that the objective space was improved in 

DMOEA better than the other MOEAs. 

2. DMOEA Versus PDMOEA 

In order to compare the efficiency and the performance 

of our parallel version PDMOEA to the sequential 

DMOEA, using the implementation of the studied MOP 

[20], we adopt the parameters in Table 4. 

Table 4. Specific parameter setting for DMOEA and PDMOEA. 

Initial population size 30 

Grid scale 1 50 

Grid scale 2 100 

Dimension 2 

Generation number 10000 

Age threshold 10 

ppv 5 

Runs number 30 

It is worth noting that the most important thing we 

have talked about is the generation number input 

because as we had seen before in PDMOEA the number 

of a generation will be divided into four processes, thus 

each process takes a quarter of this generations number. 

Hence, we start with a big generation's number of 

DMOEA and PDMOEA to avoid that division into four 

threads will not be adversely affected by the desired 

population that we will have. 

We have compared the results of both versions and 

we concluded that in each execution of both versions 

using the same inputs, PDMOEA performs better than 

DMOEA at least in one of the three outputs that the user 

aims to improve. To prove the power of the evolutionary 
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algorithm using parallel computing, we have to use the 

formula in eq. 4 to calculate the trade-off hyper-areas Ato 

of the last generation based on the desired population 

number dps (n). Whenever the trade-off hyper-areas Ato 

is bigger, the PDMOEA will be better in desired 

population size comparison factor. Also, time is 

considered better when it was moreminimized. We 

recall that we keep using the same parameters illustrated 

in Table 2 for both DMOEA and PDMOEA.  

 

Figure 9. Population size comparison (DMOEA vs PDMOEA). 

 

 

 

 

 

 

 

 

 

Figure 10. Average rank comparison (DMOEA vs PDMOEA).  

 

Figure 11. Average density comparison (DMOEA vs PDMOEA). 

 

 

 

 

 

 

Figure 12. Objective space comparison (DMOEA vs PDMOEA). 

The obtained results are represented in Figure 6 

collecting DMOEA and PDMOEA curves. These 

results depict the comparison of performance metrics 

(i.e., population size, rank, density, and the objective 

space). In both DMOEA and PDMOEA, rank converges 

to be one, density converges to the desired population 

size per unit volume ppv and the desired population size 

is obtained finally. However, DMOEA executes all the 

generations (i.e., 10000 generations) but PDMOEA 

executes just 2500 generations which improves the CPU 

running time. The obtained population size from 

running PDMOEA achieves a smaller size than in 

DMOEA. The objective space obtained by running 

PDMOEA is improved better than DMOEA because 

PDMOEA guarantees the convergence to smaller 

values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Objective space and running CPU time comparison. 

Figure 13 represents the improvement of objective 

space and the running CPU time. PDMOEA 

outperforms DMOEA such that it improves the 

objective space in a short running CPU time. However, 

the number of solutions in the Pareto front obtained 

from running PDMOEA is smaller than those obtained 

from running DMOEA. 
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From Figure 13 in DMOEA the desired population 

size dps (n) is 62. Using eq.3, the trade-off hyper-areas 

Ato is approximately equal to 12 based on the desired 

population per unit volume ppv supposed to be 5 (see 

Table 5. While the desired population size dps (n) 

obtained from PDMOEA is 203 and the trade-off hyper-

areas Ato is approximately equal to 40. Thus, the desired 

population size of PDMOEA is better than DMOEA. On 

another hand, the execution time in PDMOEA is better 

four times than DMOEA, and the objective space of 

PDMOEA is improved compared to DMOEA. 

3. The effect of the processes number on the 

performance of PDMOEA 

Programming distributed-memory multiprocessors and 

networks of workstations requires deciding what can be 

executed concurrently, how processes communicate, 

and where data is placed. These decisions can be made 

statically by a programmer or the compiler, or they can 

be made dynamically at run time [14]. 

In this paper, we have experimented PDMOEA on 

the Mutli-Objective Problem described in [20]. In the 

previous sections, we have provided experimentation 

results with a number of processes fixed to 4. This 

section aims to study the impact of increasing the 

number of processes on the performance of PDOMEA. 

Three configurations are compared: 2, 4, and 8 

processes. Table 5. Shows settings used in this 

experimentation. The results of this experimentation are 

illustrated in Figures 8, 9, 10. 

Table 5. Specific parameter setting for PDMOEA. 

Initial population size 2 

Grid scale 1 50 

Grid scale 2 100 

Dimension 2 

Generation number 16000 

Age threshold 10 

ppv 5 

Run number 1 

Processes number 2, 4, 8 

Figure 8. Shows the results of DMOEA versus 

PDMOEA when the number of processes in parallel 

version is 2. 

  

Figure 14. Results when processes number = 2. 

Figure 15 shows the results of DMOEA versus 

PDMOEA when the number of processes in parallel 

version is 4. 

 

Figure 15. Results when processes number = 4. 

Figure 15 shows the results of DMOEA versus 

PDMOEA when the number of processes in parallel 

version is 8. 

  

Figure 16. Results when processes number = 8. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟
 > 1000 

We observe that each time we increase the number of 

processes, we get better results especially the 

computational time. However, this benefit is limited by 

a a threshold (a specific number of processes) which 

makes the generations number in each process converge 

to be less than 1000 because the decline population 

strategy starts when the number of generations is more 

than 500 and it takes around 500 generations to get the 

desired population size. We conclude that the increase 

of processes number is beneficial while the number of 

each process achieves formula in equation5. 

6. Conclusions 

Multi-Objective Optimization Evolutionary Algorithms 

(MOEAs) may be computationally quite demanding 

because instead of searching for a single optimum, one 

generally wishes to find the whole front of Pareto-

optimal solutions.  

We have implemented a DMOEA on the same test 

functions proposed in [20] to get the optimal set of 

results compared with other evolutionary algorithms. 

Without forgetting that the main objective of this study 

is not limited to implement this DMOEA with its 

sequential version and being satisfied with its results, 

(5) 
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but the main aim is to search for improved results in 

term of minimizing computational time, improving 

objective space and converging to the desired 

population size. Thus, we have proposed and 

implemented a first parallel version of the DMOEA 

namely PDMOEA. 

We consider that the parallel implementations of 

MOEAs is an appropriate way for improving results in 

terms of improving objective space and minimizing 

computational time. PDMOEA is the first parallel 

version of the dynamic DMOEA in literature. The 

proposed PDMOEA outperforms DMOEA in terms of 

three criteria: improving objective space, minimizing 

computational time and converging to the desired 

population size. The increase of processes number in 

PDMOEA is beneficial while the number of each 

process achieves a given formula (equation 5 in this 

paper). 

As a future research direction, we intend to apply 

PDMOEA on a real-world problem and compare it with 

other state-of the- art parallel MOEAs. 
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