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Abstract: The rapid growth in demand for getting various services combined with dynamic and diverse nature of requests 

initiated in cloud environments have led to the establishment of huge data centers which consume a vast amount of energy. On 

the other hand, in order to attract more users in dynamic business cloud environments, providers have to provide high quality 

of service for their customers based on defined Service Level Agreement (SLA) contracts. Hence, in order to maximize their 

revenue, resource providers need to minimize both energy consumptions and SLA violations simultaneously. This study 

proposes a new six-phase procedure for on-line resource management process. More precisely, this study proposes addition of 

two new phases to the default on-line resource management process including VM sorting phase and condition evaluation 

phase. Moreover, this paper shows the deficiencies of present resource management methods which fail to consider all 

effective system parameters as well as their importance, and do not have load prediction models. The results of simulations 

using cloudSim simulator validates the applicability of our proposed algorithms in reducing energy consumption as well as 

decreasing SLA violations and number of VMs' migration in cloud data centers.  
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1. Introduction 

Cloud computing has recently been brought into focus 

in both academic and industrial communities [8]. Cloud 

computing is associated with a new paradigm for 

provisioning different computing resources, usually 

addressed from three fundamental aspects: 

Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS) and Software as a Service (SaaS) [21]. Cloud 

environment is an efficient solution for both compute 

intensive and data intensive applications [10]. Due to 

the fact that the cloud users may have sporadic and 

dynamic resource usage, the cloud environment is 

highly dynamic [2]. Circumscribed resource utilization 

results in astonishingly high operational cost and 

energy usage [1]. The energy cost in a typical cloud 

data center is doubled every five years [7]. High energy 

consumption not only translates to a high operating 

cost, but also leads to higher carbon emissions [9]. 

The main portion of energy is consumed in the 

infrastructure of data centers. However, in typical data 

center deployments, server utilization is below 30%, 

but idle servers still consume 60% of their peak power 

[18]. Therefore, underutilization is the major cause of 

energy waste in cloud data centers. Consolidation of 

VMs on the least possible PMs and switching idle PMs 

off is the most novel method to save energy [2, 4, 9]. 

However, the obligation of providing high quality of 

service to cloud customers leads to the necessity in 

dealing with the energy-performance trade-off, as 

aggressive consolidations may lead to performance 

degradation [5]. 

Recent studies including [2, 5, 12] have utilized a 

consolidation solution for online optimization of VM 

placements which is consisted of four separated 

phases including:  

1. Determining when a host is considered as being 

overloaded requiring migration of one or more VMs 

from this host. 

2. Determining when a host is considered as being 

underloaded leading to a decision to migrate all 

VMs from this host and switch the host to the sleep 

mode. 

3. Selection of VMs that should be migrated from an 

overloaded host.  

4. Finding a new placement of the VMs selected for 

migration from the overloaded and underloaded 

hosts. 

One of the important drawbacks of current studies is 

that they do not consider all important system 

parameters other than CPU in their decision making 

process. However, modern multi-core processors are 

much more power-efficient than previous generations, 

whereas memory technology does not show any 

significant improvements in energy efficiency [3]. 

This fact makes memory one of the most important 

components of focus in the power and energy usage 

optimization [16]. The same condition can be applied 

to network devices in modern cloud data centers. 
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These facts unveil that it is essential to take into 

account the usage of multiple system resources in the 

energy-aware resource management [3]. So, this study 

proposes MESMM
1
 as a novel resource management 

model for cloud environments that not only consider 

CPU, RAM, and network bandwidth, but also improves 

the overall performance of on-line resource 

management process by addition of two new phases   to 

the default consolidation problem and develops new 

heuristics for them. Two new defined phases are:  

5. Sorting VMs to be allocated on PMs. 

6. Condition evaluation before execution of 

optimization process. Executing VM sorting phase is 

important because it is probable that there would be 

not enough resources for all the VMs in the 

migration list and the allocation policy cannot find 

proper PM to host all the VMs. Besides, Execution of 

condition evaluation phase is important due to 

elimination of probable extra costs that can be 

incurred to the system. 

The main contributions of this paper are: 

 Proposing Consolidated Optimization (CO) and 

addition of two new phases to the on-line resource 

management process including VM sorting phase 

and condition evaluation phase. 

 Proposing Multi-Criteria TOPSIS Sorting with 

Prediction (MCTP) policy as a new technique for 

VM sorting phase. 

 Proposing Minimum Downtime Migration 

Optimization (MDMO) policy as a new technique 

for condition evaluation phase. 

 Proposing Window Moving Average (WMA) policy 

as a new load prediction technique. 

 Considering all important parameters in decision 

making process including CPU, RAM, and network 

bandwidth.  

 Proposing a simple and functional mechanism to 

compute weights of different resource types. 

This paper first reviews related works in section 2. 

Section 3 describes the input parameters which are 

considered in resource management problem. Section 4 

presents our system model. Section 5 presents our 

proposed resource management policies. In section 6, 

the applicability of our proposed solutions is evaluated 

using cloudSim simulator. Finally, our concluding 

remarks are presented in section 7 as well as future 

directions. 

2. Motivation and Related Work 

As stated in [17], there is a wide area of research in 

resource management field in cloud computing. Hence, 

to make comparisons possible, we mention energy 

                                                 
1
Multi Criteria Energy SLA Migration Model 

aware resource allocation studies which are close to 

our work.  

In [19], authors have investigated power 

management techniques in the context of large-scale 

virtualized systems for the first time. In addition to the 

hardware scaling and VMs consolidation, they have 

proposed a new power management method for 

virtualized systems called “soft resource scaling.” 

Also, they have suggested dividing the resource 

management problem into local and global levels. In 

the local level, the algorithms monitor power 

management of guest VMs. On the other hand, global 

policies coordinate multiple physical machines.  In 

this paper, the target system is heterogeneous, the 

workload used to validate the system is arbitrary, and 

the goal of the proposed model is minimizing energy 

consumption as well as satisfying performance 

requirements. 

In [3], authors have proposed an architectural 

framework and principles for energy-efficient cloud 

computing aimed at the development of energy-

efficient provisioning of cloud resources, while 

meeting Quality of Service (QoS) requirements. They 

divided the VM allocation problem in two parts: the 

first part is the admission of new requests for VM 

provisioning and placing the VMs on hosts, whereas 

the second part is the optimization of the current VM 

allocations. Moreover, they have stated that the 

optimization of the current VM allocation is carried 

out in two steps: at the first step they select VMs that 

need to be migrated, at the second step the chosen 

VMs are placed on the hosts using the MBFD 

algorithm.  

In [5], authors have conducted competitive analysis 

and proved competitive ratios of optimal online 

deterministic algorithms for the single VM migration 

and dynamic VM consolidation problems. They have 

divided the problem of dynamic VM consolidation 

into four parts including.  

1. Determining overloaded hosts. 

2. Determining underloaded hosts. 

3. VM selection for migration from an overloaded 

host.  

4. VM placement. 

They have proposed novel   adaptive heuristics for all 

parts.  

In [22], authors have proposed a system that uses 

virtualization technology to allocate data center 

resources dynamically based on application demands 

and support green computing by optimizing the 

number of servers in use. They aim to achieve two 

goals in their algorithm: overload avoidance and green 

computing. To reach these goals, they have designed a 

load prediction algorithm that can capture the future 

resource usages of applications accurately without 

looking inside the VMs. Furthermore, they have 

defined a server as a hot spot if the utilization of any 
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of its resources is above a static hot threshold and as a 

cold spot if the utilizations of all its resources are below 

a static cold threshold.  

In [12], authors have proposed efficient 

consolidation algorithms which can reduce energy 

consumption and at the same time the SLA violations 

in some cases. They have introduced an efficient SLA-

aware resource allocation algorithm that considers the 

trade-off between energy consumption and 

performance. Their proposed resource allocation 

algorithm takes into account both host utilization and 

correlation between the resources of a VM with the 

VMs present on the host. Moreover, they have 

proposed a novel algorithm for determination of 

underloaded PMs in the process of resource 

management in cloud data centers considering host 

CPU utilization and number of VMs on the host. 

In [2], authors have proposed Enhanced 

Optimization (EO) policy as a novel resource 

management procedure in cloud data centers. The main 

idea behind EO policy is solving the resource allocation 

problem for the VMs that are selected to be migrated 

from either overloaded or underloaded PMs in one step 

rather than in separate steps for each one. Besides,  they 

have introduced a solution based on Technique for 

Order of Preference by Similarity to Ideal Solution 

(TOPSIS) for optimizing different targets in cloud data 

centers at the same time including energy consumption, 

SLA violation, and number of VM migrations. Based 

on this idea, they have proposed TOPSIS Power and 

SLA Aware Allocation (TPSA) and TOPSIS-Available 

Capacity-Number of VMs-Migration Delay (TACND) 

for resource allocation and determination of 

underloaded PMs in cloud data centers, respectively. 

In [15], authors have presented two energy-

conscious task consolidation heuristics, which aim to 

maximize resource utilization and explicitly take into 

account both active and idle energy consumption. Their 

heuristics assign each task to the resource on which the 

energy consumption for executing the task is explicitly 

or implicitly minimized without the performance 

degradation of that task. They have considered that 

CPU utilization directly relates to energy consumption 

and based on this assumption they have developed two 

energy-conscious task consolidation heuristics.  

In [14], authors have proposed performance analysis 

based resource allocation scheme for the efficient 

allocation of virtual machines on the cloud 

infrastructure. They have proposed an efficient 

algorithm that follows a best fit strategy for allocation 

of virtual machine requests to the physical host nodes. 

To achieve this, they have designed a performance 

analysis scheme of each host node considering the 

number of cores and specification of CPU and memory 

size. 

In sum, the main drawback of all the aforementioned 

studies is non-consideration of all system parameters 

except CPU in decision process. However, our study 

not only considers all important criteria including 

CPU, RAM, and network bandwidth but also 

improves the overall performance of on-line resource 

management process by addition of two new phases to 

the default consolidation problem. 

3. Input System Parameters 

In our model, a server can be overloaded with respect 

to one or more of system's parameters. In other words, 

it is viable that while a server is over utilized 

regarding to one specific parameter, the utilization of 

other system parameters be normal. Consequently, 

this study considers the six major parameters which 

are listed in Table 1.  CCPU specifies the computational 

power which is determined as CPU clock speed 

multiplied by the number of CPU cores defined in 

MIPS. CRAM defines the capacity of RAM. CNET 

symbolizes capacity of network bandwidth. PCPU is the 

percentage of CPU utilization that is computed by 

dividing the requested CPU of a VM by the available 

CPU capacity in a PM. PRAM is the percentage of 

RAM utilization that is computed by dividing the 

requested RAM capacity of a VM by the available 

RAM capacity in a PM. PNET is the percentage of 

network bandwidth utilization that is computed by 

dividing requested network bandwidth of a VM by the 

available network bandwidth in a PM. 

Table 1. Input parameters for resource management. 

No. Parameter Description Unit 

1 CCPU 
CPU clock speed multiplied by the number   of 

cores 
MIPS 

2 CRAM RAM capacity GB 

3 CNET Network bandwidth Gbps 

4 PCPU 
Division of requested CPU MIPS of a VM by the 

available CPU MIPS in a PM 
% 

5 PRAM 
Division of requested RAM capacity of a VM by 

the available RAM capacity in a PM 
% 

6 PNET 
Division of requested network bandwidth of 

a VM by the available network bandwidth in a PM 
% 

4. System Model 

4.1. Target System Model 

We use the target system model defined in [2] as 

shown in Figure 1. This model includes two important 

parts: a central manager and the agents. The central 

manager is the resource manager of the data center 

which allocates VMs to available PMs in the data 

center. Also, it resizes VMs according to their resource 

needs, and decides when and which VMs should to be 

migrated from PMs. The agents which are 

implemented in hypervisors are connected to the 

central manager through network interfaces and have 

the responsibility to monitor the PM as well as 

sending gathered information for central manager.  

4.2. Power and Energy Models 

By emerging modern multi-core CPUs with novel 
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power management methods and introduction of 

virtualization technology, CPU is not the only major 

power consumer in data centers anymore. This fact 

combined with the difficulty of modeling power 

consumption in modern data centers, makes building 

precise analytical models a complex research problem 

[5]. Therefore, we utilize real data on power 

consumption provided by the results of the SPEC 

power Benchmark [15]. Table 2 shows the power 

consumption of the servers used in this study which is 

provided in [5]. 

Moreover, energy consumption is the summation of 

power consumed during a period of time according to 

Equation 1. 

 t
dttPtE )()(  

End User

Central Manager

VM 1 VM 2 VM n

Agent 1 Hypervisor

Physical Machine 1

End User

VM 1 VM 2 VM n

Agent m Hypervisor

Physical Machine m

 

Figure 1. Proposed system model [2]. 

Table 2. Power consumption of considered servers for different 

loads (KWatts) [5]. 

Server Idle 10% 20% 30% 40% 50% 

HP ProLiant G4 86 89.4 92.6 96 99.5 102 

HP ProLiant G5 93.7 97 101 105 110 116 

Server 50% 60% 70% 80% 90% 100% 

HP ProLiant G4 102 106 108 112 114 117 

HP ProLiant G5 116 121 125 129 133 135 

4.3. Average SLA Violation Metric 

QoS requirements can be defined in terms of SLAs that 

are part of customer commitments and are described by 

such key performance metrics as   minimal throughput 

and maximal response time [5].  As these 

characteristics can vary for different applications, it is 

necessary to define a workload independent metric that 

can be used to evaluate the SLA delivered to any VM 

deployed in an IaaS such as Overload Time Fraction 

(OTF) metric defined in [4]. However, this metric only 

considers CPU parameter and do not include multi 

parameters defined in this study. So, we introduce 

Multi Parameter SLA Violation (MPSV) that is capable 

of considering any number of input parameters 

according to Equation 2. 
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Where uti is the utilization of system parameter of type 

res at i'th saved history, containing the non-overloaded 

and overloaded states of a PM; res

i
t0  is the time, during 

which the system parameter of type res of the PM has 

been overloaded, which is a function of uti; tai is the 

total time, during which the PM has been active; and 

res is acronym of resource which can be CPU, RAM, 

or network bandwidth. 

4.4. Slav Metric 

In order to compare our results with other studies, we 

use SLAV metric defined in [5] as a measure of the 

SLA violation due to both VM migration and resource 

shortage in a PM. SLAV is computed by 

multiplication of SLATAH and PDM. SLATAH is the 

percentage of time, during which active PMs have 

experienced the CPU utilization of 100 and PDM is 

the overall performance degradation by VMs due to 

migrations [5]. 

5. Proposed Resource Management 

Heuristics 

MESMM takes advantage of CO policy and defines 

two new phases for consolidation problem. The two 

new defined phases are: (5) sorting VMs to be 

allocated on PMs, and (6) condition evaluation to 

execute optimization process. Moreover, MESMM 

takes advantage of WMA for load prediction of both 

PMs and VMs as well as MDMO policy for condition 

evaluation phase and Multi-Criteria TOPSIS Sorting 

with Prediction (MCTP) policy for VM sorting phase. 

5.1. Consolidated Optimization Policy 

The proposed system flowchart based on CO policy is 

depicted in Figure 2 in which the four boxes that make 

our flowchart different from state of the art are 

highlighted by drawing dashed lines around them. It is 

important to note that this flowchart is an extended 

version of our previous proposed EO policy presented 

in [2]. The boxes numbered 1 and 2 emphasize that 

the VMs to be migrated from either overloaded or 

underloaded PMs are gathered in the migration list 

and the final resource allocation is not yet arranged to 

be executed for them. The box numbered 3 indicates 

our proposed VM sorting phase in which our proposed 

MCTP policy is applied for sorting VMs. The box 

numbered 4 indicates our proposed condition 

evaluation phase in which our proposed MDMO 

policy is applied. 

 First, newly arrived VMs are placed on available 

PMs using TPSA policy [2]. In the next step, PMs are 

searched one by one to find overloaded PMs until 

there is no more hotspot. Resource utilization values 

of each PM are predicted based on the resource 

utilization history of PMs, using WMA prediction 

algorithm [5]. So, if the WMA algorithm forecasts for 

a PM that utilization of either one of its resource types 

will be more than 100%, then this PM is determined 

to be an overloaded PM. 

(1) 

(2) 
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After that, VMs residing on overloaded PMs are 

selected for migration based on Minimum Migration 

Time (MMT) policy [5] until the elimination of hot 

spots. In the following step, a resource allocation 

procedure is executed for the sorted VMs to find their 

probable migration destination using TPSA allocation 

policy. If the control system finds a proper destination 

for a VM, then it is added to the migration list. 

Following that, underloaded PMs are determined 

using TACND policy [2]. In each searching step to find 

underloaded PMs, a PM is selected as a candidate of 

being underloaded. VMs from underloaded PMs are 

added to the migration list until the controlling system 

cannot find any underloaded PM. If the control system 

can find proper PMs as probable migration destinations 

for all the VMs residing on an underloaded PM using 

TPSA policy, then all its VMs are added to the VM's 

migration list. Otherwise, none of the VMs are added to 

the VM's migration list. 

In the next step, all the VMs present in the migration 

list are sorted based on the VM sorting policy. 

Executing this step is important because it is probable 

that there would be not enough resources for all the 

VMs in the migration list and the allocation policy 

cannot find proper PM to host all the VMs. So, based on 

the defined sorting policy, the VMs are sorted so that to 

give higher ranks to the VMs that should have higher 

allocation priorities.   

Then, a new placement is found for all the VMs in 

the migration list based on TPSA allocation policy. 

Major advantage of our proposed flowchart is that the 

VM placement step is executed in the final step after 

finding the complete list of VMs to be migrated either 

from overloaded or underloaded PMs, rather than in 

separate steps for them. Consequently, our placement 

has a holistic view of the whole probable allocations 

rather than executing VM allocations one by one. 

At the final step, the condition evaluation phase is 

executed to assess the condition of the system and to 

analyze the final migrations list. The policy adopted in 

this phase determines whether the migration process 

should be initiated or not. Execution of this phase 

before initiating the migration process is important due 

to elimination of probable extra costs that can be 

incurred to the system. Following the positive decision 

taken in this step, the migration process is initiated. 

One of the major advantages of CO policy is that, in 

contrast to EO policy, CO policy adopts the same 

policy for finding probable destinations for the VMs to 

be migrated from either overloaded or underloaded 

PMs as the one adopted for final VM placement process 

which notably improves the output results. 
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Figure 2. Proposed system flowchart. 

5.2. WMA: Window Moving Average 

WMA predicts the resource utilization regarding 

CPU, RAM, and network bandwidth based on their 

saved utilization history. WMA divides the saved 

history into two window parts and then finds the 

average of each window separately. In the next step, 

WMA predicts the future utilizations based on 

Equation 3. 



New Six-Phase On-line Resource Management Process for Energy and ...                                                                                  15 

 

(3) 

(4) 

(5) 

(8) 

1 2ˆ (1 )
( 1) ( 2)

i ii Window i Window
U U

U k k
Size Window Size Window
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Where Û  the estimated utilization, k is a coefficient 

that specifies the weight of the recent samples and the 

old ones on the estimated utilization, and Ui is the i'th 

utilization value in the history. The coefficient k has the 

same function as the constant defined in familiar 

moving average algorithm. More precisely, k is a 

coefficient that specifies the weight of the estimation of 

the recent samples and the estimation of the old ones on 

the predicted utilization of a specific resource type. 

5.3. MCTP: Multi-Criteria TOPSIS Sorting 

with Prediction 

MCTP is a multiple criteria method based on TOPSIS 

to sort VMs that are to be allocated by computing their 

score. MCTP sorts VMs so that the VM with the highest 

priority has the shortest distance from the ideal positive 

point VM
+ 

and the farthest distance from the negative 

ideal point VM
-
. VM

+
 and VM

-
 are formed as composite 

of best and worst values of different system parameters, 

respectively, among all VMs. Distance from each of 

these poles are measured in the Euclidean distance. 

MCTP computes the predicted values of the 

parameters depicted in Table 1 using the WMA policy. 

All the predicted information assigned to the virtual 

machines in time slot t form a decision matrix MCTP  

as shown in Equation 4.  
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Where VM
1
,VM

2
,...,VM

m
 are the VMs that MCTP is to 

sort them; 
jVM

resP  is the resource utilization of j’th VM 

in percent; 
jVM

resC is the resource capacity of j’th VM; 

and res can be CPU, RAM, or network bandwidth. 

In order to sort the VMs we go through the following 

steps: 

Step1. First, we normalize the decision matrix 

MCTP  to have dimensionless decision matrix MCTP . 

The purpose of decision matrix normalization is to 

make matrix entries free of unit so that they can take 

part in our computations. So, the decision matrix is 

made dimensionless by dividing each entry by 

maximum value of each column according to Equation 

5. 
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Step 2. In the next step, VM
+
 and VM

-
 are determined. 

Before determining VM
+
 and VM

-
, type of each 

attribute should be defined. Each attribute can be 

considered to have either benefit or cost type. Larger 

values for a benefit type attribute leads to less distance 

from VM
+
 and more distance from VM

-
, while the 

opposite condition is hold for a cost type variable. 

Since we want to select a VM that has smaller data 

volume, RAM capacity is marked as cost type. In 

other words, the more memory dedicated to a virtual 

machine, the more cost we should pay for migration. 

So,  MCTP  algorithm  searches for a VM  that  has 

the  lowest  memory to  avoid transferring  large  data 

over interconnection network. However, CPU and 

network bandwidth parameters are considered to have 

benefit type.  So, 
resVM and 

resVM are defined using 

Equations 6 and 7, respectively. 

 , , , , ,VM P P P C C Cres cpu ram net cpu ram net
      

 

 , , , , ,res cpu ram net cpu ram netVM P P P C C C        

Where P
+
 and C

+
 are the maximum values in each 

column of MCTP , and P
-
 and C

-
 are the minimum 

values in each column of MCTP  matrix. 

Step 3. The relative distance for each resource type 

of a VM from 
resVM and 

resVM  are calculated using 

Equation 8.  
2

2 2
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Where 
jVM

resScore shows the score of a specific resource 

type of j’th VM, and res can be any of the parameters 

defined in Table 1. The more distance a VM has from 

VM
-
, the more the value of nominator of Equation 8 

becomes and consequently the score value is larger. 

Similarly, the less distance a VM has from VM
+
, the 

less the value of denominator of Equation 8 becomes 

and accordingly the score value is larger. 
Step 4. Compute the total score of a VM using 

Equation 9. 
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 Where Score VM
j
 is the average closeness of j’th  

VM to the ideal solutions, Weightres is computed 

using Equation 10, and #Res is the number of 

considered resources. 
Step 5. Sort the VMs according to their computed 

score. The VM with the highest score has the maximum 

distance from VM
-
 and the minimum distance from 

VM
+
. 

5.3.1. Parameters Weight Computation 

As stated earlier, different parameters considered in    a 

model have different importance on final decision. 

However, finding an optimized weight for different 

criteria is a wide research area by itself. One criterion 

could be that the more effective the input parameter is 

on output target value, the larger is its weight. Another 

criterion is a priority defined by system administrator or 

importance given by the user to a particular parameter 

over the others. In this study, we propose using a 

simple functional weighting procedure which computes 

the weights of each parameter based on the average 

utilization of all system resources in a datacenter 

according to Equation 10. 





s

res
res

s
s

tU

tU
Weight

Re#

1

Re
Re

)(

)(  

where )(Re tU s  is the average utilization of a specific 

resource in a data center at simulation time t, and #Res 

is the number of considered resources. Res can be any 

of the parameters defined in Table 1. 

5.4. MDMO: Minimum Downtime Migration 

Optimization 

Live-migration is one of the key enablers of resource 

management in cloud data centers. A live-migration 

instance usually takes a few seconds to a few minutes 

to complete. Among all procedures for live-migration, 

memory content transmission takes the longest time 

and thus most affects the migration performance [13]. 

In order to be effective, a live-migration technique 

should finish the migration process as fast as possible 

while minimizing the QoS degradations in the migrated 

VMs. Three prevalent approaches for transferring 

memory contents used for VM migration are stop-and-

copy, pre-copy, and post-copy migration schemes. 

Since famous hypervisors such as Xen, KVM, and VM 

ware utilize pre-copy scheme for live VM migration, 

which allows migrating an OS with near-zero 

downtime, a pre-copy approach is implemented in this 

paper similar to [5]. 

In all migration techniques, two important 

parameters that affect both the downtime of the 

migrating VM and the migration time are amount of 

transferred memory as well as the available network 

bandwidth in source and destination. Hence, the major 

goal of MDMO is simultaneous minimization of the 

downtime occurred during migration process for 

applications running in VMs as well as the total 

migration duration. So, MDMO evaluates the 

migrations’ overhead incurred to the system due to the 

migration of VMs present in the migration list. More 

precisely, MDMO assesses the cost of migrating VMs 

in the migration list by computing the delay of 

transferring VMs from their host PM to their specified 

destination PM. The migration delay for each VM is 

estimated using Equation 11. MDMO decides to 

perform the migration of each VM if the computed 

migration delay for this VM is less than a predefined 

delay threshold which we call MDMO-threshold. 

),min(

 
M

ndestinatiosource

i
i

PMPM

VM
VM

BWBW

CapacityRAM
layigrationDe 

 

Where
iVM

CapacityRAM  is the RAM capacity of VMi; 

sourcePMBW  and 
ndestinatioPMBW are available network 

bandwidth in the source and destination PMs, 

respectively. So, migration delay is estimated as the 

RAM capacity defined for a VM divided by the 

minimum value between available spare network 

bandwidth for the PMs that are the source and 

destination of migration. 

6. Performance Evaluation 

In this section we define a seven segmented naming 

format, depicted in Table 3, for the notation of the 

scenarios assessed in this section. Different sections of 

the naming format are arranged according to the 

policy adopted for the whole resource management 

procedure, the policies adopted for the default four 

phases of consolidation procedure as well as the 

policies adopted for our proposed VM sorting and 

condition evaluation phases. The notations are 

constructed by connecting the abbreviation of the 

policies used for each section using slash lines. As 

shown in the first row of Table 3, a reference scenario 

scenario 1 consisting of a combination of the best 

policies reported in [5] for the default four phases of 

resource management process including Local 

Regression (LR) policy for determination of 

overloaded PMs, Simple Method (SM) policy for 

determination of underloaded PMs, Minimum 

Migration Time (MMT) policy for VM selection, and 

Power Aware Best Fit Decreasing (PABFD) policy 

for VM placement is considered as a base scenario. 

Besides, scenario 1 adopts Traditional four-phase 

Optimization (TO) process for the whole resource 

management procedure. Our proposed policies are 

compared with the reference scenario as well as with 

the policies proposed in [12] scenario 2 and [2] 

scenario 3. As shown in Table 3. [2, 5, 12] have used 

no policies for condition evaluation and VM sorting 

(10) 
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phases. Our proposed scenario scenario 4 takes 

advantage of  TPSA policy for placement of migrating 

VMs, WMA policy for detection of overloading PMs, 

TACND policy for determination of underloaded PMs, 

MMT policy for VM selection, MCTP policy for VM 

sorting phase, and MDMO policy for condition 

evaluation phase. 

Table 3. The notation of the proposed and benchmark policies. 

Scenario 

Number 
Policy Abbreviation 

Scenario 1 TO/LR/SM/MMT/PABFD/-/- 

Scenario 2 TO/LR/VDT/MMT/UMC/-/- 

Scenario 3 EO/LR/TACND/MMT/TPSA/-/- 

Scenario 4 CO/WMA/TACND/MMT/TPSA/MCTS/ MDMO 

6.1. Experiment Setup  

Since our target system is a generic cloud computing 

environment, it is vital to analyze it on a large-scale 

virtualized data center infrastructure. However, 

implementing and evaluating the proposed algorithms 

on such infrastructure is very expensive and time-

consuming. Moreover, executing repeatable large-scale 

experiments to analyze and compare the results of 

proposed algorithms is really hard. So, we have used 

simulation for performance evaluation. We have chosen 

the CloudSim toolkit [4] as our simulation platform 

among available cloud computing simulators. 

CloudSim is a modular open source took it library 

developed by the GRIDS laboratory of university of 

Melbourne for simulation of cloud computing scenarios 

[6]. It provides basic classes for describing data centers, 

virtual machines, applications, users, computational 

resources, and policies for management of diverse parts 

of the cloud systems such as scheduling and 

provisioning. Using CloudSim, enables us to perform 

repeatable experiments on large-scale virtualized data 

centers. However, the major limitation of CloudSim is 

the lack of a graphical user interface. Also, it only 

includes a basic and simplified network model and a 

limited workload generator. 

In our infrastructure setup which has real 

configurations, we have simulated a data center 

comprising 800 installed heterogeneous physical 

machines half of which is supposed to be HP ProLiant 

ML110 G4 and the other half HP ProLiant ML110 G5 

with the configurations depicted in Table 4. Power 

consumption by the physical machines is computed 

based on the models introduced in section 4. WMA 

predicts future utilizations in which k is set to be 0.3; 

size of window1 and window2 are set to be 
3

1
 and 

3

2
 of 

history length, respectively; and the history length is 

equal to 30. VMs are supposed to correspond to four 

Amazon EC2 VM types that have the configurations 

depicted in Table 5. Since using real workload for 

simulation experiments is important, we consider 10 

days data of CoMon project [20]. This data contains 

CPU utilization in 5-min intervals of more than a 

thousand VMs that are located at more than 500 

servers around the world see Table 6. During the 

simulations, each VM is randomly assigned a 

workload trace from one of the VMs from the 

corresponding day. 

Table 4. Configuration of servers. 

Server CPU model Cores 
Frequency 

(MHz) 
RAM 

(GB) 
HP ProLiant G4 Intel Xeon 3040 2 1860 4 

HP ProLiant G5 Intel Xeon 3075 2 2660 4 

Table 5. VM types (four Amazon EC2 VM types) [11]. 

VM type CPU (MIPS) RAM (GB) 

High-CPU medium instance 2500 0.87 

Extra-large instance 2000 3.75 

Small instance 1000 1.74 

Micro instance 500 0.613 

Table 6. Workload data characteristics (utilizations) [20]. 

Date Num. of VMs Mean (%) SD (%) 

03/03/2011 1052 12.31 17.09 

06/03/2011 898 11.44 16.83 

09/03/2011 1061 10.70 15.57 

22/03/2011 1516 9.26 12.78 

25/03/2011 1078 10.56 14.14 

03/04/2011 1463 12.39 16.55 

09/04/2011 1358 11.12 15.09 

11/04/2011 1233 11.56 15.07 

12/04/2011 1054 11.54 15.15 

20/04/2011 1033 10.43 15.21 

6.2. Performance Metrics 

Target parameters are energy consumption, SLA 

violation, and number of VMs' migrations which are 

measured using the models introduced in section 4. 

Our ultimate goal is simultaneous minimization of 

energy, SLA violation, and number of VMs' 

migrations. So, we use the ESM metric defined in [2] 

that is representative of energy consumption, SLA 

violations, as well as number of VMs' migrations as 

defined in Equation 12. Besides, in order to to assess 

the simultaneous optimization of energy and SLA 

violation and also make our results comparable with 

the algorithms presented in [5, 12], we also consider 

the ESV parameter defined in [5]. 

CountMigrationsMPSVEnergyESM   

6.3. Simulation Results 

Ten experiments are executed separately for the 10 

days of workloads depicted in Table 6 and their 

median results for energy consumption, number of 

VM migrations, execution time as well as ESV, and 

ESM metrics are reported in Table 7. Figure 3 shows 

the energy consumption; Figure 4 shows the value of 

SLA violation; Figure 5 shows the value of ESV 

metric; Figure 6 depicts the overall number of VM 

migrations; Figure 7 depicts the value of ESM metric; 

and Figure 8 represents the average execution time of 

different scenarios. It is important to note that the 

MDMO-Threshold is varied from 17 to 25 increasing 

(12) 
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by 1 and the output results reported in Table 7 for 

scenario 4 are the best one obtained when MDMO-

Threshold is 25. 

As depicted in Figures 4, 5, 6, and 7, adopting our 

proposed scenario leads to better performance 

regarding SLA violation MPSV metric, ESV metric, 

number of migrations, and ESM metric, respectively, in 

comparison with other scenarios. This observation can 

be described by the fact that adoption of our scenario 

leads to notable reductions in both SLA violations as 

well as the number of VM migrations as reported in 

Table 7. More precisely, our scenario has a holistic 

view for placing VMs on PMs, thanks to adoption of 

CO policy. Moreover, sorting VMs based on the MCTS 

policy which simultaneously considers multiple criteria 

in decision process results in finding smart prioritized 

allocations based on the computed scores for the VMs 

in the migration list. Besides, adding condition 

evaluation phase to the resource management process 

results in elimination of costly migrations. However, as 

depicted in Figure 3, the energy consumption for 

scenario 4 is slightly more than other scenarios. This 

observation can be described by the existence of an 

intrinsic trade-off between energy consumption and 

SLA violation which are typically negatively 

correlated. However, our goal is simultaneous 

minimization of energy consumption, SLA violation, 

and number of VM migrations that can be quantified 

using the ESM metric. It can be inferred from Table 7 

that adoption of scenario 4 leads to 91.3% reductions in 

ESM metric, in comparison with the reference scenario. 

 Furthermore, as shown in Figure 8, adoption of 

scenario 4 leads to lower execution time in comparison 

with scenario 1 and scenario 2 but more execution time 

in comparison with scenario 3. This observation can be 

described by the fact that our scenario adds two new 

phases to the default four-phase on-line resource 

management process. 

Table 7. Output results. 

Scenario Scenario1 Scenario2 Scenario3 Scenario4 

Energy consumption(Kwh) 436.75 466.49 524.83 539.35 

MPSV(×10-8) 28.35 22.10 10.07 5.00 

ESV(×10-5) 12.505 10.102 5.264 2.501 

Number of migrations 1302 982 689.5 593.5 

ESM 0.1582 0.0939 0.0358 0.0138 

Execution time (Sec) 0.0715 0.0753 0.0157 0.0332 

ESM Improvement (%) - 40.6 77.37 91.3 

 

 

Figure 3. Energy consumption. 

 

Figure 4. SLA violation. 

 

Figure 5. ESV. 

 

Figure 6. Number of migrations. 

  

 

Figure 7. ESM.     

 

Figure 8. Average execution time. 
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7. Concluding Remarks and Future 

Directions 

The major concern in cloud data centers is reducing 

energy consumption to diminish electricity bills as well 

as responding to regulations regarding cutting the 

carbon footprints. This paper addressed the 

consolidation problem in cloud data centers by 

proposing a novel six-phase procedure for the on-line 

resource management problem. This paper concentrated 

on important objectives in cloud ecosystems, which are 

energy consumption, SLA violation, and number of VM 

migrations. Moreover, this paper explained the central 

importance of considering different criteria such as 

CPU, RAM, and network bandwidth in decision 

making process. Besides, this paper proposed adding 

two new phases to the on-line resource optimization 

process which significantly improves the output results. 

More importantly, this paper proposed novel heuristics 

for the two new defined phases of resource 

management process that notably enhances the 

efficiency of resource management process in 

comparison with current techniques regarding both 

ESV and ESM metrics. More precisely, the results of 

experiments obtained from an extensive evaluation of 

proposed policies using Cloudsim simulator showed 

that adoption of our proposed scenario leads to 91.3% 

reduction in ESM metric, in comparison with the state 

of the art. The research work is planned to be followed 

by investigation of novel algorithms for on-line VM 

placement optimization between cloud service 

providers over wide area network connections.  
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