
The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018 1

Clustering Based on Correlation Fractal Dimension

Over an Evolving Data Stream

Anuradha Yarlagadda
1
, Murthy Jonnalagedda

2
, and Krishna Munaga

2

1
Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, India

2
Department of Computer Science and Engineering, University College of Engineering Kakinada, India

Abstract: Online clustering, in an evolving high dimensional data is an amazing challenge for data mining applications.

Although, many clustering strategies have been proposed, it is still an exciting task since the published algorithms fail to do

well with high dimensional datasets, finding arbitrary shaped clusters and handling outliers. Knowing fractal characteristics

of dataset can help abstract the dataset and provide insightful hints in the clustering process. This paper concentrates on

presenting a novel strategy, FractStream for clustering data streams using fractal dimension, basic window technology, and

damped window model. Core fractal-clusters, progressive fractal-cluster, outlier fractal clusters are identified, aiming to

reduce search complexity and execution time. Pruning strategies are also employed based on the weights associated with each

cluster, which reduced the usage of main memory. Experimental study of this paper over a number of data sets demonstrates

the effectiveness and efficiency of the proposed technique.

Keywords: Cluster, data stream, fractal, self-similarity, sliding window, damped window.

Received January 24, 2014; accepted October 14, 2014

1. Introduction

Huge amount of streaming data is generated in recent

years for example internet traffic flow, sensor data,

medical systems, online transactions etc., Stream data

flows in and out of a system continuously and with

varying update rates. They are fast changing, massive,

potentially infinite and unbounded [14]. By the virtue of

Data stream characteristics, stream clustering became

challenging due to limited memory and real time query

response requirements. Massive volumes of data should

be handled with limited memory. We cannot scan such

huge amount of data more than once [15]. New

concepts may keep evolving in data streams over time.

Evolving concepts require data stream processing

algorithms to continuously update their models to adapt

the changes. Fractal dimension is a powerful tool to

describe self-similarity, and changes in the correlation

dimension imply changes of data distribution, which

can be used to indicate changes in data trends.

Summaries of the processed data help in computing

important statistics of new clusters with the arrival of

new points [6]. In data stream mining the proposed

algorithm should handle online clustering meritoriously

and should maintain the clusters considering the

potentiality of clusters. Time plays a major role in data

stream clustering as a data point belonging to a cluster

in some time horizon can become an outlier in some

other time horizon as most recent data plays an

important role. Similarly, in a cluster where there are no

data points in one time horizon may accommodate more

points in another time horizon making it more

progressive. So the proposed algorithm should maintain

a balance not to reject the outliers at once, but should

wait for some time to remove it as outlier aiming to

find clusters of arbitrary shape. A large number of

clustering algorithms [20] for data streams have been

proposed, where the similarity of the objects is

defined with use of some distance measure or

objective function. The proposed algorithm uses

correlation fractal dimension for finding arbitrary

shaped cluster and further improving the precision of

clustering. Data points are merged into a cluster who‟s

Relative Change in the Fractal Dimension (RCFD) is

less than a minimum threshold and if no points are

added to any of the clusters within a stipulated time

horizon, then they are considered as real outliers. This

paper extends the prior work [8] using the concept of

fractal dimension and multi layered grid. Weights are

assigned to the clusters using damped window model

and pruning is done based on the importance of the

clusters which improve the results of the clustering.

The rest of the paper is organized as follows. Next

section describes some existing data stream clustering

algorithms. Section 3 describes some basic concepts

and definitions used for clustering the data streams.

Section 4 presents the algorithms for initialization step

and incremental step for online clustering. Then the

experimental results are given in section 5 and section

6 concludes this paper with the discussion of future

work.

2. Related Works

Massive volumes of stream data are generated every

day in recent years, as there is rapid development of

2 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

computer, communication and network [11]. Analysing

and clustering such type of data has become highly

demanding [15, 19]. Guha et al. [12] proposed the

LOCALSEARCH in which description for current data

stream is projected, but the evolution of data stream is

not reflected. A primitive algorithm in Data Stream area

is STREAM [18] where clustering of objects is done

using K-means and medians of each group are

considered for clustering. But STREAM neither

considers evolution of data nor the time granularity.

Aggarwal et al. [1] proposed the CluStream, which was

an evolution framework of data stream clustering.

CluStream is an incremental clustering algorithm, and it

can offer clustering results with different time

granularity. But the clustering result tends to be

spherical and doesn‟t work well for the clusters of

arbitrary shapes. HPStream [3] solved the high-

dimensionality problem by the projection technology.

But in this algorithm, the framework of CluStream is

abandoned. Udommanetanakit et al. [24] is proposed by

for E-Stream clustering which supports evolution in

terms of five properties and identifies only spherical

clusters where the similarity between the two objects is

estimated by using the distance function. Chen and Tu

[9] presented D-Stream in which two-phased clustering

framework is adopted using the concept of density

grids. It can find clusters with arbitrary shapes but it

sequentially examines neighbouring grids on all the

dimensions, which is very time-consuming. Cao et al.

[8] proposed DenStream algorithm, a density-based

clustering algorithm. DenStream also involves two

phase clustering. The concept of core point introduced

in DBSCAN [10] is extended in this method and the

notion of micro-cluster is employed to store an

approximate representation of the data points.

DenStream identifies clusters with arbitrary shapes and

inspects outliers. But the clustering result is very

sensitive to parameters. rDenStream [17] is based on

DenStream and presents the concept of outlier

retrospect which is a three step method. HDenStream

[16] is also a density based algorithm capable of

clustering data streams with heterogeneous features

where both continuous attributes and categorical

attributes are used for the clustering. But the storage of

the heterogeneous attributes is very inefficient and the

calculation of distances is time consuming. Ren et al.

[21, 22] proposed clustering algorithms for high

dimensional data streams, inspired by HPStream [2]

where each dimension of the corresponding cluster in

the matrix is associated with a weight. The weight of a

dimension shows the importance of that dimension to

the corresponding cluster. Fractal has been widely used

in data mining field [13]. Distributed Grid based

clustering protocol is proposed by Ali and Madani [4].

Feature attributes selection method based on the fractal

dimension is proposed by Traina et al. [23], in which

the change degree of fractal dimension is regarded as

the standard of selecting feature attributes. Barbara and

Chen [5] applied fractal algorithm to cluster data sets,

whose basic idea is that the self-similarity within

cluster is higher than in different clusters. Arbitrary

shaped clusters are formed but multiple scans are

needed in the two methods above, which is not

suitable for data stream clustering. In order to find

arbitrary shape cluster effectively in data stream and

improve the precision of clustering with single data

scan, a fractal clustering algorithm FractStream is

designed and proposed.

3. Basic Concepts

A multi layered nested grid structure [25] which stores

the statistics of data is constructed for finding the

Fractal dimension. Fractal dimension of data set is

calculated easily based on number of data points

included by each of the lowest grids of a multi-layered

Grid, by scanning the data set only once. Cluster

partitions on evolving data streams are often

computed based on certain time intervals (or

windows). There are three well-known window

models: landmark window, sliding window and

damped window.

In order to meet the requirements of evolving data

stream, we adopt basic window technology based on

sliding window model [26]. The sliding window is

equally divided into shorter windows, called as basic

windows. The relationship between two kinds of

window is shown as Figure 1.

Figure 1. Sliding window and basic windows.

Let a be the length of the basic windows, suppose

w=k*a, k denotes the number of basic windows in a

sliding window. Let b[0], b[1], ..., b[k-1] denote the

current basic windows, b[k] will be the coming new

basic window and b[0] will be the expiring basic

window. Both the sliding window and basic windows

are maintained.

Sliding Window

b[0] b[1] b[k-1]

b[1] b[2] b[k]

Clustering Based on Correlation Fractal Dimension Over an Evolving Data Stream 3

Each data point is associated with time stamp in an

evolving data stream. A time window of data point is

added to the low level cell thus obtaining the number of

occupancies in the cell. A damped window model is

considered to manage huge volumes of data and

subsequently the memory. In damped window model, it

is assumed that each data point has a time-dependent

weight defined by the function f(t) given by Equation 1.

The function f(t) is also referred to as the fading

function and is a non-monotonic decreasing function

which decays uniformly with time t and defined in

Equation 1 [1]. Suppose the initial time of the current

window is to and the numbers of points are no, n1, …, ne

at to, tl, …, te time respectively, the weight of the current

window is calculated as Equation 2.

f(t)=2-λt , λ>0





e

i

ic ttftW
1

0)()(

 Definition 1: correlation fractal dimension given a

data set containing N data points which show self-

similarity in the range of scales (rmin, rmax), the

correlation fractal dimension D2 [7] is measured as

follows:

log

log

2
,

2D
r

C
r i

 




 , r ∈[rmin,rmax]

Where Cr, i is the occupancy with which the data points

fall in the i
th
 cell when the original space is divided into

grid cells with sides of length r.

The relative fractal dimension change in more

accurate in describing the change in pattern of the data

set to form a new cluster. In order to measure the

change in fractal dimension which corresponds to the

change in patterns, we formally define relative fractal

dimension change, RCFD. The smaller the RCFD the

greater is the self-similarity with in a cluster otherwise

it implies low self-similarity [13].

 Definition 2: RCFD Given data stream S, cluster C,

and a new cluster C’ formed by joining a new set of

data points. Fd(C) is the fractal dimension of the old

cluster, C and Fd(C’) is the fractal dimension of the

new cluster, C’. Relative change in the fractal

dimension is defined as

 (') ()

()

Fd c Fd c
RCFD

Fd c




Here Fd refers to correlation fractal dimension D2,

which can reflect the data distribution and indicate the

change of data trend.

 Definition 3: Core Fractal Cluster (CFC). Let the

cluster has Pi1, Pi2, Pi3, …, Pin data points with time

stamps ti1, ti2, ti3, …, tin respectively, the CFC is

defined as tuple CFC(Fd, w, n, tc) in which Fd is the

fractal dimensions of the cluster, 


)(
1

ij

n

j

c ttfw is

the weight of the cluster at time tc, n is the total

number of points in the cluster and tc is the initial

time of the cluster and µ is the ceiling value.

The weight of the cluster varies with time in the real

time data stream environment and it decreases with

time decay. Definition of Progressive Fractal Clusters

(PFC) and Outlier Fractal Clusters (OFC) are

introduced to track the evolution of the clusters

according to their importance.

 Definition 4: A PFC at time tp is defined as

PFC(Fd, w, n, tp) for a group of points Pi1, Pi2, Pi3,

…, Pin with time stamps ti1, ti2, ti3, …, tin. w is the

weight and
1

. () ,0 1
n

p ij
j

w f t t   


      is the parameter

to determine the threshold of outlier relative to

progressive fractal cluster.

 Definition 5: OFC. An at time to for a group of

points Pi1, Pi2, Pi3, …, Pin with time stamps ti1, ti2,

ti3, …, tin is defined as OFC(Fd, w, n, to). Fd is the

fractal dimension of the Outlier fractal cluster and

w is the weight,
1

()
n

o ij
j

w f t t 


   , n is the number of

points in the cluster and t0=ti1 is the creation time of

the Outlier Fractal cluster.

4. The FractStream Clustering Algorithm

The main idea behind FractStream, an incremental

grid-based clustering technique, is to group points in a

cluster in such a way that none of the points in the

cluster changes the cluster‟s fractal dimension

radically making it more self-similar. After initializing

a set of clusters, our algorithm incrementally adds

points to the existing clusters, if RCFD is within a

threshold else create a new cluster. To reduce the

search for clusters in which new point fits, a concept

of prioritizing the clusters is developed by introducing

a concept of CFC, PFC, OFC. The algorithm for

clustering the data stream is divided into two phases-

the online phase and the offline phase. In the online

phase authors present two steps, Initialization step and

incremental step. Initialization step finds core clusters

and in the Incremental step online clustering is

performed based on RCFD. Weights of the clusters

are calculated and updated, and in the offline phase

the clustering is performed as demanded by the user.

The basic algorithm steps are based on DenStream [8]

.The time interval Tp for checking whether any OFC

has become PFC or PFC has been decayed to an OFC,

or removal of an OFC that cannot grow to PFC

anymore, is also derived from [8] and is given by:

 1

1
T log()p



  

CFCi, PFCi and OFCi are periodically checked for

their weights at time interval Tp. OFCi is considered as

real outlier and removed from the outlier buffer if its

weight is less than a lower limit of ξ [8] given by

(1)

(2)

(3)

(4)

 (5)

4 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

()

c 0

2 1
(t ,)

2 1

t t Tc o p

T p
t






  








Where tc is the current time and to is the creation time of

the OFCi. All the three categories of clusters are

maintained in a separate memory space. This is based

on the observation that most of the new points merge to

existing clusters, and therefore can be absorbed by

existing PFC or get created as new outlier clusters.

Clusters with less weight are treated as outliers.

Algorithm for initialization step is described below.

4.1. Algorithm Initialization Step

In clustering algorithms the quality of initial clusters is

extremely important, and has direct effect on the final

clustering quality. Some initial clusters are necessary to

apply the main concepts of the proposed technique i.e.,

incremental addition of points to the clusters, based on

how they affect the clusters fractal dimension. In other

words, we need to “bootstrap” our algorithm via an

initialization procedure that finds a set of clusters each

with sufficient points, so as to find their fractal

dimensions. Out of many choices for the initialization

step, we present the result of a traditional distance based

procedure for finding the initial clusters.The algorithm

builds clusters by considering a random point from

unclustered initial set of points and recursively finds the

nearest neighbour within a given distance threshold κ.

The neighbour is added into the cluster if the distance is

within the threshold else a new cluster is formed and the

search continues in depth-first fashion, until no more

points can be added to clusters.

Algorithm 1: To find initial core clusters.

Given an initial set of points Pi1,Pi2,Pi3, …, Pin that fit in main

memory and a distance threshold κ (Initially κ = κ0)

Mark all points as unclustered and make k=0;

Choose a point P (At random) out of set of unclustered points

Mark P as belonging to cluster Ck

Starting at P and in a recursive depth-first fashion. Choose next

point P’ close to P based on Euclidian distance

If distance between the |P-P’|< κ merge P’ in Ck

 Else k=k+1

 create a new cluster Ck with point p in Ck

Repeat the process until all points are clustered

4.2. Incremental Merging Using a Relative

Change in Fractal Dimension

Initialization step generates k number of Core Fractal

Cluster {C1, C2, …, Ck} and are represented as multi-

layered grid. Let Fd(Ci) be the fractal dimension of the

i
th
 cluster Ci. The incremental step brings a new set of

points to main memory and proceeds to take a basic

window of data points and add them to each cluster,

computing its new fractal dimension. Suitable cluster is

found to merge the points by computing the minimal

fractal impact, i.e., the minimal RCFD. When a new

basic window of points arrives, the procedure of online

clustering is described in Algorithm 2.

Algorithm 2: onlineMerging(p1, p2,…, pk).

Input: Basic Window of data points (p1,p2,…pk)

Output : Merge status of data points (p1,p2,…pk)

Begin

Normalize Data points

While stream not end.

For all Core Fractal Clusters, CFCi

Let CFCi’ = CFCi U { p1,p2,…pk }

Compute Fd(CFCi’)

If |Fd(CFCi’)-Fd(CFCi)|/Fd(CFCi) < €

Then merge { p1,p2,…pk } to CFCi.

Update weight w.

else

For all Progressive Fractal Clusters PFCi

Let PFCi’= PFCi U { p1,p2,…pk }

Compute Fd(PFCi’)

If |Fd(PFCi’)-Fd(PFCi)|/Fd(PFCi) < €

Then merge P to PFCi;

Update weight w.

else

For all Outlier Fractal Clusters OFCi

Let OFCi’= OFCi U { p1,p2,…pk }

Compute Fd(OFCi’)

If |Fd(OFCi’)-Fd(OFCi)|/Fd(OFCi) < €

Then merge P to OFCi;

Update weight w.

If wo (new weight of OFCi) > βµ

Then remove OFCi from outlier hash table and create a

new progressive Fractal Cluster by PFCi.

end if

else

Create a new Outlier Fractal Cluster with { p1,p2,…pk }

and insert it into outlier fractal clusters hash table.

end if.

end if

Select the initial core clusters found from the

initialization step and use the algorithm in [4] to find

the initial fractal dimensions of CFC.

1. At first, we try to insert the points into all CFC. We

compute the relative change in the fractal

dimension, RCFD. Insert the points into that cluster

whose RCFD change is within a minimal threshold

and remove the points from rest of the CFC. If w is

below µ and above βµ it means that CFCi has

become a progressive fractal cluster. Therefore, we

remove CFCi from the core fractal buffer and create

a new progressive fractal cluster by PFCi.

2. Else, we try to insert the points into all PFC. We

compute RCFD. Insert the points into that cluster

whose RCFD change is within a minimal threshold

and remove the points from rest of the PFC

updating the weight of the cluster.

3. Else, we try to merge points into all OFC and

compute RCFD. Insert the points into OFC whose

RCFD is within the minimum threshold and

remove the points from rest of OFC. And then, we

check w the new weight of OFC. If w is above βµ it

means that OFCi has grown into a progressive

Fractal cluster. Therefore, we remove OFCi from

the outlier-buffer and create a new Progressive

Fractal Cluster by PFCi.

 (6)

Clustering Based on Correlation Fractal Dimension Over an Evolving Data Stream 5

4. Otherwise, we create a new outlier fractal cluster

OFCi by basic window of points and insert the points

into the outlier-buffer. This is because these points

do not naturally fit into any existing fractal clusters.

These points may be an outlier or the seed of a new

cluster.

The weight of all the clusters needs to be checked

periodically, because if no points are added to the

clusters then the weight reduces as time passes on. If

the weight of PFCi is below βµ, then it is no more

progressive and should be deleted to release the

memory space for new PFC’s. The time span at which

the weight of the clusters checked is Tp [8]. As data

streams advances the number of Outlier fractal Clusters

also increases. So OFC‟s are to be restored which are

potential to grow into PFC deleting the real outlier. The

lower limit weight of OFC is defined as ξ [8] which is a

function of tc (i.e., current time) and to (i.e., the creation

time of the OFC. to is maintained in the t field of the

OFC. The detailed procedure is described in Algorithm

3.

Algorithm 3: FractStream (Ds, €, µ, β, λ).

Tp=(1/λ){log(βµ/βµ-1)}

For all points (p1,p2,…pk) from the data stream Ds,

onlineMerging(p1,p2,…pk)

if(tmodTp)=0 then

for each Core Fractal Fluster CFCi

if wc(the weight of CFCi) <µ then

delete CFCi from core fractal cluster hash table and

create a new progressive fractal cluster PFCi

end if

end for

for each Progressive Fractal Cluster PFCi

if wp(the weight of PFCi)<βµ then

delete PFCi and place it in a file

end if .

end for.

for each Outlier Fractal Cluster OFCi

ξ = 2
-λ(t-to+Tp)

-1/ (2
-λTp

-1)

if wO(the weight of OFCi)< ξ then

delete OFCi and place it in a file

end if

end for

end if.

If a clustering request arrives then generating

clusters

end if.

5. Experimental Evaluation

This section concentrates on presenting the

effectiveness of FractStream and a comparative

evaluation with DenStream on real life data sets.

FractStream algorithm is been implemented in Java and

all the experiments have been performed on an Intel(R)

Core(TM)i7-3630QM having 8GB of memory. The

parameters used for FractStream and DenStream are the

same, that is initial number of points=1000, stream

speed v=1000, decay factor λ=0.25, minimum number

of points necessary to create a Core Fractal cluster

μ=10, outlier threshold β=0.2, the number of grid

layers is 10 and the time span of sliding window is

one second. We mean horizon (or window) as the

number of time steps from the current time considered

while running the clustering algorithms. Thus, for

example, if the horizon is 10, it means that the last 10

blocks of data are clustered.The two real data sets

used for experimental evaluation are the KDD Cup

1999 data set and the forest cover type data set.

The KDD CUP 99 data set consists of 10% of

original dataset that is approximately 494,020 single

connection vectors each of which contains 41 features

and is labelled with exact one specific attack type i.e.,

either normal or an attack. Each vector is labelled as

either normal or an attack, with exactly one specific

attack type. Deviations from „normal behaviour‟,

everything that is not „normal‟, are considered attacks.

Attacks labelled as normal are records with normal

behaviour. There are four main categories of attacks

namely DOS, U2R, R2L and PROBE where each of

these categories has subcategories.

The dataset consisted of 494,020 records, among

which 97,277 (19.69%) were 'normal',

391,458(79.24%) DOS, 4,107 (0.83%) Probe, 1,126

(0.23%) R2L and 52 (0.01%) U2R attacks.

The forest cover type data set is the prevision forest

cover type from cartographic variables only (no

remotely sensed data), made available from the

Remote Sensing and GIS Program department of

Forest Sciences College of Natural Resources,

Colorado State University Fort Collins. The area

includes four wilderness areas located in the

Roosevelt National Forest of northern Colorado. The

data set is composed by 581,012 instances

(observations) represented by 54 geological and

geographical attributes describing the environment in

which trees were observed. Both data sets have been

transformed into data streams by taking the input

order as the streaming order. When using the first

initialization algorithm, our observations reveal that

initially 5 clusters are formed starting with 1000 initial

points. The core clusters are evaluated using Davies-

Bouldin index and silhouette index to ensure the

validity of the core clusters. The best values observed

for the clusters are, the Davies-Bouldin index is

1.4556 and silhouette index=0.92 at a threshold value

of 0.23.These values are listed in the following Table

1.

Table 1. Silhouette index and Davies-Bouldin index for different
threshold value.

Threshold Value κ No. of Clusters Silhouette Index
Davies-

Bouldin index

0.05 10 0.45 2.5454

0.1 7 0.56 2.2036

0.2 6 0.86 1.8514

0.22 5 0.92 1.4556

0.24 5 0.93 1.4651

0.3 4 0.77 1.9622

6 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

This evolution of data changes the behaviour of

clusters over time when online clustering is performed

by considering a window of data points with stream size

of 1000. We can segment it into intervals as follows,

shown in Figure 2.

Figure 2. The cluster evolution.

1. Initially, there are 5 clusters in a steady state called

CFC. Data point from 1 to 1000.

2. After starting the stream with sliding window of

1000 data points 257 data points are added to cluster

2 , 383 are added to cluster 0 and 360 to cluster 4.

Cluster 0, cluster 2, and cluster 4 becomes

progressive clusters.

3. Cluster 1 becomes OFC during the stream process

from 4000 to 5000.

4. The rest of the clusters still continue to be

progressive fractal clusters and a new cluster is

formed. Data point from 5000 to 6000.

5. 324 data points are added to cluster 4,145 are added

to cluster 2,185 to cluster 1 and 346 to cluster 0.

The clustering quality is evaluated by the average purity

[8] of clusters which is defined as follows:

1

1
(100%)

d
k

i

i
i

c
purity

k c

 

Where K denotes the number of clusters. Ci
d
denotes the

number of points with the dominant class label in

cluster i. Ci denotes the number of points in cluster i.

Intuitively, the purity measures the purity of the clusters

with respect to the true cluster (class) labels that are

known for our data sets. Since the weight of points

fades out gradually, we compute the purity by only the

points arriving in a pre-defined horizon H (or window)

from current time. Our experimental results show that

the purity results are insensitive to the horizon.

On the network intrusion data set, the stream speed

was set to 1000 points per time unit. Since the network

intrusion data set was already used in [8], the same

parameter settings are chosen for FractStream. For the

evaluation, measurements at timestamps where some

attacks exist were selected. The data recordings at

timestamp 100 and all the recordings within the horizon

5 were only attacks of the type smurf. At this time unit

the algorithm could achieve 100% purity. The attacks

that appeared within horizon H=5 in different

timestamps are listed in the Table 2 below.

Table 2. Labels of KDD cup data stream within the horizon H=5,
stream speed=1000.

Normal or

attack Type

Objects Within Horizon H = 5 at Time Unit

150 250 300 350

Normal 4014 4117 892 406

Satan 370 0 0 0

Teardrop 91 0 365 0

Smurf 144 99 289 2988

Ipsweep 48 202 0 0

Loadmodule 10 0 0 1

Warezclient 307 0 0 0

Neptune 6 528 3280 1603

Pod 10 50 49 0

Portsweep 0 2 125 1

Land 0 2 0 1

Sum 5000 5000 5000 5000

The comparison between FractStream and

DenStream on the network intrusion data set is shown

in Figures 3 and 4. The results have been computed by

setting the horizon to 1 and 5, whereas the stream

speed is 1000. We can clearly see the very high

clustering quality achieved by FractStream on this

data set. As time passes, cluster results became better,

because, in the calculation of fractal dimension, all

data points are contained in the lowest level grid

which is the optimal situation. In other way, the

accumulation of data points is beneficial to the

accuracy of the calculating results. The larger the

amount of data, the more accurate is the self-

similarity. Therefore, FractStream algorithm can

achieve better clustering quality and this is the best

quality obtained in the clustering process.

Figure 3. Clustering quality (network intrusion data set,

horizon=1, stream speed=1000).

Figure 4. Clustering quality (network intrusion data set,

horizon=5, stream speed=1000).

Cluster purity is above 98%, for all the time units,

and reaches 100% at time units 40, 60, 100. Purity is

above 99% when the horizon is set to 5. On this data

set FractStream always outperforms DenStream,

which obtains a maximum value of purity of 91% for

both the horizons. Figures 5 and 6 reports the same

experiments executed on the Covertype data set. Also

(7)

Clustering Based on Correlation Fractal Dimension Over an Evolving Data Stream 7

for this data set FractStream outperforms DenStream

with respect to the cluster purity.

Figure 5. Clustering quality(forest cover type data set for stream

speed=1000 and horizon=1).

Figure 6. Clustering quality(the forest cover type data set for stream

speed=1000 and horizon=5).

5.1. Time Complexity Analysis

Calculating fractal dimension is the major task in

FractStream. The grids are scanned only once to get the

statistics of bottom layer. Next layer statistics is

obtained by just summing up the bottom layers statistics

reducing the search space by 1/2
E
. FractStream runtime

complexity is upper-bounded by EN+ENΣj1/2E
(j-1)

 for

j=1 to |R|, thus it is O(eEN), with e=1+2
E
/2

(E-1)
. The

resulting algorithm scales independently of |R|. For

example with 2D data, e equals to 2.333 while |R|, the

number of levels in the multi layered grid which is 10.

For higher dimensionalities, the runtime difference

between FractStream and DenStream increases. Figure

7 shows the execution time for Network Intrusion data.

Figure 7. Execution time for increasing stream length on the

Network Intrusion data set.

5.2. Space Complexity Analysis

Space complexity is mainly due to storage of grids. The

storage space is independent of the dimensions because,

in nested grid structure, only statistics of the data points

are stored. The space complexity of nested grid

structure is O(N) since the bottom layer grid consist of

points whose number is same as the data set number,

where N is the number of data points. The space

complexity of the FractStream is O(N·n), the n is the

number of clusters since one grid is constructed for

each cluster.

6. Conclusions and Future Work

In this paper, authors proposed a Grid based clustering

algorithm which can find the clusters with arbitrary

shapes. The weighting scheme used in this algorithm

enables it to assign weights to the clusters, based on

their priority and time in the clustering process.

Experimental results show that this algorithm is more

effective than DenStream and achieves higher cluster

quality. FractStream, proposed in this paper is an

effective and efficient method for clustering in an

evolving data stream using correlation fractal

dimension. The structures of core fractal clusters,

progressive fractal clusters and outlier fractal clusters

maintain sufficient information for clustering and

reduce the search complexity thereby reducing the

execution time. The pruning strategy designed to limit

the memory consumption guarantee precision. Our

experimental performance evaluation over a number

of real data sets demonstrates the effectiveness and

efficiency of FractStream in discovering clusters of

arbitrary shape in data streams. Future work aims at

extending the method to a distributed framework,

more perfect for real life applications.

References

[1] Aggarwal C., Han J., Yu P., and Wang J., “A

Framework for Clustering Evolving Data

Streams,” in Proceedings of the 29
th
 Very Large

Databases Conference, Berlin, pp. 81-92, 2003.

[2] Aggarwal C., Han J., Yu P., and Wang J., “A

Framework for Projected Clustering of High

Dimensional Data Stream,” in Proceedings of

the 13
th
 International conference on Very Large

Data Bases, Toronto, pp. 852-863, 2004.

[3] Aggarwal C., Han J., Yu P., and Wang J., “On

High Dimensional Projected Clustering of Data

Streams,” Data Mining and Knowledge

Discovery, vol. 10, no. 3, pp. 251-273, 2005.

[4] Ali S. and Madani S., “Distributed Grid Based

Robust Clustering Protocol for Mobile Sensor

Networks,” The International Arab Journal of

Information Technology, vol. 8, no. 4, pp. 414-

421, 2011.

[5] Barbara D. and Chen P., Fractal Mining Self

Similarity based Clustering and its Applications,

Springer, 2010.

[6] Barbara D., “Requirements for Clustering Data

Streams,” ACM SIGKDD Explorations, vol. 3,

no. 2, pp. 23-27, 2002.

[7] Belussi A. and Faloutsos C., “Estimating the

8 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

Selectivity of Spatial Queries Using the

Correlation Fractal Dimension,” in Proceedings of

the 21
th
 International Conference on Very Large,

San Francisc, pp. 299-310, 1995.

[8] Cao F., Ester M., Qian W., and Zhou A.,

“Density-based Clustering Over Evolving Data

Stream with Noise,” in Proceedings of the 6
th

SIAM International Conference on Data Mining,

Bethesda, pp. 326-337, 2006.

[9] Chen Y. and Tu L., “Density-Based Clustering for

Real-Time Stream Data,” in Proceedings of the

13
th
 ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, San Jose

pp. 133-142, 2007.

[10] Ester M., Kriegel H., Sander J., and Xu X., “A

Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise,”

in Proceedings of 2
nd

 International Conference on

Knowledge Discovery and Data Mining, Portland,

pp. 226-231, 1996.

[11] Gama J. and Rodrigues P., An Overview on

Mining Data Streams, Springer-Verlag Berlin

Heidelberg, 2009.

[12] Guha S., Meyerson A., Mishra N., and

O'Callaghan R., “Clustering Data Streams: Theory

and Practice,” IEEE Transactions on Knowledge

and Data Engineering, vol. 15, no. 3 pp. 515-528,

2003.

[13] Guiling Li., Wang Y., Gu S., and Zhu X.,

“Fractal-Based Algorithm for Anomaly Pattern

Discovery on Time Series Stream,” Journal of

Convergence Information Technology, vol. 6, no.

3, pp. 181-187, 2011.

[14] Han J. and Kamber M., Data Mining: Concepts

and Techniques (Second Edition), Elsevier, 2006.

[15] Khalilian M. and Mustapha N., “Data stream

Clustering: Challenges and Issues,” in

Proceedings of International Multi Conference of

Engineers and Computer Scientists, Hong Kong,

pp. 17-19, 2010.

[16] Lin J. and Lin H., “A Density-Based Clustering

Over Evolving Heterogeneous Data stream,” in

Proceedings of International Colloquium on

Computing Communication Control and

Management, Sanya, pp. 275-277, 2009.

[17] Lui L., Huang H., Guo Y., and Chen F.,

“rDenStream, A Clustering Algorithm over an

Evolving Data Stream,” in Proceedings of

International Conference on Information

Engineering and Computer Science, Wuhan, pp.

1-4, 2009.

[18] O‟Callaghan L., Motwani R., Mishra N.,

Meyerson A., and Guha S., “Streaming Data

Algorithms for High-Guality Clustering,” in

Proceedings of 18
th
 International Conference on

Data Engineering, San Jose, pp. 685-694, 2002.

[19] Osama A., “Comparisons Between Data

Clustering Algorithms,” The International Arab

Journal of Information Technology, vol. 5, no. 3,

pp. 320-325, 2008.

[20] Qian Q., Chao-Jie X., and Rui Z., “Grid-Based

Data Stream Clustering for Intrusion Detection,”

International Journal of Network Security, vol.

15, no. 1, pp. 1-8, 2013.

[21] Ren J., Cai B., and Hu C., “Clustering Over Data

Streams Based on Grid Density and Index Tree,”

Journal of Convergence Information

Technology, vol. 6, no. 1, pp. 83-93, 2011.

[22] Ren J., Li L., and Hu C., “A Weighted Subspace

Clustering Algorithm in High-Dimensional Data

Streams,” in Proceedings of 4
th
 International

Conference on Innovative Computing,

Information and Control, Kaohsiung, pp. 631-

634, 2009.

[23] Traina C., Traina A., and Faloutsos C., “Fast

Feature Selection Using Fractal Dimension-Ten

Years Later,” Journal of Information and Data

Management, vol. 1, no. 1, pp. 17-20, 2010.

[24] Udommanetanakit K., Rakthanmanon T., and

Waiyamai k., “E-Stream: Evolution based

Technique for Stream Clustering,” in

Proceedings of International Conference on

Advanced Data Mining and Applications,

Harbin, pp. 605-6015, 2007.

[25] Yarlagadda A., Murthy J., and KrishnaPrasad

M., “Estimating Correlation Dimension using

Multi Layered Grid and Damped Window

Model Over Data Streams,” Procedia

Technology, vol. 10, pp. 797-804, 2013.

[26] Zhu Y. and Shasha D., “StatStream: Statistical

Monitoring of Thousands of Data Streams in

Real Time,” in Proceedings of the 28
th

International Conference on Very Large Data

Bases, Hong Kong, pp. 358-369, 2002.

Clustering Based on Correlation Fractal Dimension Over an Evolving Data Stream 9

Anuradha Yarlagadda received her

Master‟s in Computer Science and

Engineering from Visvesvaraya

Technological University, India, and

is pursuing her Doctoral degree at

Jawaharlal Nehru Technological

University Hyderabad, India. Her

research interest is data warehousing and mining.

Murthy Jonnalagedda is currently,

a Professor of the Department of

Computer Science and Engineering,

University College of Engineering

Kakinada, JNTUK, Andhra Pradesh.

He received his B.Tech degree from

JNTU College of Engineering,

Kakinada, M.Tech degree from IIT Kharagpur and

Ph.D. degree from JNTU, Kakinada. His research

interests include data warehousing and mining, data

bases, big data analytics and high performance

computing.

Krishna Munaga is currently, an

Associate Professor of the

Department of Computer Science and

Engineering, University College of

Engineering Kakinada, JNTUK,

Andhra Pradesh. He received his BE

degree from Osmania University,

Hyderabad, M.Tech degree and Ph.D. in Computer

Science and Engineering and from JNTU, Hyderabad.

He successfully completed a two-year MIUR fellowship

at the University of Udine, Udine, Italy. His research

interests include data mining, big data analytics and

high performance computing.

