
The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022 413

Driving Signature Analysis for Auto-Theft

Recovery

Adrian Bosire

Computer Science Department,

Kiriri Womens University of Science and Technology,

Kenya

bosire.adrian@kwust.ac.ke

Damian Maingi

Department of Mathematics,

Sultan Qaboos University,

Oman

 dmaingi@squ.edu.om

Abstract: Autotheft is a crime that can be mitigated using artificial intelligence as a scientific approach. In this case, we assess

the drivers driving pattern using both deep neural network and swarm intelligence algorithms. From the analysis we are able to

obtain the driving signature of the driver which can be associated with the vehicle. The vehicle is then tracked and monitored.

Next, a deviation from the usual driving signature of the owner or assigned driver would signify a possible instance of autotheft.

Subsequently, the vehicle can be traced and reclaimed by the owner. The algorithms are evaluated based on their performance

in analysing the datasets bearing variable features. The variations in features enable us to verify the efficacy and accuracy levels

of the various algorithms that are used in the study. The metrics used for evaluation are the Mean Squared Error and the F1

Score for precision, accuracy and recall functionality.

Keywords: Deep learning, swarm intelligence, driving signature, intelligent transportation system.

Received April 5, 2022; accepted April 28, 2022

https://doi.org/10.34028/iajit/19/3A/1

1. Introduction

The transport industry is essential in the growth of an

economy because it facilitates resource sharing, mainly

through communication and the transfer of goods and

services. The popular means of transport is motor

vehicles and this is marked by the elaborate road network

infrastructure in modern society. Furthermore, as

technology advances so does innovation, which

necessitates the advancement in the automation of

automobiles with an aim of improving the transportation

process. In order to reduce errors, which may lead to

accidents among other problems, vehicles have been

automated, which has also led to other inventions like

autonomous vehicles [11, 32]. These next generation

technologies are also associated with vices and crimes

such as auto-theft. As such, a need arises to curb the risks

with practical counter-measures. Among these

mitigating options, artificial intelligence presents itself

as a viable option that can be applied in the monitoring,

tracking, detection and recovery of stolen vehicles [3,

24].

Concerning the suitability of the algorithms present in

various categories, the performance of algorithms based

on deep learning supersedes the statistical-based

machine learning algorithms because of their meta-

heuristic properties [9, 34]. This means that optimality,

completeness, precision and speed are guaranteed via

carefully adjusted parameters and hyper parameters

present in the algorithms to assure confidence in the

obtained results [22].

This is an extended version of the conference paper

[8], in which we make use of the Deep Belief Network

(DBN) algorithm in addition to the Convolutional

Neural Network (CNN), the Recurrent Neural Network

with Long Short-Term Memory (RNN-LSTM), Deep

Boltzmann Machines (DBM), and Deep Auto Encoders

(AE). Moreover, we introduce the whale optimization

algorithm among the following bio-inspired algorithms:

particle swarm optimization, artificial bee colony, ant

colony optimization and bat algorithm. These algorithms

will be evaluated using the Figure 1. Score for accuracy

and precision in addition to the Mean Squared Error

which was used in the initial study [8]. Furthermore, in

this study both the Aggressive driving dataset [23] and

the Driving Behavior dataset [38] are used along with the

Vehicular Trace Dataset [30].

This article is organized in the following order: The

next section covers related work in the use of deep

learning for the automobile industry. The section that

follows is the methodology employed in performing the

experiments for this study. Thereafter, sections four and

five present the deep neural networks and swarm

intelligence algorithms used in the experiments. Then

section six discusses the attained results followed by a

conclusion in the final section.

2. Related Work

The approaches used in previous related studies

primarily rely on physical features of the stolen motor

vehicle during their tracking, detection and recovery.

Such approaches mostly rely on the use of license plate

mailto:bosire.adrian@kwust.ac.ke
mailto:dmaingi@squ.edu.om
https://doi.org/10.34028/iajit/19/3A/1

414 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

recognition, Global Position System (GPS) tracking

devices, sensors and other telecommunication devices

fitted into the vehicle. These devices are used for

geolocation and transmission of the vehicles position.

However, this approach is relatively reliable until such

devices are disabled, tampered with or even removed [2,

35].

Additionally, novel approaches have been introduced

which cover a broad spectrum from biometrics, driving

patterns as well as driver behavior analysis [1, 13, 16, 17,

19, 29, 36, 37]. However, the focus has been in areas

such as accident prevention, drivers’ intent prediction

and monitoring of the vehicle, it’s path or the driver’s

behavior [5, 6, 25, 39, 40]. The other authors who have

ventured into auto-theft detection have used some of the

previous methods mentioned earlier which are reliant on

the physical characteristics of the vehicle [21].

Deep analytics, which refers to the use of

sophisticated data processing techniques to yield

information, has also been applied in other studies

relating to automobile theft. The datasets may include

both unstructured and semi-structured data from

multiple sources [7, 14]. In this study, deep analytics is

applied on the analysis of the driver’s driving behavior,

consequently yielding the driver’s driving signature.

Monitoring of the driver’s driving signature would help

track a vehicle in transit and also detect a case of its theft.

3. Methodology

The objective of this study is to evaluate several deep

learning algorithms and swarm intelligence algorithms,

described in the next section, on the driver’s driving

behavior pattern. Generally, the procedure followed in

the implementation of the algorithms and subsequent

analysis of the datasets [23, 30, 38] is shown below.

1. Load the dataset.

2. Pre-process the data.

3. Define the algorithm.

4. Configure the hyper parameters and parameters.

5. Define the activation function.

6. Define the Loss/Cost function.

7. Train the algorithm.

8. Optimize the network obtained.

9. Test the results obtained.

A well-prepared dataset will enhance the likelihood of

obtaining better accuracy. The other configurations of

the algorithm may be done stepwise as the overall

reaction is observed so as to correctly analyze the dataset

and obtain optimal results.

 This research proposes the analysis of the driver’s

driving style in conjunction with the GPS data as a

signature to monitor and track a vehicle and also detect

its loss and recovery. The analysis of the driver’s

behavior will be done by the deep neural networks and

swarm intelligence algorithms whose performance will

be assessed based on the Mean Squared Error obtained

from the execution of benchmark functions: Ackley

function, Restringing function, Rosen rock function,

Sphere function, Schaffer function and Himmelblau’s

function. The results obtained from these algorithms will

be compared in order to instill the confidence needed to

guarantee the quality in terms of accuracy.

4. Deep Neural Network Algorithms

The deep learning algorithms under consideration are the

CNN, the RNN-LSTM, DBM, AE and DBN.

The CNN is actually popular in the analysis of images

and by extension computer vision. In this case, this

algorithm is used to systematically evaluate time series

data. The algorithm follows the procedure in which the

data’s features are extracted using feature detectors to

create feature maps which are then reduced through sum

pooling. This is followed by flattening of the pooled

feature maps which acts as the input layer for the

artificial neural network with several fully connected

hidden layers. The algorithm for the CNN is as follows

[20, 34]:

Algorithm 1: Convolutional Neural Network

Input:

Initialize weights to a small randomly generated value, set

learning rate to a small positive value, training period and the

number of layers.

Output:

Begin with iteration n = 1

For n < MaxIteration, do

Forward propagate through convolution, pooling and

then fully-connected layers

Derive Loss Function value for the data

Calculate the error term with respect to the weights for

each type of layer

Backpropagate the error generated and calculate the

change in gradient for both the weights ∇ wk

(layer)
 and bias

∇ bk

(layer)
respectively

Update the weights and bias respectively

End For.

The RNN-LSTM algorithm can process the current

input with respect to previously memorized input. This

information flow through the network is controlled

using the input gate i, forget gate f and output gate o

These three gates constitute the memory cell which

determines how much information to propagate through

the network and which data should be discarded. The

algorithm of the RNN-LSTM is shown in Algorithm 2

below [33].

Algorithm 2: Recurrent Neural Network with LSTM

Input:

Input sequence xi , training period T , learning rate ϵ , hidden

layer h and output sequence y.

Output:

Calculate the hidden vector sequence

For ∀ t = 1: T do,

At the input gate, calculate the effective data using

it = σ (wxixt + whiht-1 + wcict-1 + bi) where σ is the logistic

sigmoid function

 Driving Signature Analysis for Auto-Theft Recovery 415

At the forget gate, determine the data to retain using

f
t
 = σ (wxfxt + whfht-1 + wcfct-1 + bf)

Calculate the memory cell state using ct = σct-1+

ic tan h (wxcxt + whcht-1 + bc)
Determine the output to be passed out the memory cell using

Ot = f
t
 (wxoxt + whoht-1 + wcoct-1 + bo)

Then calculate the effective output of the hidden layer using ht =
Ot tan h (ct)
End for

Calculate the predicted output using y
t
 = f

t
 (whyht + by)

The DBM algorithm utilizes the global optimization

capability of simulated annealing. The visible input

neurons are clamped onto specific states while the

visible output neurons and the hidden neurons operate

freely. Boltzmann machines learn their weights using

simulated annealing. The correlation-based learning

procedure of the DBM is presented in algorithm 3 below

[12].

Algorithm 3: Deep Boltzmann Machine

Input:

Initialize 𝑤𝑖𝑗 as uniform random values in [-a0 , a0] , where

a0 = 0.5 or 1.

Set the initial temperature T0 and the final temperatures Tf

Output:

At the clamping phase, present the pattern and for each example

𝑥𝑖, perform simulated annealing until Tf is reached.

At each T, relax the network by the Boltzmann distribution for a

length of time through updating the states of the unclamped

(hidden) units

xi = {
+1, with probability Pi

 -1, with probability 1-Pi

Where Pi is calculated using;

Pi =
1

1 + e
-
neti
T

 and neti = ∑ wi
J
j = 1, j ≠ i x

Then update T by the annealing schedule and at Tf estimate the

correlation in the clamped condition using;

Pij
+=E[xi xj] where i, j=1,2,…,J; i ≠ j

At the free-running phase, only the input neurons are clamped

and the output neurons are free-running hence at Tf estimate the

correlation in the free-running condition using;

Pij
- = E[xi xj] where i, j = 1,2,…, J; i ≠ j

Perform the weight update using;

∆wij = η(Pij
+ - Pij

-) where i, j = 1,2,…, J; i ≠ j

Where η =
ε

T
 , with ε being a small positive constant

Repeat the steps above for next epoch until there is no change in

wij , ∀i , j.

The deep autoencoder makes use of several stacked

hidden layers that force the data to converge hence retain

only the optimal data that is suitable for predictions.

Furthermore, the non-linear hidden layers allow the

network to learn more complex encoding functions and

enhance higher precision. The following is the deep

autoencoder algorithm [10].

Algorithm 4: Deep Autoencoder Neural Network

Input:

Input matrix A ϵ {0, 1}m x n , where rows and columns

correspond to vector values for input features

Output:

Fix a number ℎ of hidden units (h ϵ N, h<m), and

a number 𝑑 of hidden layers (d ϵ {1, …, maxhl}

Training: for each driver profile ai of A, where i ϵ [1, m]:

for each 𝑑 hidden layer compute hidden activation ℎ𝑖 from the

input vectors

Compute reconstructed output �̂�𝑖 from hidden activation ℎ𝑖

Perform the stochastic gradient descent and compute the MSE

between ai and âi

Back-propagate error gradient to update weight parameters

Testing: for each driver profile ai of 𝐴, where i ϵ [1, m]:

autoencode ai and produce âi

Set âi as i
th

row of the output matrix Ã.

The DBN is a combination of Restricted Boltzmann

Machines (RBM) that are stacked. The initial RBM in

the stack contains undirected connections but the others

have directed connections that enable them to act as

feature detectors. RBMs are special DBM composed of

dual layer networks that allow for both intra-layer and

inter-layer connections. Therefore, DBN presents us

with a means of extracting and exploring knowledge

present in the hierarchical abstraction of the dataset. The

procedure of the DBN is presented in algorithm 5 below

[18, 31].

Algorithm 5: Deep Belief Network

Input:

Set the initial temperature T0, minimum temperatureTmin, intra-

layer iteration limitDmax , network overall iteration limitGmax ,

objective function threshold Rend , initial network depth D = 2

(input layer and output layer), and memory matrix I.

Output:
i. For i = 1: Dmax align all the symbols correctly

D = D + 1, T = T0

a. Generate Ni, form current network structure C based

on Ni, and calculate the reconstruction error R of C.
b. For j = 1: Gmax The new number of neurons N' is

randomly generated as the undetermined solution, the

DBN structure C' formed by N' is the candidate DBN

structure, and the reconstruction error R'

corresponding to C' is calculated.

i. If ΔR = R' - R < 0 or exp(-ΔR/T) > rand

C = C', j = 1: Gmax

ii. If j ≥ Gmax
1 or T ≤ Tmin or R ≤ Rend find Cbest in

matrix I and search the adjacent domain of Cbest

to obtain Cfinal
c. If D ≥ Dmax or R ≤ Rend return the optimal network

structure

5. Swarm Intelligence Algorithms

This study uses the following swarm intelligence

algorithms; Particle Swarm Optimization (PSO),

Artificial Bee Colony (ABC), Ant Colony Optimization

(ACO), Bat Algorithm (BA) and Whale Optimization

Algorithm (WOA).

The PSO algorithm mimics bird flocking and

predation. Thus, the particles represent birds in a search

space. The particles will fly in restricted directions of the

bounded search space which the group perceives to be

ideal. Their velocities are dynamically adjusted based on

416 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

both their individual experience and that of the other

particles in the population. Adjustment of the inertia

weight facilitates both the global and local search

capability of the algorithm during its implementation

[15].

Algorithm 6: Particle Swarm Optimization

Initialization:

For each particle i = 1, …, Np , do

i. Initialize the particle’s position with a uniformly

distribution as Pi(0) ~ U (LB, UB), where LB and UB

represent the lower

ii. and upper bounds of the search space

iii. Initialize 𝑝𝑏𝑒𝑠𝑡 to its initial position: pbest (i, 0) = Pi(0).

iv. Initialize 𝑔𝑏𝑒𝑠𝑡 to the minimal value of the swarm: gbest

(0) = argminf [Pi(0)].

v. Initialize velocity: Vi ~ U (-|UB-LB|, |UB-LB|).

Termination:

Repeat until a termination criterion is met

For each particle i = 1, …, Np, do

i. Pick random numbers: ri, r2 ~ U (0, 1)

ii. Update particle’s velocity using Vi (t + 1) = ωVi (t) +

c1r1 (pbest (i, t) - p
i
 (t)) + c2r2 (gbest (t) - Pi (t))

iii. Update particle’s position using Pi (t + 1) = Pi (t) +

Vi (t + 1).

iv. If f[Pi(t)] < f [pbest (i, t)], do

a. Update the best-known position of particle

i: pbest(i, t) = p
i
(t).

b. If f[Pi(t)] < f [gbest (i, t), update the swarm’s best-

known position: gbest(t) = p
i
(t).

v. t←(t+1);

Output gbest(t) that holds the optimal solution.

The ABC algorithm is dependent on the foraging

patterns of the honey bees in nature. The bees are split

into groups based on their responsibilities. The

unemployed onlooker bees will wait for the employed

bees who will use the waggle dance to communicate to

them about the viability of the food source based on the

quality and quantity of nectar. These bees will then be

recruited to that food source or alternatively start

scouting for potential food sources. The food sources in

this case are the plausible solutions available in the

search space. The quantity and quality of these solutions

is measured using fitness and probabilistic functions

respectively as shown in the algorithm steps below [17].

Algorithm 7: Artificial Bee Colony

Initialization:

For each bee i = 1, …, n, do

i. Initialize the positions of bees (xi = 1, …, SN)

ii. Randomly initialize the food sources within the search

space using xij = xj
min + rand (0, 1) (xj

max-xj
min) where xij

represents the parameter for ith employed bee on j
th

dimension

iii. Evaluate fitness (fit
i
) of the population

Termination:

Repeat until (iter ≤ MaxCycles)

i. Generate new positions which represent new solutions vij

by the employed bees and calculate the fitness value (fit
i
)

on the new population

ii. Apply greedy selection process between the initial

solutions (xij) and the resultant solutions (vij).

iii. Calculate the probability values (Pi) for the solutions (xi)

iv. Generate other new solutions (vi) for the onlookers from

the solutions (xi) selected depending on their (Pi) values

and evaluate the nectar quality of new positions using

(fit
i
).

v. Apply greedy selection process to solutions found by

onlooker bees.

vi. If there is an abandoned solution for the scout then

replace it with a new random solution (xi).
vii. Memorize the best solution so far (xbest ← xi || vi).

viii. Increment iteration (iter + 1)

Output (xbest) the best memorized solution.

The ACO algorithm is based on the foraging behavior of

ants which start by randomly exploring the area

surrounding their nest. The ant that finds a worthwhile

food source will evaluate the quality and quantity of the

food which determines the rate of pheromone it will

deposit on its trail back to the nest. The rest of the ants

evaluate the viability and shortest route to the source of

the food using the pheromones deposited on the trail as

a means of communication. Therefore, the essence of the

ACO approach is the pheromone model which uses a

probability function to evaluate the probable solutions in

each iteration measured by pheromones deposited and

further quantified using the evaporation rate. The

algorithm is presented below [26].

Algorithm 8: Ant Colony Optimization Algorithm

Initialization:

For each ant j = 1, …, na do

i. Initialize pheromones trail (T0)

ii. Assign best solution (Sbs) at any time in each iteration t

iii. Assign the minimum Tmin and maximum Tmax value for the

pheromone trail

iv. Store the best solution in each iteration (Sib)

Termination:

Repeat until a termination criterion is met

For j = 1, …, na do

i. Construct a solution (Sib) using a probabilistic function

ii. If Sib is a valid solution then optionally perform a local

search to find the best solution Sbs

iii. If (f(Sis, t) < f(Sbs, t) or Sbs = NULL) then Sbs ← Sib

iv. Update the pheromone bounds (Tmin , Tmax) using Tij ←

(1 - ρ) Tij, ∀(i, j) where ρ is the evaporation rate of the

pheromones which satisfies 0 < ρ ≤ 1

v. If (stagnation behavior detected) then initialize

pheromones trail (tmax)

vi. Update the iteration t ← (t + 1);

Output Sbs which is considered the optimal solution

The bat algorithm is another met heuristic optimization

algorithm based on the echolocation technique of

microbats which they use for detecting prey, avoiding

obstacles and locating their roosting crevices. These bats

emit short bursts of sound pulses whose echo is detected

by the bats and together with the time delay, detection

difference between the ears and pitch of the echo to build

a three dimensional view of their surroundings.

Therefore, the bat algorithm relies on the way bats fly

 Driving Signature Analysis for Auto-Theft Recovery 417

randomly from their crevices at a given velocity and emit

sound pulses at an adjustable frequency to locate their

food. The bat algorithm is presented below [4].

Algorithm 9: Bat Algorithm

Initialization:

For each bat i = 1, … , n, do

i. Initialize the bat positions xi (i = 1, …, n) and velocity vi

ii. Define the pulse frequency f
i
 at xi

iii. Initialize pulse rates r and the loudness A

Termination:

Repeat until (t < tmax)

i. Generate new solutions by;

a. adjusting frequency f
i
 = f

min
 + (f

max
 - f

min
)β, where β is

a random vector in the range of [0,1]

b. updating velocities vi
t = vi

t-1 + (xi
t-1 - xbest)f

i

c. update locations xi
t = xi

t-1 + vi
t

ii. If (rand > r), do

a. Select a solution among the best solutions

b. Generate a local solution around the selected best

solution

iii. Generate a new solution by flying randomly

iv. If (rand < A & f(xi) < f(xbest)) then accept the new

solutions

v. Rank the bats and find the current best xbest

Output the optimal solution (xbest).

The WOA is based on the hunting behavior of the

humpback whales. These whales may start by randomly

chasing the prey in order to encircle and capture it and

later on employ the bubble net strategy. This feeding

strategy enables the whales to survive in their

environment. The algorithm starts by assigning the

whale population with random solutions. This assumes

either a minimum or maximum value for the optimal

solution. Afterwards, the objective function is calculated

for each search agent which must update its location on

each iteration depending on their best solution. This is

then repeated until an optimal solution is found. The

whale optimization algorithm is presented below [27,

28].

Algorithm 10. Whale Optimization Algorithm

Initialization:

For each whale i = 1, … , n, do

i. Randomly initialize the whale population Xi (i = 1, …, n)

ii. Calculate the fitness of each search agent

Termination:

Repeat until (t < tmaxiterations)

i. For each search agent;

a. Update a, A, C, l, and p where A and C are coefficient

vectors and l is the logarithmic spiral

b. If (p < 0.5), and (|A| < 1)

i. Update the current search agent position by

 X(𝑡+1) = 𝑋∗
(𝑡) - A.D

ii. But if (|A| > 1) select a random search agent

Xrandand update the current search agent by

X(𝑡+1) = 𝑋𝑟𝑎𝑛𝑑 - A.D

c. Otherwise, If (p ≥ 0.5),

i. Update the position of the current search agent by

 X(𝑡+1) = D.𝑒𝑏𝑙 .cos(2𝜋𝑙) + 𝑋∗
(𝑡)

d. Check if any search agent goes beyond the search

space and amend it.

e. Calculate the fitness of each search agent.

ii. Update X* if there is a better solution t = t+1

Output the optimal solution X* = the best search agent

6. Experiments and Results

The deep neural network and swarm intelligence

algorithms are implemented in python programming

language. The parameters and hyper parameters of the

algorithms are configured and consistently adjusted on

several runs based on performance. In this study, there

were three datasets used as shown in Table 1.

Table 1. The datasets.

No. Dataset Short Name

1. Vehicular Trace Dataset [30] Dataset 1

2. Aggressive driving dataset [23] Dataset 2

3. Driving Behaviour dataset [38] Dataset 3

The performance of the algorithms was evaluated by

using the Mean Squared Error (MSE) defined in (1)

below.

MSE=
∑ (yi- ŷi)

2N
i = 1

N

Where is the predicted value and is the actual

value. The MSE is the average squared difference

between the predicted values and the actual values.

The datasets were split into three divisions during the

experiments; 70% for training, 20% for validation and

the other 10% for testing. The idea behind splitting the

datasets is to compare the results obtained with the

original values. This makes it easy to verify the accuracy

of the respective algorithms in terms of the obtained

results as shown in the MSE values of the three datasets

in Tables 2, 3, 4.

Table 2. The Mean Squared Error (MSE) obtained when performing driver behavior analysis on Dataset 1.

 Loss/Cost Function CNN RNN-LSTM DBM AE DBN PSO ABC ACO BA WOA

F1 Ackley Function 1.7329 0.4578 0.4101 1.7305 1.6791 0.7741 1.5038 1.2596 2.1733 0.8176

F2 Rastrigin Function 1.6521 1.5673 1.02947 0.6958 1.1738 2.4205 1.7396 2.6681 2.6908 2.0107

F3 Rosenbrock Function 1.7952 0.1203 1.0592 1.3942 0.7235 1.7103 1.8529 3.7305 2.5842 1.9958

F4 Sphere Function 2.0178 1.2995 2.3061 3.9148 2.7945 2.3059 0.4099 0.9426 3.2227 2.5132

F5 Schaffer Function 1.1262 1.4189 2.2979 2.7427 2.0046 1.9904. 1.0733 0.4471 2.6932 1.7661

F6 Himmelblau’s Function 2.4911 2.2194 3.9647 3.4031 2.4395 1.5390 2.5412 4.7841 4.6117 1.8326

(1)

418 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

Table 3. The MSE obtained when performing driver behavior analysis on dataset 2.

 Loss/Cost Function CNN RNN-LSTM DBM AE DBN PSO ABC ACO BA WOA

F1 Ackley Function 2.9472 1.3925 1.5650 1.0385 0.3221 1.4599 1.0251 1.0498 1.3490 1.4491

F2 Rastrigin Function 1.4482 1.9937 1.7932 1.7943 1.0629 2.4033 1.9245 1.1719 1.4962 2.1803

F3 Rosenbrock Function 2.1193 0.2847 1.9471 0.9221 1.3401 1.4042 1.2485 0.3421 2.5691 1.7601

F4 Sphere Function 2.6201 1.6005 2.4310 1.3339 1.2005 2.4309 1.3021 1.9032 1.9837 2.5152

F5 Schaffer Function 1.3492 1.2289 2.0122 1.7066 1.2054 2.4309 1.2294 1.4502 3.6501 2.3640

F6 Himmelblau’s Function 2.4503 1.5460 2.1132 1.9011 2.1201 2.2231 2.4025 1.5049 3.4402 2.3231

Table 4. The MSE obtained when performing driver behavior analysis on dataset 3.

 Loss/Cost Function CNN RNN-LSTM DBM AE DBN PSO ABC ACO BA WOA

F1 Ackley Function 2.0119 0.1039 1.4933 1.8873 1.2945 1.2997 1.0405 1.2143 2.2190 1.4578

F2 Rastrigin Function 1.2941 1.2833 1.9244 1.0095 2.5450 1.0037 1.6307 1.4552 2.3901 1.1365

F3 Rosenbrock Function 1.3921 0.0239 1.9930 1.4550 1.9745 1.7003 0.9017 1.2071 1.3081 1.9033

F4 Sphere Function 2.0143 1.3049 2.0078 2.3993 1.1067 1.9975 0.0630 1.5600 1.4501 2.0105

F5 Schaffer Function 1.3032 1.5822 1.4057 1.6770 1.2011 1.4367 1.3002 2.6722 1.2844 1.9274

F6 Himmelblau’s Function 1.9910 1.9925 2.4011 1.4401 2.3851 1.2829 1.8541 2.4901 2.0012 1.3966

Additionally, the accuracy (a), precision (p) recall (r)

and F1-score measures are used to verify the results

through assessing the predictability performance of the

algorithms. Hence, we are able to determine the number

of correct predictions against predictions made. These

measures are calculated as shown below.

a =
𝑇𝑃+ 𝑇𝑁

TP+𝐹𝑃+𝑇𝑁+𝐹𝑁

p 
𝑇𝑃

 + 𝐹𝑃

r 
𝑇𝑃

 + 𝐹𝑁

𝐹1 
2𝑝𝑟

 + 𝑟

Where the True Positive (TP), is the True Negative (TN),

is the False Positive (FP) and is the False Negative (FN).

In order to make use of the performance measures, we

generate a confusion or matching matrix representing the

frequency of the actual values against the predicted

values. Then, we calculate and tabulate the values as

shown in Table 5, from these values we are able to verify

the performance of the algorithms on the three datasets.

The results show that the RNN-LSTM algorithm has the

best overall F1 score of 97.78% in all the three datasets

followed by the ABC algorithm that performed better

amongst the swarm intelligence algorithms with a

maximum 96.5% F1 score. The CNN algorithm also

performed well on dataset III particularly on accuracy

(90.78%) and precision (94.16%). Moreover, the CNN

and PSO algorithms were second in performance to the

RNN-LSTM and ABC algorithms based on the F1

Scores. On average, the DNN performed better than the

swarm intelligence algorithms on all the three datasets.

Table 5. The accuracy, precision, recall and F1. Score values obtained for dataset 1, dataset 2 and dataset 3.

Dataset Measure CNN RNN-LSTM DBM AE DBN PSO ABC ACO BA WOA

1

Accuracy (a) 73.67% 95.02% 77.62% 89.05% 91.44% 91.69% 96.71% 87.90% 92.56% 93.83%

Precision (p) 97.97% 98.73% 88.72% 91.23% 94.31% 93.07% 97.21% 80.03% 86.55% 89.48%

Recall (r) 88.33% 96.84% 88.01% 92.52% 91.38% 91.71% 95.82% 83.07% 94.57% 93.21%

F1 Score 92.90% 97.78% 88.36% 91.87% 92.82% 92.38% 96.51% 81.52% 90.38% 91.31%

2

Accuracy (a) 85.84% 95.21% 91.38% 90.77% 79.52% 90.47% 92.46% 75.67% 92.45% 84.58%

Precision (p) 92.27% 97.04% 90.01% 88.39% 91.75% 89.16% 96.43% 85.61% 93.21% 93.18%

Recall (r) 92.15% 95.23% 88.68% 94.27% 86.38% 93.14% 92.32% 88.01% 92.18% 94.52%

F1 Score 92.21% 96.13% 89.34% 91.24% 88.98% 91.11% 94.33% 86.79% 92.69% 93.85%

3

Accuracy (a) 90.78% 91.26% 78.72% 90.11% 89.04% 90.14% 88.43% 85.45% 88.63% 79.46%

Precision (p) 94.16% 96.73% 80.46% 86.51% 93.48% 92.74% 93.16% 91.79% 84.72% 90.18%

Recall (r) 90.86% 93.77% 85.68% 90.94% 91.22% 90.68% 92.23% 80.77% 82.71% 91.25%

F1 Score 92.48% 95.23% 82.99% 88.67% 92.34% 91.70% 92.69% 85.93% 83.70% 90.71%

During the parameter tuning, results also show that the

depth of the deep neural networks in terms of the number

of hidden layers had a relatively minimal influence on the

predictability accuracy. This is because increasing the

number of hidden layers past 50 slowed down the

network and this had a minimal increase in relation to the

accurate predicted values.

Furthermore, the breadth of the network in terms of

the number of neurons per layer had a correlation with

the number of features that were being observed in the

dataset. This is because increasing the number of neurons

past 20 did not make a significant change in the MSE.

The RNN-LSTM performed relatively better than the

other algorithms.

Generally, increasing the breadth and depth of the

network had a relatively small impact on the performance

in terms of classification and matching of the drivers with

their driving pattern. However, there was some

dependence on the features being observed. This means

that observing fewer features for a larger dataset

(2)

(3)

(4)

(5)

 Driving Signature Analysis for Auto-Theft Recovery 419

increased the confidence levels for the predictability

compared to many features for the same large dataset.

The ABC algorithm and the PSO algorithm also made

good predictions although the bio-inspired algorithms

made significant changes when the parameters were

slightly changed. This is unlike the deep neural networks

which were dependent on the hyper parameter changes

in order to lower the errors in predictions.

Overall, there was a high dependence of both hyper

parameter and parameter tuning to feature selection to

achieve accurate prediction by the algorithms.

7. Conclusions

The ultimate objective of this study was to use the results

as a means of specifically identifying a driver based on

their driving pattern and using this information to detect

and possibly recover a stolen vehicle. The results

obtained show that this is possible and presents

possibilities for further research.

The analysis of driving behavior provides insight to

the vehicles design, safety of the occupants, quality and

maintenance. Therefore, there are several aspects of any

driver’s behavior that can be studied in order to help us

understand how we can improve the quality of driving

and assure safety.

Furthermore, the driver’s driving signature is

dependent upon their experience and skill as exhibited

by their reactions over time. This is dynamic owing to

the fact that their reactions may change, more so, when

other extenuating factors are involved such as the

weather, road condition or the kind of occupants present

in the vehicle.

Acknowledgment

This work was supported by Kiriri Women’s University

of Science and Technology.

References

[1] Aishwarya K. and Manjesh R., “A Novel

Technique for Vehicle Theft Detection System

Using MQTT on IoT,” in proceeding of

International Conference on Communication,

Computing and Electronics Systems, Singapore,

pp. 725-733, 2020.

[2] Alhussein M., Aurangzeb K., and Haider S.,

“Vehicle License Plate Detection and Perspective

Rectification,” Elektronika Ir Elektrotechnika, vol.

25 no. 5, pp. 47-56, 2019.

[3] Alsrehin N., Klaib A., and Magableh A.,

“Intelligent Transportation and Control Systems

Using Data Mining and Machine Learning

Techniques: A Comprehensive Study,” IEEE

Access, vol. 7, pp. 49830-49857, 2019.

[4] Bangyal W., Ahmad J., Rauf H., and Pervaiz S.,

“An Improved Bat Algorithm Based on Novel

Initialization Technique for Global Optimization

Problem,” International Journal of Advanced

Computer Science and Applications, vol. 9 no. 7,

pp. 158-166, 2018.

[5] Bernardi M., Cimitile M., Martinelli F., and

Mercaldo F., “Driver and Path Detection Through

Time-Series Classification,” Journal of Advanced

Transportation, pp. 1-20, 2018.

[6] Bhalerao J., Kadam A., Shinde A., Mugalikar V.,

and Bhan H., “Proposed Design on Driver

Behavioral Analysis,” International Journal of

Engineering Research and Technology, vol. 9, no.

5, pp. 554-557, 2020.

[7] Bhuyan H. and Pani S., Intelligent Data Analytics

for Terror Threat Prediction: Architectures,

Methodologies, Techniques and Applications,

Wiley Online Library, 2021.

[8] Bosire A. and Maingi D., “Using Deep Analysis of

Driver Behavior for Vehicle Theft Detection and

Recovery,” in proceedind of International Arab

Conference on Information Technology, Oman,

pp. 1-6, 2021.

[9] Chalapathy R. and Chawla S., “Deep Learning for

Anomaly Detection: A Survey,”

arXiv:1901.03407v2 [cs.LG], 2019.

[10] Chicco D., Sadowski P., and Baldi P., “Deep

Autoencoder Neural Networks for Gene Ontology

Annotation Predictions,” in proceeding of The 5th

ACM Conference on Bioinformatics,

Computational Biology, and Health Informatics,

New York, pp. 533-540, 2014.

[11] Dong Z., Shi W., Tong G., and Yang K.,

“Collaborative Autonomous Driving: Vision and

Challenges,” in proceeding of International

Conference on Connected and Autonomous

Driving, USA, pp. 17-26, 2020.

[12] Du K. and Swamy M., Neural Networks and

Statistical Learning, Springer, 2019.

[13] Elngar A. and Kayed M., “Vehicle Security

Systems Using Face Recognition Based on

Internet of Things,” Open Computer Science, vol.

10, no. 1, pp. 17-29, 2020.

[14] Feng M., Zhen J., Ren J., Hussein A., Li X., Xi Y.,

and Liu, Q., “Big Data Analytics and Mining for

Effective Visualization and Trends Forecasting of

Crime Data,” IEEE Access, vol. 7, pp. 106111-

106123, 2019.

[15] Gao D., Li X., and Chen H., “Application of

Improved Particle Swarm Optimization,”

Mathematical Problems in Engineering, vol. 2019,

pp. 1-10, 2019.

[16] Girma A., Yan X., and Homaifar A., “Driver

Identification Based on Vehicle Telematics Data

using LSTM-Recurrent Neural Network,” in

proceedind of the IEEE 31st International

Conference on Tools with Artificial Intelligence,

USA, pp. 894-902, 2019.

https://link.springer.com/book/10.1007/978-981-15-2612-1
https://link.springer.com/book/10.1007/978-981-15-2612-1

420 The International Arab Journal of Information Technology, Vol. 19, No. 3A, Special Issue 2022

[17] Hakli H. and Kiran M., “An improved artificial bee

colony algorithm for balancing local and global

search behaviors in continuous optimization,”

International Journal of Machine Learning and

Cybernetics, vol. 11, n. 9, pp. 2051-2076, 2020.

[18] Jiang J., Zhang J., Zhang L., Ran X., Jiang J., and

Wu Y., “DBN Structure Design Algorithm for

Different Datasets Based on Information Entropy

and Reconstruction Error,” Entropy, vol. 20, no.

12, pp. 1-18, 2018.

[19] Kang Y., Park K., and Kim H., “Automobile Theft

Detection by Clustering Owner Driver Data,” in

Procceding of the "17th Escar Europe : Embedded

Security in Cars, Ruhr-Universität Bochum, pp.

185-199, 2019.

[20] Khan A., Sohail A., Zahoora U., and Qureshi A.,

“A Survey of the Recent Architectures of Deep

Convolutional Neural Networks,” Artificial

Intelligence Review, vol. 53, no. 8, pp. 5455-5516,

2020.

[21] Kommaraju R., Kommanduri R., Lingeswararao

S., Sravanthi B., and Srivalli C., “IoT Based

Vehicle (Car) Theft Detection,” in proceeding of

International Conference on Image Processing

and Capsule Networks, pp. 620-628, 2020.

[22] Koutsoukas A., Monaghan K., Li X., and Huan J.,

“Deep-learning: Investigating Deep Neural

Networks Hyper-Parameters and Comparison of

Performance to Shallow Methods for Modeling

Bioactivity Data,” Journal of Cheminformatics,

vol. 9 no. 42, pp. 1-13, 2017.

[23] Kumar V. and Veerala, K., “Aggressive driving

dataset,” Retrieved from

https://www.kaggle.com/datasets/veeralakrishna/

aggressive-driving-data, 2022.

[24] Li J., Cheng H., Guo H., and Qiu S., “Survey on

Artificial Intelligence for Vehicles,” Automotive

Innovation, vol. 1, no. 1, pp. 2-14, 2018.

[25] Martinelli F., Mercaldo F., Orlando A., Nardone

V., Santone A., and Sangaiah A., “Human

Behavior Characterization for Driving Style

Recognition in Vehicle System,” Computers and

Electrical Engineering, vol. 83, pp.102504, 2020.

[26] Mavrovouniotis M., Muller F., and Yang S., “Ant

Colony Optimization With Local Search for

Dynamic Traveling Salesman Problems,” IEEE

Transactions on Cybernetics, vol. 47, no. 7, pp.

1743-1756, 2016.

[27] Mirjalili S. and Lewis A., “The Whale

Optimization Algorithm.” Advances in

Engineering Software, vol. 95, pp. 51-67, 2016.

[28] Mohammed H., Umar S., and Rashid T., “A

Systematic and Meta-Analysis Survey of Whale

Optimization Algorithm,” Computational

Intelligence and Neuroscience, vol. 2019, pp. 1-

27, 2019.

[29] Ramesh M., Akruthi S., Nandhini K., Meena S.,

Gladwin S., and Rajavel R, “Implementation of

Vehicle Security System using GPS,GSM and

Biometric,” in proceeding of Women Institute of

Technology Conference on Electrical and

Computer Engineering, India, pp. 71-75, 2019.

[30] Rettore P., “Vehicular Trace Data, ” Retrieved

from http://www.rettore.com.br/prof/vehicular-

trace, 2022.

[31] Rizk Y., Hajj N., Mitri N., and Awad M., “Deep

Belief Networks and Cortical Algorithms: A

Comparative Study for Supervised Classification”

Applied Computing and Informatics, vol. 15, no. 2,

81-93, 2019.

[32] Rodg J. and Jaiswal S., “Comprehensive Overview

of Neural Networks and its Applications in

Autonomous Vehicles,” Computational

Intelligence in the Internet of Things, pp. 159-173,

2019.

[33] Sherstinsky A., “Fundamentals of Recurrent

Neural Network (RNN) and Long Short-Term

Memory (LSTM) Network,” Physica D:

Nonlinear Phenomena, vol. 404, pp. 1-43, 2020.

[34] Shrestha A. and Mahmood A., “Review of Deep

Learning Algorithms and Architectures,” IEEE

Access, vol. 7, pp. 53040-53065, 2019.

[35] Singh S. and Kumar, P., “Automatic Car Theft

Detection System Based on GPS and GSM

Technology,” International Journal of Trend in

Scientific Research and Development, vol. 3, n. 4,

pp. 689-692, 2019.

[36] Villa M., Gofman M., and Mitra S., “Survey of

Biometric Techniques for Automotive

Applications,” Information Technology - New

Generations, vol. 738, pp. 475-481, 2018.

[37] Wang W., Xi J., and Zhao D., “Driving Style

Analysis Using Primitive Driving Patterns With

Bayesian Nonparametric Approaches,” IEEE

Transactions on Intelligent Transportation

Systems, vol. 20, no. 8, pp. 2986-2998, 2018.

[38] Yüksel A. and Atmaca S., “Driving Behavior

Dataset,” Retrieved from

https://doi.org/10.17632/jj3tw8kj6h.3, 2022.

[39] Zhang J., Wu Z., Li F., Xie C., Ren,T., Chen J.,

and Liu L, “A Deep Learning Framework for

Driving Behavior Identification on In-Vehicle

CAN-BUS Sensor Data,” Sensors, vol. 19, no. 6,

pp. 1-17, 2019.

[40] Zinebi K., Souissi N., and Tikito K., “Driver

Behavior Analysis Methods: Applications oriented

study,” in proceeding of The 3rd International

Conference on Big Data, Cloud and Applications

- BDCA'18, Morocco, 2018.

https://ieeexplore.ieee.org/author/37085366218
https://ieeexplore.ieee.org/author/37072747600
http://www.rettore.com.br/prof/vehicular-trace/
http://www.rettore.com.br/prof/vehicular-trace/

 Driving Signature Analysis for Auto-Theft Recovery 421

Adrian Bosire is a PhD candidate at

Jomo Kenyatta University of

Agriculture and Technology, Juja,

Kenya. He received his B.Sc. degree

in Information Technology from the

Jomo Kenyatta University of

Agriculture and Technology, Juja,

Kenya in 2010. He earned his M.Sc. degree in

Information Technology from Preston University,

Kohat, Pakistan in 2014. His research interests include

artificial intelligence, deep learning, intelligent transport

systems and cyber-security.

Damian Maingi is an Associate

Professor at Sultan Qaboos University

(SQU), Muscat, Oman. He received

his PhD in Algebraic Geometry at the

Universite de Nice Sophia-Antipolis

in Nice, France in 2010. He got his

MSc degree in Mathematics at the

University of Nairobi (UoN) in 2005. He graduated with

a BSc Mathematics degree in 2002 from the University

of Nairobi. His current research interests are vector

bundle construction and deep learning.

