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Abstract: In this paper, a new method for combining an ensemble of classifiers, called Consensus-based Combining Method 
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is better than or comparable to that of majority voting. 

Keywords: Artificial intelligence, classification, machine learning, pattern recognition, classifier ensembles, consensus 

theory, combining methods, majority voting, mean method, product method. 

Received June 3, 2015; accept January 13, 2016 
 

1. Introduction 

Ensemble classifiers combine the decisions of multiple 

independent base classifiers machine learners in an 

attempt to increase the classification accuracy 

compared to individual classifiers [12, 23]. This 

increase in classification accuracy has been observed by 

many researchers in various domains [9, 10, 13, 24]. 

Unfortunately, combining multiple classifiers does not 

guarantee an improvement in accuracy as in the case of 

when the majority of classifiers agree on an incorrect 

classification, leading to an incorrect classification 

decision. An ensemble classifier requires careful 

selection and training of base classifiers so that base 

classifiers do not make errors simultaneously [17]. 

Over the years, a great deal of research has focused on 

improving machine learning results with the ensemble 

methods of boosting and bagging. Boosting aims to 

sequentially add and train an ensemble of classifiers 

until the desired number of models or accuracy is 

attained. Bagging, on the other hand, aims to generate 

multiple base classifiers by training the classifiers on 

the different training datasets. The results of these 

multiple classifiers are then combined.  

Given an ensemble of classifiers, the best decision 

will depend on optimally combining the individual 

decisions. Hence another direction of research has 

focused on the classifiers combination mechanism e.g., 

majority voting, linear combination, super-kernel 

nonlinear fusion, or SVM- based meta-classification. In  

 
traditional combination mechanisms, the base 

classifiers are viewed as independent and diverse, 

since lack of independence and diversity could 

possibly lead the undesirable situation where the 

classifiers make the same classification error. 

Treating base classifiers as completely independent, 

on the other hand, will result in loss of potentially 

useful information that one classifier might learn from 

the others. For instance a classifier might learn that 

another classifier is more confident in its decision, 

e.g., because it was trained on a different dataset or a 

more useful set of features. The authors of this 

research view the ensemble of classifiers as a 

collaborative society in which members learn from 

each other. Each base classifier produces an initial 

classification of the object under consideration, but 

after communication with the other classifiers has the 

opportunity to change its classification. Through 

iterations, the classifiers eventually reach a consensus 

on the best classification decision. 

There are numerous models of how to conduct a 

consensus-based decision-making process for 

classification. In this research, the authors focus on a 

new Consensus-based Combining Method (CCM) that 

adaptively iterates the weights in the combiner. In 

each of the iterations, information about each base 

classifier in the form of an uncertainty estimate is 

utilised. Two types of uncertainty are utilised: self-

uncertainty and conditional uncertainties of the other 

classifiers. The pooled uncertainty estimates are used 
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to revise the weights in the combiner, and the process is 

repeated until a consensus is reached. 

Section 2 provides a review of related works. In 

section 3, the central idea of consensus based decision 

making is explained in terms of the stationary 

probabilities of a Markov chain. The CCM algorithm is 

described in detail in section 4. Experimental results are 

presented in section 5 and a conclusion is provided in 

section 6. For experimentation purposes, the authors 

used a variety of publicly available data sets, in 

addition to a blog spam dataset constructed by crawling 

the web. CCM was compared with three popular 

combination mechanisms. Results show a significant 

improvement in classification accuracy or no worse 

across all data sets. 

2. Related Work 

The combination approach proposed in this research 

falls under the linear classification combination 

mechanism [15]. Linear combination is intuitive and 

simply equates to the sum of the weighted outputs from 

the base classifiers. The most obvious concern with 

linear combination is the choice of best weights. Multi-

response linear regression, one of the popular linear 

combination methods, calculates optimal weights in 

order to get high classification accuracy.  

Many attempts have been made at nonlinear methods 

to improve their performance in comparison with linear 

methods. For instance, multivariate polynomial 

regression can be unsuitable in cases of high-

dimensional and high order problems because of their 

high number of product terms. Later, an attempt to 

overcome the dimensionality problem of polynomial 

regression was made by Toh et al. [21]; results show 

that the accuracy was compromised. 

The proposed combination approach is also an 

example of measurement-level combination where each 

base classifier provides, in addition to a label for the 

object under consideration, a measurement value score 

which represents the degree to which the object is 

associated with the label. This information could be 

helpful for the classification and thus improve the 

overall classification accuracy compared with the 

accuracy attained when utilising only the classifier 

decisions. 

The combination approach proposed in this research 

takes advantage of consensus theory principles, widely 

used in many fields such as statistics, social, political, 

and management sciences. Consensus theory, which 

enables members of a group of experts to methodically 

reach an agreement, was first introduced to the arena of 

artificial intelligence in 1985 by Brenestein et al. [5]. 

Benediktsson and Swain [4] applied consensus 

theory principles to multi-sensor fusion where data 

from various locations are integrated to extract more 

valuable information The idea behind their research 

was to use Logarithmic Opinion Pool (LOP) to fuse 

data source outputs by assigning different weights to 

the data sources according to their reliability. 

Shaban et al. [19] introduced a framework for 

aggregating cooperative agents’ decisions with respect 

to their uncertainty. The framework which models the 

interaction between the group members was 

essentially designed to solve some of contemporary 

Web information retrieval problems. The authors of 

this research believe that Shaban et al.’s [19] 

framework presents a comprehensive and practical 

implementation of the consensus theory concepts. 

Although, the framework was not designed for 

classifier ensemble systems, some of the general 

guidelines of the framework are adopted in the design 

of the proposed CCM. 

Kim and Hong [11] presented a multi-classifier 

system comprising of multiple base classifiers. Each 

base classifier in turn consists of a general classifier, 

responsible for the classification, and a meta-classifier, 

whose job is to evaluate classification result of its 

corresponding general classifier and make a decision 

of whether the base classifier participates into the final 

decision-making process or not.  

Li et al. [14] proposed AMCE, a multi-classifier 

system for remotely sensed images. AMCE is in 

essence an aggregative model-based classifier 

ensemble with two main components, namely 

ensemble learning and predictions combination. In 

ensemble learning and for purposes of improving the 

performance of single classifiers, the authors 

employed two ensemble algorithms (Bagging and 

AdaBoost.M1).  

In regards to the predictions combinations, diversity 

measurements with an averaged double-fault indicator 

and different combination strategies where taken into 

consideration when integrating the results from single 

classifiers. 

Fersini et al. [8] tackled the task of classifying the 

polarity of texts i.e., positive vs. Negative by 

proposing an ensemble learning model based on 

Bayesian Model Averaging.  

Details related to the design of an idea behind the 

proposed CCM are provided in the next section. The 

paper also includes details of the proposed algorithm 

and shows the calculation of the various stages of the 

combination process. The experiments conducted 

demonstrate the performance of CCM by presenting 

experimental comparisons between majority vote, 

average, and product methods. 

3. Design of CCM Algorithm 

The relationship and interaction between the 

classifiers in CCM can be considered as a recursive 

arrangement. Each classifier in the ensemble can 

engage in a discourse with other classifiers and hence 

is capable of viewing and checking other classifiers’ 

decisions. This approach can be a powerful method for 



78                                                         The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018 

 

resolving or decreasing the level of uncertainty 

associated with the classifiers decision making 

processes, making recursive groups one of the best 

information fusion methods. As Degroot [7] suggested, 

this type of modelling can be referred to as group 

consensus, which is basically the result of aggregating 

multiple and different opinions into a single decision 

that represent the group’s consensus. As shown in 

Figure1, this design allows linear pooling of classifiers’ 

opinions in a recursive process in order to reach a 

consensus. It is simple and intuitive, yet a powerful 

decision making design. 

 

 

Figure 1. Diagram of Consensus based Combining Method (CCM). 

In this design, each classifier in the ensemble must 

present his own expected decision which is a soft value 

that represents the membership of the data point xi in 

the data set Z to one of the classes Ω. This value will be 

denoted by )( kiy  ,  k . It is then confronted 

with decision profiles of other classifiers in the 

ensemble and revises its own decision by making an 

assessment for each classifier given its accuracy and 

decision on the current data point. 

The formula that is used to calculate the revised 

expected ranking is in the form of: 

1

( ) ( )
L

i k ij i k
i

y y  


  

Where, ijw  is a positive weight given by i
th 

classifier to 

the j
th
 classifier. Its summation is one for all classifiers, 

∀i, j∈E. The process of opinion revision continues in 

this manner, where each classifier updates its own 

decision whenever it is informed of the revisions made 

by other classifiers. The process terminates when each 

classifier no longer expects to change the ranking of 

any other classifier, meaning that no change of 

decisions is expected. 

The output of this process is an N×N stochastic 

matrix denoted by W. This matrix can be viewed as a 

one-step transition probability matrix of Markovian 

chain with stationary probability and N stages. 

Because of this property, it is possible to use the limit 

theorem of Markovian chains to determine whether 

the ensemble will converge to a common ranking- 

which represents the ensemble consensus- and if that 

is possible, what will the value of this ranking be? 

Degroot [7] and Berger [6] proved and explained that 

such ensemble will converge to a common ranking 

only in the case of the existence of a vector π such that 

W    

Subject to: 

1
i

i L




   

And the common group ranking, for each ωk∈ Ω 

denoted yg(ωk), k = 1, ..., c is given by: 

1

( ) ( )
L

g k i i k
i

y y  


   

Classifiers subjectively calculate the weights ijw  to 

reflect their accuracy and the confidence of the 

decisions they made. Classifiers also represent their 

level of uncertainty about such decisions. As expected, 

it is clear that each classifier will have a different level 

of uncertainty in different situations, and this level is 

also different from that of other classifiers. 

The weight calculation stage can be described as a 

dynamic process with an adaptive property, where it 

constantly changes as the classifier state of knowledge 

changes. In summary, this weight shows the level of 

confidence that a classifier has in its own decision and 

in the other classifiers’ decisions as well. 

4. CCM Algorithm Description 

Our CCM algorithm is composed of the following 

main stages. The first stage involves building the 

decision profile for each classifier in the ensemble and 

is denoted by DP(x). In the second stage the 

Uncertainty matrix is calculated. The second stage is 

composed of two sub stages (Self-Uncertainity and 

Conditional-Uncertainity). The weight calculation 

stage is essential and is the cornerstone of this 

algorithm and in the next stage a diffusion of the 

decisions is performed in order to reach the consensus. 

The final stage is the update stage where each 

classifier updates its decision given the final decision 

of the other classifiers. The next subsections include a 

detailed explanation of these various stages with code 

fragments written in Matlab. 

 

 

(1) 

(2)  

(3) 

        

(4) 



Consensus-Based Combining Method for Classifier Ensembles                                                                                                   79 

 

Algorithm 1: Consensus-based Combing Method (CCM) 

#Inputs: 

Z: Data set 

x: Data point 

E: Ensemble of classifiers 

e: Classifier in E 

Δ: Vector of classifiers’ accuracy 

DP: Decision profile  

Umat: Uncertainity matrix 

Wmat: Weight matrix 

Ω: Vector of classes 

π: Vector 

#Output: 

y: prediction of x by E 

1: for each xi in Z do 

2: for each ej in E do 

3: DPj ← classify (ej , xi) 

4: end for 

5: end for 

6: Exchange DP between classifiers in E 

7: Umat = Computed by Eq. (7) and Eq. (8) 

8: Wmat = Computed by Eq. (17) 

9: Calculate π by Eq. (2) 

10: y = diffuse (DP, Δ, Ω, Wmat) 

11: Update DP by Eq. (20) 

12: Repeat 7 to 10 

13: Return ωi ∈ Ω with the maximum support 

A. Building Decision Profiles: Suppose that an 

ensemble E consists of L classifiers which are 

denoted by e1, e2, ...,eL, performing a classification of 

data point xi that belongs to a data set Z. Here a 

classifier ei observes a subset of feature space θi 

(which represents xi) over a universal feature space 

of Z which is given by Θ. A hypothesis h is used to 

relate θi to a belief ψi. This relationship is 

summarized by the following equation: 

( )
i i i

h   

Where, ψ∈ Ψ is the knowledge space. Upon receiving a 

new xi, ei not only chooses a ωk from a set of possible 

classes Ω =ω1, ω2, ...,ωc but also provides the 

probability for ∀ωk ∈ Ω. This output is related to the 

belief ψi by decision function δi as 

k
( )

i i
    

Each ei in E will produce its own outputs based on its 

own hypothesis, which might be different from the 

outputs of other classifiers, and give the probability of 

each class as a soft output decision. The final decision 

integration problem can be presented as finding the 

correct ω among a group of classes’ ωk∈ Ω which 

should constitute the group preference. 

B. Calculation of Classifiers’ Uncertainty Estimations: 

this stage involves finding a function by which each 

classifier’s uncertainty can be computed. The 

intuition here is to assign more weights to classifiers 

that are less certain and vice versa. However, the 

weights should reflect the contrast of the classifiers’ 

decisions. During this stage, uncertainty will be 

divided into two types: self or local and conditional 

or global. Self-uncertainty is related to the quality of 

the classifiers’ own decisions where the 

conditional-uncertainty emerges as the result of 

collaboration between classifiers that take place in 

the form of decision profile exchange. In this stage 

a classifier will be able to review its uncertainty 

level and modify it given its own decision as well 

as the decisions of other classifiers. This provides 

the classifier with a way to improve its decision 

when other classifiers’ decision becomes available. 

In this paper, local uncertainty and global 

uncertainty are referred to as self-uncertainty and 

conditional-uncertainty, respectively. 

1. Self-Uncertainty: Self-Uncertainty is a measure of 

how much doubt a classifier has in its own decision 

and also how much randomness is involved in that 

decision. Let Ui|i denote the self-uncertainty of 

classifier ei. The following equation will calculate 

Ui|i: 

| k k
1 ( )log ( )c

i i i c i
U k y y     

Where, c represents the number of labels or classes. 

2. Conditional-Uncertainty: The conditional 

uncertainty is a measure of how much doubt a 

classifier has on its own decision after observing 

the decisions of other classifiers. This reflects how 

much knowledge can be inferred from others 

decisions. Conditional uncertainty is computed by: 

| k j k j
1 ( | )log ( | )c

i i i c i
U k y y       

For an ensemble composed of L classifiers the 

uncertainties are presented as show the following 

matrix form: 

1|1 1|2 1|

2|1 2|2 2|

|1 |2 |

...

...

... ... ... ...

...

L

L

L L L L

U U U

U U U
U

U U U

                                  

Where the diagonals of the matrix represent the self-

uncertainty and the off diagonals represent the 

conditional-uncertainty. 

C. Calculation of Classifiers’ Weights: After 

constructing the uncertainty matrix, it is now 

possible for each classifier to assign weights for 

itself and for other classifiers in the ensemble as 

well. Here minimization of the sum squares of self- 

uncertainty and conditional uncertainty of other 

classifiers is used. 

In this way, classifiers with low conditional 

uncertainty are given higher weights while the ones 

with higher conditional uncertainty will receive low 

weights. The following two equations will summarize 

the above idea: 

2 2

|i ij j i
i L

Minimize T w U


             
                  

 

 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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With constraint that: 

1

1 0
L

ij ijj

w and w


                                          

However the above two equations are equivalent to 

minimizing the following equation: 

2 22

i |
×  1j L j L

ij ij
j i

v w U w        

Where, ρ denotes the Larange multiplier. Taking the 

partial derivative of νi with respect to wij and setting the 

equation to zero will result in: 

ij 2

|
2×  

j i

w
U


                                                      

Also, taking the partial derivative of νi with respect to 

the Lagrange multiplier ρ and equating to zero will 

yield: 

ij
1

j L
w



   

The substitution of Equation (13) in Equation (14) will 

give: 

2

|

1
2×  j L

j iU




   

It follows that: 

2

|

2

2×  
j i

j L

U







  

Substituting Equations (13) and (16) will produce the 

classifier weighting coefficient wij computed by: 

2 2

| |

1

 2×  
ij

j i k i
k L

w
U U 




  

D. Decision Updates: The idea of this stage is inspired 

by a suggestion from Degroot [7], who in his famous 

paper entitled “Reaching a Consensus.”, briefly 

raised the question: what might be the output if ei 

wishes to change the weights that it assigns to the 

other classifiers after it learned their initial decisions, 

or after it has observed how much their decisions 

differ from the consensus decision. The authors of 

this research have explored such possibility by 

taking advantage of this idea in the design as an 

update to each ei∈D. By using this update, ei is able 

to revise all rankings that have been given to other 

classifiers. These new rankings will subsequently 

mean a new calculation of the uncertainty matrix and 

as a result new weights calculation. Details of this 

one loop process are provides in the next paragraph.  

The initial consensus decisions are presented in a vector 

Γ = {γ1, γ2, ...,γM} and the decisions of classifiers are 

presented by Θ = {θ1, θ2, ..., θM}, then for each ei , the 

i value is calculate as: 

1

M

i i i
j

  

   

For each i value, another value denoted by αi using 

the equation is calculated: 

1i i    

Now a new coefficient ϕ can be calculated by: 

 
1

2
i
     

Finally each ei is able to give new rankings to its 

fellow classifiers which reflect the update that has 

been received. 

5. Experimental Results 

The performance of the algorithm has been evaluated 

by running experiments on 14 representative data sets 

from the University of California-Irvine (UCI) 

repository [16]. These data sets have been used in 

similar studies [1, 18]. 

Table 1 presents a summary of these data sets. 

Binary and multi class data sets were considered when 

choosing these data sets. In addition, a variation in the 

number of the attributes and examples (data items) 

were also considered. After the ensembles have been 

trained, the predictions are obtained by using the 

majority vote combining method. 

In addition to the aforementioned data sets, the 

experiments were also run on a blog spam detection 

data set compiled by the authors of this research. Part 

of its raw data was obtained from Defensio, a 

company that specialized in providing security against 

threats targeting social media, and the rest of the data 

was collected by the authors themselves. In order to 

collect raw data from the web, the authors designed 

and built a web crawler using Perl programming 

language. The aim of this data set is to distinguish 

between spam blog comments and non-spam ones. 

Thus the comments were divided into two classes, 

spam and non-spam comments. The dataset comprises 

of 56,000 blog comments, of which 30,000 comments 

are spam comments and the rest are non-spam 

comments. 

Table 1. Summary of data sets. 

Name Examples Classes Attributes 

Blog Spam 56000 2 21693 

Breast Cancer 699 2 9 

Letter Recognition 20000 26 16 

Iris 150 3 4 

Segment 2310 7 19 

Ionosphere 351 2 34 

Auto (Statlog) 946 4 18 

Haberman’s 946 2 3 

Contraceptive 1473 2 3 

Isolet 1559 26 617 

Glass 214 6 9 

Colic 368 2 22 

Heart-c 303 2 13 

Splice 3190 3 62 

Anneal 898 6 38 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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For experimental purposes, the data set was divided 

into a training set and a validation set. A ten-fold cross 

validation method was used to test the classifiers and 

the proposed method in comparison with other 

methods. 

Table 2. Summary of base classifiers. 

Name of Classifier 

k-nearest neighbor 

binary decision tree 

Naive Bayes 

Support vector 

Normal densities based linear 

Linear perceptron 

Normal densities based quadratic 

Logistic linear 

Train neural network classifier by back-propagation 

Nearest mean 

Train radial basis neural network 

k-centers clustering 

Radial basis support vector 

Parzen 

Minimum least square linear 

A set of base classifiers was used in building the 

ensembles that are listed in Table 2. Each of these 

classifiers was evaluated using 10 complete runs of 10-

fold cross validation. In each 10-fold cross-validation, 

each data set is randomly divided into 10 equal-size 

segments and the results are averaged over thirty trials. 

For each trial, all segments are set aside for training, 

while only one segment of data is reserved for testing. 

To perform testing on varying amounts of training 

data, learning curves were generated by testing the 

ensembles after training on increasing subsets of the 

overall training data. In order to summarise the results 

over different data sets of varying sizes, different 

percentages of the total training-set size were chosen as 

the points on the learning curve. 

CCM was compared with three different combining 

methods: voting combining method, averaging 

combining method, and product combining method. 

These methods have been widely used as ensembles 

combining methods [20]. 

The results of comparing CCM with majority voting 

(voting), Mean, and Products methods are presented in 

three formats: tables, scatter plots, and line graphs. 

For the purpose of comparing CCM with other 

algorithms across all domains, the statistics used in in 

[2, 3, 22] was implemented, specifically the 

win/draw/loss record and the geometric mean error 

ratio. The statistics (Win/Draw/Loss, significant 

Win/Draw/Loss, and geometric mean error ratio) are 

summarized at the bottom of each table. The simple 

win/draw/loss record computed by calculating the 

number of data sets for which CCM obtained better, 

equal, or worse performance than any of the other 

algorithm with respect to the ensemble classification 

accuracy. In addition, another record representing the 

statistically significant win/draw/loss, according to this 

record win/loss is only computed if the difference 

between two values is greater than 0.05 level which 

was determined to be significant by computing the 

student paired t-test. The Geometric Mean (GM) error 

ratio was computed by: 

1

n
A

i
B

E
GM

E

  

Where 
A

E and 
B

E denote the mean errors of our 

algorithm and the other algorithm being compared, 

respectively. For the proposed algorithm to 

outperform the other algorithms, the geometric mean 

error ratio must be less than one. Error ratio 

computation captures the degree to which algorithms 

outperform each other in win or loss outcomes. 

The scatter plots present a clear visualization of the 

performance of CCM and the method that it is being 

compared with. It compares the accuracy on all data 

sets at selected training size. In each scatter plot, the 

data points represent the datasets, the one is located 

above the diagonal indicates that the performance of 

CCM is higher otherwise is not. However, the line 

graphs show comparisons between all combining 

methods on selected data sets over all training data 

sizes. 

5.1. Comparison of CCM with Majority Voting 

Method 

The results shown in Table 3 illustrate the comparison 

of CCM with majority voting methods. It is clear that 

combining the predictions of ensemble using CCM 

will, on average, improve the accuracy of the 

ensemble. CCM has more significant wins to losses 

over majority voting for all points along the learning 

curve. 

The geometric mean error ratio in Table 3 displays 

that CCM outperforms majority voting. It suggests 

that even in situations where majority voting beats 

CCM, the gain in the accuracy is less than the gain.  

Table 3. CCM VS. Majority voting method. 

Dataset 10% 20% 30% 40% 50% 

Breast Cancer 82.67/85.31 88.75/90.93 89.93/92.28 91.33/93.43 91.77/93.61 

Ionosphere 84.02/82.40 85.64/82.94 87.16/83.57 88.16/85.14 88.31/86.59 

Auto (Statlog) 63.46/59.21 71.79/68.10 74.20/69.63 74.98/71.78 75.40/72.12 

Haberman's 66.28/60.04 69.86/67.00 71.84/69.24 76.10/73.68 76.15/74.48 

Contraceptive 40.52/37.40 49.31/46.95 54.38/51.23 58.64/55.45 63.08/61.24 

Blog Spam 85.71/82.37 89.24/84.69 91.77/89.50 92.94/90.21 93.52/92.37 

Letter  

Recognition 
78.90/74.23 79.15/75.49 83.93/80.20 83.00/82.95 84.16/83.87 

Iris 79.19/78.33 82.26/81.33 83.49/83.73 86.94/85.41 88.02/86.33 

Segment 77.23/79.39 77.80/80.22 79.30/82.16 81.49/83.34 83.39/85.77 

Isolet 78.60/74.20 78.93/76.16 79.95/79.68 81.19/80.52 81.87/80.76 

Glass 50.93/44.52 57.10/50.16 61.42/55.23 74.61/69.12 75.19/71.39 

Colic 66.85/61.94 68.45/65.71 71.48/67.33 74.61/69.12 75.19/71.39 

Heart-c 64.29/65.17 72.16/73.89 75.59/77.10 76.62/78.38 82.94/84.72 

Splice 68.13/64.41 72.99/70.13 78.96/77.06 84.76/81.57 85.36/82.14 

Anneal 77.56/74.89 81.26/78.51 83.67/79.04 84.35/80.65 85.07/83.26 

Win/Draw/Loss 12/0/3 12/0/3 11/0/4 12/0/3 12/0/3 

Sig. W/D/L 10/3/2 11/2/3 9/3/3 9/3/3 6/7/3 

GM error ratio 0.9195 0.9233 0.9257 0.9236 0.9506 

 

Obtained by the CCM over voting on the rest of the 

cases. It also suggests by the GM error ratio that with 

higher training data set sizes majority voting is 

(21) 
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performing considerably better as the base classifiers 

performance improved. 

 

Figure 2. Comparing CCM with majority voting on 15 data sets 

given 10% of the data as training. 

 

Figure 3. Comparing CCM with majority voting on 15 data sets 

given 30% of the data as training. 

The scatter plots in Figures 2 and 3 show the outputs 

of the 15 data sets at 10% and 30% training sizes. CCM 

has 10 and 9 significant wins compared to 2 and 3 wins 

for the majority voting method. Also the superiority in 

the gain can be seen clearly as the wins of CCM are far 

above the diagonal where they are close to the diagonal 

in case of voting wins. 

5.2. Comparison of CCM with Mean Method 

The numerical results presented in Table 4 assert our 

assumption that CCM achieves better performance in 

comparison with similar linear methods such as mean 

method. Statistics of Table 4 demonstrate that CCM 

significantly outperforms mean method early on the 

learning curve both on significant wins/draw/loss 

records and geometric mean error ratio. 

 

 

Figure 4. Comparing CCM with mean method on 15 data sets 

given 10% of the data as training. 

 

Figure 5. Comparing CCM with mean method on 15 data sets 

given 40% of the data as training. 

Table 4. CCM VS. Mean method. 

Dataset 10% 20% 30% 40% 50% 

Breast Cancer 82.67/80.12 88.75/87.14 89.93/87.49 91.33/91.34 91.77/90.14 

Ionosphere 84.02/84.76 85.64/87.76 87.16/89.27 88.16/90.38 88.31/90.81 

Auto (Statlog) 63.46/58.45 71.79/67.44 74.20/70.45 74.98/71.20 75.40/72.51 

Haberman's 66.28/63.10 69.86/67.15 71.84/70.02 76.10/74.14 76.15/74.83 

Contraceptive 40.52/36.42 49.31/44.63 54.38/50.23 58.64/53.40 63.08/56.62 

Blog Spam 85.71/87.54 89.24/91.62 91.77/93.49 92.94/94.67 93.52/96.81 

Letter  

Recognition 
78.90/75.38 79.15/76.34 83.93/79.72 83.00/80.59 84.16/82.47 

Iris 79.19/77.67 82.26/81.42 83.49/84.05 86.94/85.97 88.02/86.51 

Segment 77.23/73.20 77.80/74.56 79.30/75.67 81.49/77.39 83.39/78.66 

Isolet 78.60/72.63 78.93/73.48 79.95/74.25 81.19/77.16 81.87/78.30 

Glass 50.93/46.24 57.10/52.95 61.42/58.41 62.25/58.79 63.44/59.13 

Colic 66.85/57.18 68.45/57.88 71.48/65.23 74.61/67.51 75.19/69.32 

Heart-c 64.29/59.85 72.16/68.15 75.59/73.14 76.62/74.81 82.94/81.46 

Splice 68.13/62.57 72.99/68.29 78.96/73.22 84.76/80.92 85.36/81.55 

Anneal 77.56/73.16 81.26/78.36 83.67/80.67 84.35/81.16 85.07/81.95 

Win/Draw/Loss 13/0/2 13/0/2 12/0/3 13/0/3 13/0/2 

Sig. W/D/L 12/2/1 11/2/2 11/2/2 10/3/2 8/5/2 

GM error ratio 0.8943 0.9108 0.9062 0.9190 0.9334 

However, the trend becomes considerably less 

obvious. For instance, given 50% of training the GM 

error ratio is 0.9334 compared to 0.8943 at 10% 

training data. The statistically significant 

wins/draw/loss records follow the same pattern; for 

example the CCM achieves 12 wins given 10% data 

compared to 8 wins at 50%. The scatter plot in Figure 

4 illustrates that CCM produces higher accuracy on 12 

out of 15 data sets compared to only1 out 15 in favour 

of mean method given 10% training data. Similarly in 

Figure 5, CCM obtained 10 out of 15 data sets, while 

mean obtained 3 out of 15 data sets. However, the gain 

obtained in the Figure 4 is less than the one achieved 
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in Figure 5 (see the location of the data points in 

relation to the diagonal). 

5.3. Comparison of CCM with Product Method 

The results in Table 5 show the comparison between 

the CCM and the product method. It indicates that 

CCM exhibits higher performance across almost all 

data sets, at various training sizes. 

Table 5. CCM VS. Product method. 

Dataset 10% 20% 30% 40% 50% 

Breast Cancer 82.67/79.34 88.75/87.16 89.93/92.24 91.33/92.67 91.77/94.59 

Ionosphere 84.02/84.31 85.64/84.59 87.16/86.97 88.16/88.99 88.31/90.76 

Auto (Statlog) 63.46/55.73 71.79/66.44 74.20/70.36 74.98/70.95 75.40/71.13 

Haberman's 66.28/61.29 69.86/66.09 71.84/67.94 76.10/73.25 76.15/73.31 

Contraceptive 40.52/36.99 49.31/42.60 54.38/48.17 58.64/51.99 63.08/56.54 

Blog Spam 85.71/86.41 89.24/86.50 91.77/89.42 92.94/90.67 93.52/92.47 

Letter Recognition 78.90/75.83 79.15/76.99 83.93/81.20 83.00/82.50 83.16/84.97 

Iris 79.19/76.15 82.26/80.31 83.49/80.65 86.94/85.25 88.02/86.19 

Segment 77.23/74.62 77.80/74.03 79.30/77.16 81.49/77.54 83.39/78.22 

Isolet 78.60/73.59 78.93/75.62 79.95/76.31 81.19/79.12 81.87/79.57 

Glass 50.93/45.98 57.10/50.17 61.42/56.33 62.25/56.84 63.44/59.29 

Colic 66.85/55.20 68.45/60.20 71.48/67.46 74.61/71.13 75.19/71.98 

Heart-c 64.29/57.19 72.16/65.23 75.59/73.88 76.62/73.97 82.94/79.14 

Splice 68.13/64.22 72.99/65.81 78.96/71.45 84.76/77.25 85.36/81.28 

Anneal 77.56/76.29 81.26/77.20 83.67/80.49 84.35/82.00 85.07/83.42 

Win/Draw/Loss 14/0/1 14/0/1 14/0/1 13/0/2 12/0/3 

Sig. W/D/L 12/3/0 13/2/0 12/2/1 11/3/3 10/2/3 

GM error ratio 0.8848 0.8529 0.8876 0.8864 0.9274 

The significant superiority in performance of CCM 

over product method is clearly visible on some data 

sets, i.e., Auto, Contraceptive, and Colic data sets. For 

instance, in Colic data set at 10% training size the gain 

is over 10 and continues through the rest of the training 

data sizes. 

 

Figure 6. Comparing CCM with product method on 15 data sets 

given 40% of the data as training. 

In addition, the summarised statistics support the 

authors’ claim, in particular, the GM error ratio. Also 

the trend discussed above, in comparisons with voting 

and mean methods, can be clearly seen in Figures 6 and 

7. The advantages of CCM over product method is not 

limited to early points on the learning curve, CCM 

significantly outperforms product method on large 

training sizes. It has 11 wins out of 15 data sets and 10 

wins out 15 data sets at both 40% and 50% training 

sizes respectively (see Figures 6 and 7). 

 

Figure 7. Comparing CCM with product method on 15 data sets 

given 50% of the data as training. 

5.4. Comparison of CCM, Voting, Mean, and 

Product Methods 

This subsection presents visual presentation for the 

result of comparing the four combining methods on 

selected domains that experimented on. 

Generally speaking, all of the combining methods 

yield some increase in the accuracy of the ensemble 

over the base classifiers. However the improvements 

in performance achieved when using CCM are, on 

average, much higher than those obtained by majority 

voting, mean, and product methods. The amount of 

increase in accuracy achieved by CCM is also more 

obvious when the amount of training data size is 

small; as is clearly exhibited by GM error ratio. The 

results in Figures 8, 9, 10, and 11 demonstrate that 

CCM is fairly robust to variation in domains 

properties, in particular, number of features, number 

of examples, and number of labels. The figures also 

show that CCM performs well at various training sizes 

and consistently beats the other three methods at 

different training data sizes. 

 
Figure 8. Comparing CCM with majority voting, mean, and 

product methods on Anneal data set given all training sizes. 

 
Figure 9. Comparing CCM with majority voting, mean, product 

methods on Isolet data set given all training sizes. 
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Figure 10. Comparing CCM with majority voting, mean, and 

product methods on Splice data set given all training sizes. 

 
Figure 11. Comparing CCM with majority voting, mean, and 

product methods on Iris data set given all training sizes. 

6. Conclusions 

In this paper, CCM that represents a new theoretical 

framework for a linear combining method was 

developed. The effectiveness of CCM method was 

evaluated by comparing its performance with the 

performance of existing CCM (majority voting, 

product, and average method). 

Experimental results carried out on 14 public data 

sets from UCI machine learning repository and a blog 

spam data set that we created, show that CCM is a quite 

competitive method for classification. It significantly 

improves the average classification accuracy compared 

to the product and average methods. However, the 

average classification accuracy is better than or 

comparable to majority voting method. 

The authors of this research believe that the 

proposed CCM provides an important contribution to 

the state of the art of ensemble systems, as it provides a 

competitive alternative to existing popular linear 

combination methods. 
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