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Abstract: Online clustering, in an evolving high dimensional data is an amazing challenge for data mining applications. 

Although, many clustering strategies have been proposed, it is still an exciting task since the published algorithms fail to do 

well with high dimensional datasets, finding arbitrary shaped clusters and handling outliers. Knowing fractal characteristics 

of dataset can help abstract the dataset and provide insightful hints in the clustering process. This paper concentrates on 

presenting a novel strategy, FractStream for clustering data streams using fractal dimension, basic window technology, and 

damped window model. Core fractal-clusters, progressive fractal-cluster, outlier fractal clusters are identified, aiming to 

reduce search complexity and execution time. Pruning strategies are also employed based on the weights associated with each 

cluster, which reduced the usage of main memory. Experimental study of this paper over a number of data sets demonstrates 

the effectiveness and efficiency of the proposed technique. 
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1. Introduction 

Huge amount of streaming data is generated in recent 

years for example internet traffic flow, sensor data, 

medical systems, online transactions etc., Stream data 

flows in and out of a system continuously and with 

varying update rates. They are fast changing, massive, 

potentially infinite and unbounded [14]. By the virtue of 

Data stream characteristics, stream clustering became 

challenging due to limited memory and real time query 

response requirements. Massive volumes of data should 

be handled with limited memory. We cannot scan such 

huge amount of data more than once [15]. New 

concepts may keep evolving in data streams over time. 

Evolving concepts require data stream processing 

algorithms to continuously update their models to adapt 

the changes. Fractal dimension is a powerful tool to 

describe self-similarity, and changes in the correlation 

dimension imply changes of data distribution, which 

can be used to indicate changes in data trends. 

Summaries of the processed data help in computing 

important statistics of new clusters with the arrival of 

new points [6]. In data stream mining the proposed 

algorithm should handle online clustering meritoriously 

and should maintain the clusters considering the 

potentiality of clusters. Time plays a major role in data 

stream clustering as a data point belonging to a cluster 

in some time horizon can become an outlier in some 

other time horizon as most recent data plays an 

important role. Similarly, in a cluster where there are no 

data points in one time horizon may accommodate more 

points in another time horizon making it more 

progressive. So the proposed algorithm should maintain 

a balance not to reject the outliers at once, but should 

wait for some time to remove it as outlier aiming to 

find clusters of arbitrary shape. A large number of 

clustering algorithms [20] for data streams have been 

proposed, where the similarity of the objects is 

defined with use of some distance measure or 

objective function. The proposed algorithm uses 

correlation fractal dimension for finding arbitrary 

shaped cluster and further improving the precision of 

clustering. Data points are merged into a cluster who‟s 

Relative Change in the Fractal Dimension (RCFD) is 

less than a minimum threshold and if no points are 

added to any of the clusters within a stipulated time 

horizon, then they are considered as real outliers. This 

paper extends the prior work [8] using the concept of 

fractal dimension and multi layered grid. Weights are 

assigned to the clusters using damped window model 

and pruning is done based on the importance of the 

clusters which improve the results of the clustering. 

The rest of the paper is organized as follows. Next 

section describes some existing data stream clustering 

algorithms. Section 3 describes some basic concepts 

and definitions used for clustering the data streams. 

Section 4 presents the algorithms for initialization step 

and incremental step for online clustering. Then the 

experimental results are given in section 5 and section 

6 concludes this paper with the discussion of future 

work. 

2. Related Works 

Massive volumes of stream data are generated every 

day in recent years, as there is rapid development of 
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computer, communication and network [11]. Analysing 

and clustering such type of data has become highly 

demanding [15, 19]. Guha et al. [12] proposed the 

LOCALSEARCH in which description for current data 

stream is projected, but the evolution of data stream is 

not reflected. A primitive algorithm in Data Stream area 

is STREAM [18] where clustering of objects is done 

using K-means and medians of each group are 

considered for clustering. But STREAM neither 

considers evolution of data nor the time granularity. 

Aggarwal et al. [1] proposed the CluStream, which was 

an evolution framework of data stream clustering. 

CluStream is an incremental clustering algorithm, and it 

can offer clustering results with different time 

granularity. But the clustering result tends to be 

spherical and doesn‟t work well for the clusters of 

arbitrary shapes. HPStream [3] solved the high-

dimensionality problem by the projection technology. 

But in this algorithm, the framework of CluStream is 

abandoned. Udommanetanakit et al. [24] is proposed by 

for E-Stream clustering which supports evolution in 

terms of five properties and identifies only spherical 

clusters where the similarity between the two objects is 

estimated by using the distance function. Chen and Tu 

[9] presented D-Stream in which two-phased clustering 

framework is adopted using the concept of density 

grids. It can find clusters with arbitrary shapes but it 

sequentially examines neighbouring grids on all the 

dimensions, which is very time-consuming. Cao et al. 

[8] proposed DenStream algorithm, a density-based 

clustering algorithm. DenStream also involves two 

phase clustering. The concept of core point introduced 

in DBSCAN [10] is extended in this method and the 

notion of micro-cluster is employed to store an 

approximate representation of the data points. 

DenStream identifies clusters with arbitrary shapes and 

inspects outliers. But the clustering result is very 

sensitive to parameters. rDenStream [17] is based on 

DenStream and presents the concept of outlier 

retrospect which is a three step method. HDenStream 

[16] is also a density based algorithm capable of 

clustering data streams with heterogeneous features 

where both continuous attributes and categorical 

attributes are used for the clustering. But the storage of 

the heterogeneous attributes is very inefficient and the 

calculation of distances is time consuming. Ren et al. 

[21, 22] proposed clustering algorithms for high 

dimensional data streams, inspired by HPStream [2] 

where each dimension of the corresponding cluster in 

the matrix is associated with a weight. The weight of a 

dimension shows the importance of that dimension to 

the corresponding cluster. Fractal has been widely used 

in data mining field [13]. Distributed Grid based 

clustering protocol is proposed by Ali and Madani [4]. 

Feature attributes selection method based on the fractal 

dimension is proposed by Traina et al. [23], in which 

the change degree of fractal dimension is regarded as 

the standard of selecting feature attributes. Barbara and 

Chen [5] applied fractal algorithm to cluster data sets, 

whose basic idea is that the self-similarity within 

cluster is higher than in different clusters. Arbitrary 

shaped clusters are formed but multiple scans are 

needed in the two methods above, which is not 

suitable for data stream clustering. In order to find 

arbitrary shape cluster effectively in data stream and 

improve the precision of clustering with single data 

scan, a fractal clustering algorithm FractStream is 

designed and proposed. 

3. Basic Concepts 

A multi layered nested grid structure [25] which stores 

the statistics of data is constructed for finding the 

Fractal dimension. Fractal dimension of data set is 

calculated easily based on number of data points 

included by each of the lowest grids of a multi-layered 

Grid, by scanning the data set only once. Cluster 

partitions on evolving data streams are often 

computed based on certain time intervals (or 

windows). There are three well-known window 

models: landmark window, sliding window and 

damped window.  

In order to meet the requirements of evolving data 

stream, we adopt basic window technology based on 

sliding window model [26]. The sliding window is 

equally divided into shorter windows, called as basic 

windows. The relationship between two kinds of 

window is shown as Figure 1. 

 

Figure 1. Sliding window and basic windows. 

Let a be the length of the basic windows, suppose 

w=k*a, k denotes the number of basic windows in a 

sliding window. Let b[0], b[1], ..., b[k-1] denote the 

current basic windows, b[k] will be the coming new 

basic window and b[0] will be the expiring basic 

window. Both the sliding window and basic windows 

are maintained.  

Sliding Window 

b[0] b[1] b[k-1] 

b[1] b[2] b[k] 
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Each data point is associated with time stamp in an 

evolving data stream. A time window of data point is 

added to the low level cell thus obtaining the number of 

occupancies in the cell. A damped window model is 

considered to manage huge volumes of data and 

subsequently the memory. In damped window model, it 

is assumed that each data point has a time-dependent 

weight defined by the function f(t) given by Equation 1. 

The function f(t) is also referred to as the fading 

function and is a non-monotonic decreasing function 

which decays uniformly with time t and defined in 

Equation 1 [1]. Suppose the initial time of the current 

window is to and the numbers of points are no, n1, …, ne 

at to, tl, …, te time respectively, the weight of the current 

window is calculated as Equation 2. 

f(t)=2-λt , λ>0 


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 Definition 1: correlation fractal dimension given a 

data set containing N data points which show self-

similarity in the range of scales (rmin, rmax), the 

correlation fractal dimension D2 [7] is measured as 

follows: 

                          
log

log

2
,

2D
r

C
r i

 




   , r ∈[rmin,rmax] 

Where Cr, i is the occupancy with which the data points 

fall in the i
th
 cell when the original space is divided into 

grid cells with sides of length r. 

The relative fractal dimension change in more 

accurate in describing the change in pattern of the data 

set to form a new cluster. In order to measure the 

change in fractal dimension which corresponds to the 

change in patterns, we formally define relative fractal 

dimension change, RCFD. The smaller the RCFD the 

greater is the self-similarity with in a cluster otherwise 

it implies low self-similarity [13]. 

 Definition 2: RCFD Given data stream S, cluster C, 

and a new cluster C’ formed by joining a new set of 

data points. Fd(C) is the fractal dimension of the old 

cluster, C and Fd(C’) is the fractal dimension of the 

new cluster, C’. Relative change in the fractal 

dimension is defined as  

                          ( ') ( )
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Here Fd refers to correlation fractal dimension D2, 

which can reflect the data distribution and indicate the 

change of data trend.  

 Definition 3: Core Fractal Cluster (CFC). Let the 

cluster has Pi1, Pi2, Pi3, …, Pin data points with time 

stamps ti1, ti2, ti3, …, tin respectively, the CFC is 

defined as tuple CFC(Fd, w, n, tc) in which Fd is the 

fractal dimensions of the cluster, 


)(
1

ij

n

j

c ttfw  is 

the weight of the cluster at time tc, n is the total 

number of points in the cluster and tc is the initial 

time of the cluster and µ is the ceiling value. 

The weight of the cluster varies with time in the real 

time data stream environment and it decreases with 

time decay. Definition of Progressive Fractal Clusters 

(PFC) and Outlier Fractal Clusters (OFC) are 

introduced to track the evolution of the clusters 

according to their importance. 

 Definition 4: A PFC at time tp is defined as 

PFC(Fd, w, n, tp) for a group of points Pi1, Pi2, Pi3, 

…, Pin with time stamps ti1, ti2, ti3, …, tin. w is the 

weight and 
1

. ( ) ,0 1
n

p ij
j

w f t t   
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       is the parameter 

to determine the threshold of outlier relative to 

progressive fractal cluster. 

 Definition 5: OFC. An at time to for a group of 

points Pi1, Pi2, Pi3, …, Pin with time stamps ti1, ti2, 

ti3, …, tin is defined as OFC(Fd, w, n, to). Fd is the 

fractal dimension of the Outlier fractal cluster and 

w is the weight, 
1

( )
n

o ij
j

w f t t 


   , n is the number of 

points in the cluster and t0=ti1 is the creation time of 

the Outlier Fractal cluster. 

4. The FractStream Clustering Algorithm 

The main idea behind FractStream, an incremental 

grid-based clustering technique, is to group points in a 

cluster in such a way that none of the points in the 

cluster changes the cluster‟s fractal dimension 

radically making it more self-similar. After initializing 

a set of clusters, our algorithm incrementally adds 

points to the existing clusters, if RCFD is within a 

threshold else create a new cluster. To reduce the 

search for clusters in which new point fits, a concept 

of prioritizing the clusters is developed by introducing 

a concept of CFC, PFC, OFC. The algorithm for 

clustering the data stream is divided into two phases-

the online phase and the offline phase. In the online 

phase authors present two steps, Initialization step and 

incremental step. Initialization step finds core clusters 

and in the Incremental step online clustering is 

performed based on RCFD. Weights of the clusters 

are calculated and updated, and in the offline phase 

the clustering is performed as demanded by the user. 

The basic algorithm steps are based on DenStream [8] 

.The time interval Tp for checking whether any OFC 

has become PFC or PFC has been decayed to an OFC, 

or removal of an OFC that cannot grow to PFC 

anymore, is also derived from [8] and is given by: 

                          1

1
T log( )p
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CFCi, PFCi and OFCi are periodically checked for 

their weights at time interval Tp. OFCi is considered as 

real outlier and removed from the outlier buffer if its 

weight is less than a lower limit of ξ [8] given by 

(1) 

(2) 

(3) 

(4) 

 (5) 
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Where tc is the current time and to is the creation time of 

the OFCi. All the three categories of clusters are 

maintained in a separate memory space. This is based 

on the observation that most of the new points merge to 

existing clusters, and therefore can be absorbed by 

existing PFC or get created as new outlier clusters. 

Clusters with less weight are treated as outliers.  

Algorithm for initialization step is described below. 

4.1. Algorithm Initialization Step 

In clustering algorithms the quality of initial clusters is 

extremely important, and has direct effect on the final 

clustering quality. Some initial clusters are necessary to 

apply the main concepts of the proposed technique i.e., 

incremental addition of points to the clusters, based on 

how they affect the clusters fractal dimension. In other 

words, we need to “bootstrap” our algorithm via an 

initialization procedure that finds a set of clusters each 

with sufficient points, so as to find their fractal 

dimensions. Out of many choices for the initialization 

step, we present the result of a traditional distance based 

procedure for finding the initial clusters.The algorithm 

builds clusters by considering a random point from 

unclustered initial set of points and recursively finds the 

nearest neighbour within a given distance threshold κ. 

The neighbour is added into the cluster if the distance is 

within the threshold else a new cluster is formed and the 

search continues in depth-first fashion, until no more 

points can be added to clusters.  

Algorithm 1: To find initial core clusters. 

Given an initial set of points Pi1,Pi2,Pi3, …, Pin that fit in main 

memory and a distance threshold κ (Initially κ = κ0) 

Mark all points as unclustered and make k=0; 

Choose a point P (At random) out of set of unclustered points  

Mark P as belonging to cluster Ck  

Starting at P and in a recursive depth-first fashion. Choose next 

point P’ close to P based on Euclidian distance  

If distance between the |P-P’|< κ merge P’ in Ck 

 Else k=k+1 

 create a new cluster Ck with point p in Ck 

Repeat the process until all points are clustered 

4.2. Incremental Merging Using a Relative 

Change in Fractal Dimension 

Initialization step generates k number of Core Fractal 

Cluster {C1, C2, …, Ck} and are represented as multi-

layered grid. Let Fd(Ci) be the fractal dimension of the 

i
th
 cluster Ci. The incremental step brings a new set of 

points to main memory and proceeds to take a basic 

window of data points and add them to each cluster, 

computing its new fractal dimension. Suitable cluster is 

found to merge the points by computing the minimal 

fractal impact, i.e., the minimal RCFD. When a new 

basic window of points arrives, the procedure of online 

clustering is described in Algorithm 2. 

Algorithm 2: onlineMerging(p1, p2,…, pk). 

Input: Basic Window of data points (p1,p2,…pk) 

Output : Merge status of data points (p1,p2,…pk) 

Begin 

Normalize Data points 

While stream not end. 

For all Core Fractal Clusters, CFCi  

Let CFCi’ = CFCi U { p1,p2,…pk } 

Compute Fd(CFCi’) 

If |Fd(CFCi’)-Fd(CFCi)|/Fd(CFCi) < € 

Then merge { p1,p2,…pk } to CFCi. 

Update weight w.  

else  

For all Progressive Fractal Clusters PFCi 

Let PFCi’= PFCi U { p1,p2,…pk } 

Compute Fd(PFCi’)  

If |Fd(PFCi’)-Fd(PFCi)|/Fd(PFCi) < € 

Then merge P to PFCi; 

Update weight w.  

else  

For all Outlier Fractal Clusters OFCi 

Let OFCi’= OFCi U { p1,p2,…pk } 

Compute Fd(OFCi’)  

If |Fd(OFCi’)-Fd(OFCi)|/Fd(OFCi) < € 

Then merge P to OFCi; 

Update weight w.  

If wo ( new weight of OFCi) > βµ 

Then remove OFCi from outlier hash table and create a 

new progressive Fractal Cluster by PFCi. 

end if 

else  

Create a new Outlier Fractal Cluster with { p1,p2,…pk } 

and insert it into outlier fractal clusters hash table. 

end if. 

end if 

Select the initial core clusters found from the 

initialization step and use the algorithm in [4] to find 

the initial fractal dimensions of CFC. 

1. At first, we try to insert the points into all CFC. We 

compute the relative change in the fractal 

dimension, RCFD. Insert the points into that cluster 

whose RCFD change is within a minimal threshold 

and remove the points from rest of the CFC. If w is 

below µ and above βµ it means that CFCi has 

become a progressive fractal cluster. Therefore, we 

remove CFCi from the core fractal buffer and create 

a new progressive fractal cluster by PFCi. 

2. Else, we try to insert the points into all PFC. We 

compute RCFD. Insert the points into that cluster 

whose RCFD change is within a minimal threshold 

and remove the points from rest of the PFC 

updating the weight of the cluster. 

3. Else, we try to merge points into all OFC and 

compute RCFD. Insert the points into OFC whose 

RCFD is within the minimum threshold and 

remove the points from rest of OFC. And then, we 

check w the new weight of OFC. If w is above βµ it 

means that OFCi has grown into a progressive 

Fractal cluster. Therefore, we remove OFCi from 

the outlier-buffer and create a new Progressive 

Fractal Cluster by PFCi. 

 (6) 
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4. Otherwise, we create a new outlier fractal cluster 

OFCi by basic window of points and insert the points 

into the outlier-buffer. This is because these points 

do not naturally fit into any existing fractal clusters. 

These points may be an outlier or the seed of a new 

cluster. 

The weight of all the clusters needs to be checked 

periodically, because if no points are added to the 

clusters then the weight reduces as time passes on. If 

the weight of PFCi is below βµ, then it is no more 

progressive and should be deleted to release the 

memory space for new PFC’s. The time span at which 

the weight of the clusters checked is Tp [8]. As data 

streams advances the number of Outlier fractal Clusters 

also increases. So OFC‟s are to be restored which are 

potential to grow into PFC deleting the real outlier. The 

lower limit weight of OFC is defined as ξ [8] which is a 

function of tc (i.e., current time) and to (i.e., the creation 

time of the OFC. to is maintained in the t field of the 

OFC. The detailed procedure is described in Algorithm 

3. 

Algorithm 3: FractStream (Ds, €, µ, β, λ). 

Tp=(1/λ){log(βµ/βµ-1)} 

For all points (p1,p2,…pk) from the data stream Ds, 

onlineMerging(p1,p2,…pk) 

if(tmodTp)=0 then  

for each Core Fractal Fluster CFCi   

if wc(the weight of CFCi ) <µ then  

delete CFCi from core fractal cluster hash table and  

create a new progressive fractal cluster PFCi 

end if 

end for 

for each Progressive Fractal Cluster PFCi 

if wp(the weight of PFCi)<βµ then  

delete PFCi and place it in a file 

end if . 

end for. 

for each Outlier Fractal Cluster OFCi 

ξ = 2
-λ(t-to+Tp)

-1/ (2
-λTp

-1) 

if wO(the weight of OFCi)< ξ then 

delete OFCi and place it in a file 

end if 

end for 

end if. 

If a clustering request arrives then generating  

clusters 

end if. 

5. Experimental Evaluation 

This section concentrates on presenting the 

effectiveness of FractStream and a comparative 

evaluation with DenStream on real life data sets. 

FractStream algorithm is been implemented in Java and 

all the experiments have been performed on an Intel(R) 

Core(TM)i7-3630QM having 8GB of memory. The 

parameters used for FractStream and DenStream are the 

same, that is initial number of points=1000, stream 

speed v=1000, decay factor λ=0.25, minimum number 

of points necessary to create a Core Fractal cluster 

μ=10, outlier threshold β=0.2, the number of grid 

layers is 10 and the time span of sliding window is 

one second. We mean horizon (or window) as the 

number of time steps from the current time considered 

while running the clustering algorithms. Thus, for 

example, if the horizon is 10, it means that the last 10 

blocks of data are clustered.The two real data sets 

used for experimental evaluation are the KDD Cup 

1999 data set and the forest cover type data set. 

The KDD CUP 99 data set consists of 10% of 

original dataset that is approximately 494,020 single 

connection vectors each of which contains 41 features 

and is labelled with exact one specific attack type i.e., 

either normal or an attack. Each vector is labelled as 

either normal or an attack, with exactly one specific 

attack type. Deviations from „normal behaviour‟, 

everything that is not „normal‟, are considered attacks. 

Attacks labelled as normal are records with normal 

behaviour. There are four main categories of attacks 

namely DOS, U2R, R2L and PROBE where each of 

these categories has subcategories. 

The dataset consisted of 494,020 records, among 

which 97,277 (19.69%) were 'normal', 

391,458(79.24%) DOS, 4,107 (0.83%) Probe, 1,126 

(0.23%) R2L and 52 (0.01%) U2R attacks. 

The forest cover type data set is the prevision forest 

cover type from cartographic variables only (no 

remotely sensed data), made available from the 

Remote Sensing and GIS Program department of 

Forest Sciences College of Natural Resources, 

Colorado State University Fort Collins. The area 

includes four wilderness areas located in the 

Roosevelt National Forest of northern Colorado. The 

data set is composed by 581,012 instances 

(observations) represented by 54 geological and 

geographical attributes describing the environment in 

which trees were observed. Both data sets have been 

transformed into data streams by taking the input 

order as the streaming order. When using the first 

initialization algorithm, our observations reveal that 

initially 5 clusters are formed starting with 1000 initial 

points. The core clusters are evaluated using Davies-

Bouldin index and silhouette index to ensure the 

validity of the core clusters. The best values observed 

for the clusters are, the Davies-Bouldin index is 

1.4556 and silhouette index=0.92 at a threshold value 

of 0.23.These values are listed in the following Table 

1. 

Table 1. Silhouette index and Davies-Bouldin index for different 
threshold value. 

Threshold Value κ No. of Clusters Silhouette Index 
Davies-

Bouldin index 

0.05 10 0.45 2.5454 

0.1 7 0.56 2.2036 

0.2 6 0.86 1.8514 

0.22 5 0.92 1.4556 

0.24 5 0.93 1.4651 

0.3 4 0.77 1.9622 
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This evolution of data changes the behaviour of 

clusters over time when online clustering is performed 

by considering a window of data points with stream size 

of 1000. We can segment it into intervals as follows, 

shown in Figure 2. 

 

Figure 2. The cluster evolution. 

1. Initially, there are 5 clusters in a steady state called 

CFC. Data point from 1 to 1000. 

2. After starting the stream with sliding window of 

1000 data points 257 data points are added to cluster 

2 , 383 are added to cluster 0 and 360 to cluster 4. 

Cluster 0, cluster 2, and cluster 4 becomes 

progressive clusters. 

3. Cluster 1 becomes OFC during the stream process 

from 4000 to 5000. 

4. The rest of the clusters still continue to be 

progressive fractal clusters and a new cluster is 

formed. Data point from 5000 to 6000. 

5. 324 data points are added to cluster 4,145 are added 

to cluster 2,185 to cluster 1 and 346 to cluster 0. 

The clustering quality is evaluated by the average purity 

[8] of clusters which is defined as follows: 

1

1
( 100%)

d
k

i

i
i

c
purity

k c

   

Where K denotes the number of clusters. Ci
d 
denotes the 

number of points with the dominant class label in 

cluster i. Ci denotes the number of points in cluster i. 

Intuitively, the purity measures the purity of the clusters 

with respect to the true cluster (class) labels that are 

known for our data sets. Since the weight of points 

fades out gradually, we compute the purity by only the 

points arriving in a pre-defined horizon H (or window) 

from current time. Our experimental results show that 

the purity results are insensitive to the horizon. 

On the network intrusion data set, the stream speed 

was set to 1000 points per time unit. Since the network 

intrusion data set was already used in [8], the same 

parameter settings are chosen for FractStream. For the 

evaluation, measurements at timestamps where some 

attacks exist were selected. The data recordings at 

timestamp 100 and all the recordings within the horizon 

5 were only attacks of the type smurf. At this time unit 

the algorithm could achieve 100% purity. The attacks 

that appeared within horizon H=5 in different 

timestamps are listed in the Table 2 below. 

Table 2. Labels of KDD cup data stream within the horizon H=5, 
stream speed=1000. 

Normal or 

attack Type 

Objects Within Horizon H = 5 at Time Unit 

150 250 300 350 

Normal 4014 4117 892 406 

Satan 370 0 0 0 

Teardrop 91 0 365 0 

Smurf 144 99 289 2988 

Ipsweep 48 202 0 0 

Loadmodule 10 0 0 1 

Warezclient 307 0 0 0 

Neptune 6 528 3280 1603 

Pod 10 50 49 0 

Portsweep 0 2 125 1 

Land 0 2 0 1 

Sum 5000 5000 5000 5000 

The comparison between FractStream and 

DenStream on the network intrusion data set is shown 

in Figures 3 and 4. The results have been computed by 

setting the horizon to 1 and 5, whereas the stream 

speed is 1000. We can clearly see the very high 

clustering quality achieved by FractStream on this 

data set. As time passes, cluster results became better, 

because, in the calculation of fractal dimension, all 

data points are contained in the lowest level grid 

which is the optimal situation. In other way, the 

accumulation of data points is beneficial to the 

accuracy of the calculating results. The larger the 

amount of data, the more accurate is the self-

similarity. Therefore, FractStream algorithm can 

achieve better clustering quality and this is the best 

quality obtained in the clustering process. 

 
Figure 3. Clustering quality (network intrusion data set, 

horizon=1, stream speed=1000). 

 

Figure 4. Clustering quality (network intrusion data set, 

horizon=5, stream speed=1000). 

Cluster purity is above 98%, for all the time units, 

and reaches 100% at time units 40, 60, 100. Purity is 

above 99% when the horizon is set to 5. On this data 

set FractStream always outperforms DenStream, 

which obtains a maximum value of purity of 91% for 

both the horizons. Figures 5 and 6 reports the same 

experiments executed on the Covertype data set. Also 

(7) 
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for this data set FractStream outperforms DenStream 

with respect to the cluster purity. 

 

Figure 5. Clustering quality(forest cover type data set for stream 

speed=1000 and horizon=1). 

 

Figure 6. Clustering quality(the forest cover type data set for stream 

speed=1000 and horizon=5). 

5.1. Time Complexity Analysis 

Calculating fractal dimension is the major task in 

FractStream. The grids are scanned only once to get the 

statistics of bottom layer. Next layer statistics is 

obtained by just summing up the bottom layers statistics 

reducing the search space by 1/2
E
. FractStream runtime 

complexity is upper-bounded by EN+ENΣj1/2E
(j-1)

 for 

j=1 to |R|, thus it is O(eEN), with e=1+2
E
/2

(E-1)
. The 

resulting algorithm scales independently of |R|. For 

example with 2D data, e equals to 2.333 while |R|, the 

number of levels in the multi layered grid which is 10. 

For higher dimensionalities, the runtime difference 

between FractStream and DenStream increases. Figure 

7 shows the execution time for Network Intrusion data. 

 

Figure 7. Execution time for increasing stream length on the 

Network Intrusion data set. 

5.2. Space Complexity Analysis 

Space complexity is mainly due to storage of grids. The 

storage space is independent of the dimensions because, 

in nested grid structure, only statistics of the data points 

are stored. The space complexity of nested grid 

structure is O(N) since the bottom layer grid consist of 

points whose number is same as the data set number, 

where N is the number of data points. The space 

complexity of the FractStream is O(N·n), the n is the 

number of clusters since one grid is constructed for 

each cluster. 

6. Conclusions and Future Work 

In this paper, authors proposed a Grid based clustering 

algorithm which can find the clusters with arbitrary 

shapes. The weighting scheme used in this algorithm 

enables it to assign weights to the clusters, based on 

their priority and time in the clustering process. 

Experimental results show that this algorithm is more 

effective than DenStream and achieves higher cluster 

quality. FractStream, proposed in this paper is an 

effective and efficient method for clustering in an 

evolving data stream using correlation fractal 

dimension. The structures of core fractal clusters, 

progressive fractal clusters and outlier fractal clusters 

maintain sufficient information for clustering and 

reduce the search complexity thereby reducing the 

execution time. The pruning strategy designed to limit 

the memory consumption guarantee precision. Our 

experimental performance evaluation over a number 

of real data sets demonstrates the effectiveness and 

efficiency of FractStream in discovering clusters of 

arbitrary shape in data streams. Future work aims at 

extending the method to a distributed framework, 

more perfect for real life applications. 
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