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Abstract: Testing is the process of evaluating a software or hardware against its requirement specification. It helps to verify 

and grade a given system. Recent emphasis on Test Driven Development (TDD) has increased the need for testing from the 

early stages of software development. System test cases can be obtained from a number of user specifications such as 

functional requirements; UML diagrams and use case specification. This paper focuses on automating the test process from 

the early stages of requirement elicitation in the development of software. It describes a semi-supervised technique to generate 

test cases by identifying named entities in the given set of use cases. The named entities along with flow listing of the use cases 

serves as the source for scenario matrix from which a number of test cases can be obtained for a given scenario. The Named 

Entity Recognizer (NER) is trained by a set of features extracted from the use cases. The automated generation of entity list 

was found to increase the efficiency of the overall system.  
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1. Introduction 

Software testing plays an important role in estimating 

reliability of a system, assuring software quality and 

for verifying and validating the functionalities of 

software. As the complexity and size of software grow, 

the time and effort required to do effective testing 

increase. Studies indicate that more than 50% of the 

cost of software development is devoted to testing [7]. 

The main concern in software testing is the generation 

of test cases. Designing and execution of test cases for 

any software is highly time consuming and labour 

intensive. The increasing size of software only 

escalates the complexity of creating test cases. Hence 

automation of test cases has become an inevitable 

process in the course of software testing.  

There are essentially two main approaches to 

automatic design of test cases. One approach attempts 

to design test cases from requirement and design 

specification and the other from code. Since generation 

of test cases from code is cumbersome, the alternate 

approach is given more importance in research point of 

view. The process of generating tests from design will 

often help the test engineer to discover problems with 

design itself. If this step is done early, the problems 

can be eliminated early, saving time and resources. 

Generating tests during design also allows testing 

activities to be shifted to an earlier part of the 

development process, allowing for more effective 

planning of test cases.Another advantage is that the test 

data is independent of any particular implementation. 

Generating test cases at early stages is a good 

supplement to testing. These test cases can be tested at 

later stages coding. Though testing essentially starts at 

the design phase, the error in understanding or design 

can be carried on to consecutive phases. Hence it is 

essential to commence the examination modules right 

from the requirement phase. This leads to a more stable 

system covering aspects of both user specification and 

developer understanding.  

In a software development project, use cases define 

system software requirements. Use case development 

begins early on, so real use cases for key product 

functionality are available in early iterations [21]. A 

use case fully describes the sequence of actions 

performed by a system to provide an observable result 

of value to a person or another system using the 

product under development. Use cases tell the 

customer what to expect, the developer what to code, 

the technical writer what to document, and the tester 

what to test. Thus use cases can be deployed 

effectively in the development of test cases. These test 

cases identify and communicate the conditions that 

will be implemented in test and are necessary to verify 

successful and acceptable implementation of the 

product requirements. They are all about making sure 

that the product fulfils the requirements of the system. 

Named-Entity Recognition (NER) also known as 

entity identification and entity extraction is a subtask 

of information extraction that seeks to locate and 

classify atomic elements in text into predefined 

categories. The Named Entities refer to one or more 

rigid designators which includes proper nouns as well 

as certain kinds of natural terms. The ability of 

recognizing previously unknown entities is an essential 

part of NERC systems [36]. These abilities depend on 

recognizing and classifying based on distinctive 
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features associated with positive and negative 

examples. 

In this paper, the authors provide a semi-supervised 

method of extracting named entities from use cases. 

Different features like orthographic and semantic 

features are extracted from the dataset along with 

general features such as POS tags and word frequency. 

These entities along with flow specification can be 

used to generate test cases from the given set of use 

cases. 

2. Related Work 

Data mining has found its application in a wide range 

of fields [26] such as data modelling like language 

modelling [9], XML document modelling [32] meta 

learning [41]; knowledge discovery [48], Knowledge 

Management [14]; neural networks [54] medical 

system [24], CRM [37], web education [43] etc. A data 

mining project has a list of phases such as business 

understanding, data understanding, data preparation, 

modelling and deployment. A number of data mining 

techniques [27] are applied in various applications. 

Some of these techniques include clustering, 

classification, pattern matching, data summarization 

and deviation detection [17]. 

2.1. Intelligent Approaches for Test Case 

Generation 

Generating Test cases via machine learning techniques 

[5] is two-decade old. Applying metaheuristic search 

techniques and genetic algorithms [53] have been 

extensively used to automate the process of generating 

test cases, and thus providing solutions for a more cost-

effective testing process. SBST is a branch of Search-

Based Software Engineering (SBSE) [18], in which 

optimisation algorithms are used to automate the 

search for test data that maximises the achievement of 

test goals, while minimising testing costs. SBST has 

been applied to a wide variety of testing goals 

including structural [19, 30, 31, 33, 47], functional 

[49], non-functional [50] and state-based properties 

[11]. Lakhotia et al. [25] used a local search to 

augment the Pex DSE-based testing tool from 

Microsoft, while [45] augmented „standard‟ constraint 

solving with a Particle Swarm optimiser to improve the 

performance of Symbolic PathFinder. Ali et al. [1] 

provide a good review of the existing attempts to test 

case generation. DeSantiago and Vijaykumar [10] 

presented a methodology, SOLIMVA, which aims at 

model-based test case generation considering NL 

requirements deliverables. The methodology is 

supported by a Semantic Translation Model in which, 

among other features, a word sense disambiguation 

method helps in the translation process. Application of 

Constraint Logic Programming to Test Case 

Generation is also experimented [34]. 

2.2. Mining in Software Engineering 

Software engineering is a wide domain packed with 

textual artifacts written in natural language such as 

requirement specification documents, design 

documents, code, execution logs, test suites and bug 

logs. Various sources of software engineering data 

include documentation, SCM documents, Source code, 

issues and bugs database and mailing list [22]. Mining 

of these units is one of the key requisite for automating 

the activities of software development. Mining 

activities may include tracing of requirements; retrieval 

of components from a repository; extracting functional 

and non functional attributes; conversion of design to 

action, identify and eradicate bugs etc [20].  Text 

mining done in software documents have also led to 

ontology building. Here the software data documents 

are mined at semantic level and the extracted 

information is used in automated population of 

documentation ontology [51]. 

2.3. Mining Techniques in Software Testing 

Testing plays a major role software development 

process. It is but natural to try and automate this 

process to optimise the development. Before actually 

generating test cases, researches were carried out to 

study software behaviour. An active learning technique 

was suggested by [8] where a Morkov classifier was 

built and trained to predict the behaviour of program 

execution. Data mining techniques such as cluster 

analysis played a major role in operation-based testing 

[12]. The filtering of these clusters based on certain 

metrics improved the efficiency of the system to 

identify more failures in the execution profile. 

Works on automating the process of software testing 

started as early as in 2000‟s. Initial works included 

automated input-output analysis of data-driven 

software systems where an Info-Fuzzy Network (IFN) 

was constructed [26]. The network was employed to 

automatically generate non-redundant set of test cases 

for execution data with the help of Legacy systems and 

random test generator. A number of different 

techniques to generated test cases from functional 

requirements that are presented in natural language 

were studied [16].  Test cases can also be generated 

from state charts drawn using SRS. Here a rule based 

classifier is used to identify functional and non-

functional requirements which are used to produce 

state diagrams. These in turn are used to produce test 

suites on which DM techniques such as association, 

clustering etc are done for optimization [40]. 

Test cases can be generated from dynamic models 

such as control flow graphs and sequence diagrams by 

considering full predicate coverage criteria [46]. The 

test cases thus formed can be used to identify object 

interaction and operational faults. The test cases 

produced can be prioritized by k-means clusters and 

code complexity metrics [2]. 
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2.4. Named Entity Recognition 

Named Entity Recognition (NER) is one of the 

subtasks of information extraction. NER aims at 

locating the Named Entities (NE‟s) in a given context 

and classifying them into different categories. NER 

finds its application in text summarization, machine 

learning, information retrieval etc. [15]. NER is 

employed in a number of applications some of which 

are shown in table 1. 

Table 1. Applications of NER. 

Application Method used Author 

Newswire MEM model Mikheev et al. [35] 

Multi-lingual 
Semi-CRF model Kim et al. [23] 

Gazeetter based classification Nothman et al. [38] 

Tweet 
LabeledLDA Ritter et al. [42] 

KNN with Linear CRF Liu et al. [28] 

Biomedicine 

Semi-CRF model Yang and Zhou [52] 

SVM model Song et al. [44] 

MEM model Patrick and Wang [39] 

SVM with HMM model Atkinson and Bull [3] 

Diverse 

domain 

General Architecture for Text 

Engineering (GATE) 
Maynard et al.  [29] 

SVM with HMM model Etter et al. [13] 

3. System Description 
The process of generating test cases from use cases 

follows a given set of tasks. Flow analysis and scenario 

listing are two main components needed for generating 

test case matrix as shown in Figure 1. 

 

Figure 1. Test case generation. 

3.1. Scenario Matrix Generation 

Scenario matrix plays a major role in test case 

generation from use cases. The creation of scenario 

matrix is done in three steps:  

 Alternate flow identification 

 Decision table construction 

 Scenario matrix generation 

3.1.1. Alternate Flow Identification 

Alternate flows are a conditional set of steps that are an 

alternative to one or more steps in another flow after 

which the use case continues to pursue its goal. The 

alternate flow can be option flow, exception flow or 

recovery flow. These alternate flows are identified 

from the given set of use cases. Redundant flows are 

eliminated and the final set of alternate flows is saved. 

These form the basis for the scenario matrix. 

3.1.2. Decision Table Construction 

The decision table is a multidimensional data structure 

which gives information about the set of characteristics 

that lead to the success or failure of a scenario. The 

table contains a list of scenarios and the set of entities 

used in that application. The flow steps in each 

scenario are mapped against the entity in it. Finally the 

success or failure of the usecase is denoted in the result 

section. The decision table plays an important role in 

test case generation. That is the nature of input data 

and system response for each test scenario can be 

obtained. The decision table however does not gives 

details about the required sequencing of flows or which 

data to test for. 

3.1.3. Scenario Matrix Generation  

The scenario matrix is a deductive method useful for 

constructing scenarios in volatile and uncertain 

situations. The matrix describes the alternate flows 

taken in each scenario when the basic flow fails. The 

final state of the system is also indicated. The change 

in flow depends on the input action performed. 

3.2. Named Entity Recognition from Use Cases 

The domain related named entities that are used in the 

construction of decision table can be generated from 

the uses cases by machine learning techniques. The 

NE‟s thus found are saved in the NE dictionary in their 

domain which can be referred in future for other set of 

use cases. However the Named Entity Recognition 

(NER) module is domain independent. Named Entity 

Recognition uses four different features as depicted in 

Figure 2, namely n-gram frequency, term frequency 

scoring, gazetteer reference and certain minor features. 

Using these features, the use cases are trained by 

machine learning algorithms. 

 

Figure 2. Named entity recognition for use cases. 
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3.2.1. Feature Set  

When it comes to NER, a number of features such as 

contextual, lexical, morphological and shallow 

syntactic features play a prominent role [4]. For 

training the model both orthographic and semantic 

features are extracted from the data set. 

 N-gram frequency analysis: N-grams are two or 

more adjacent elements in a string of tokens that 

represent a single word. They are used to provide 

better representation of document than Bag-Of-

Words (BOW). N-grams provide conditional 

probability of a token given its preceding and 

succeeding token (BIO tags). The analysis done uses 

Enhances-SVM approach to identify frequency of n-

grams where in addition to the frequencies, the 

positions of the terms are also considered [6]. 

 Term frequency scoring: For term scoring, tf-idf is 

used which serves as a weighing factor for 

information retrieval and central tool for scoring and 

ranking frequently occurring words and a document 

relevant to a query. 

 Dictionary reference scoring: A simple way to 

guess the sense of a particular phrase is to look it up 

in a local dictionary. Look-up systems with large 

entity lists work pretty well if the entities are not 

ambiguous. Princeton‟s wordnet
1
 provides various 

details such as the sense of a word and their 

meaning to resolve ambiguity to an extent. It also 

provides various other details such as synonyms, 

antonyms, hyper and hyponyms for the given term 

and also the domain to which they may belong. The 

dictionary provides an additional grade called 

familiarity which has values such as very familiar, 

familiar, common, uncommon, rare and very rare 

based on the number of forms the word takes for a 

given sense. Thus the wordnet reference scoring 

calculates a value based on the number of senses. 

The terms with a positive score have higher 

possibility of being a named entity.  

 Minor features: Other minor features include 

identifying words with special characters (eg. „_‟,‟*‟ 

etc.) and capitalized words. 

3.2.2. Training by Machine Learning  

The features thus obtained are used to train an NER 

identification model. The authors employ Maximum 

Entropy Model (MEM) to train the dataset. MEM is 

also known as multinominal logistic regression model 

that assigns conditional probabilities on the hidden 

structures in the given data. This model assigns to each 

feature a weight. A positive weight indicates the 

configuration is likely to be correct whereas the 

negative weight indicates the configuration is possibly 

incorrect.   

                                                 
1
 http://wordnet.princeton.edu/  

3.3. Test Case Generation 

The generation of test cases involves identifying test 

conditions or data elements for a given functionality, 

identifying all possible scenarios in the given operation 

and finally identifying data element states in each 

scenario and their corresponding output. The generated 

test case contains information such as the input to 

provided, expected result and actual result for each 

scenario in a given functionality. The system uses 

finite-state automation technique where each input 

sequence transit to finite number of states. 

3.3.1. Identify Data Elements  

The data elements or the data conditions are the 

entities that are used in a use case. They can take up 

different values which determine the success or failure 

of the system. These entities are obtained by matching 

the input data against a domain based NE dictionary. 

3.3.2. Identify Possible Scenarios  

Dividing the use case into set of scenarios enhances the 

number of test cases generated. Each scenario is 

formed by considering different values for the data 

elements and the corresponding result of the system. 

The results are listed in the form of a scenario matrix. 

The different states of data elements are termed as 

alternate flows. Thus a scenario matrix generated 

above contains list of scenarios, their set of basic and 

alternate flows and the nature of the output for that 

scenario. 

3.3.3. Identify State of Data Elements and 

Corresponding Output  

From the data elements and the scenarios identified, 

the last step in creating use case is providing values for 

the data elements. As shown in the finite-state diagram, 

the outcome of a given scenario depends upon the 

value of these data elements or conditions. The 

possible values for these elements are found from the 

given use case sequences as represented in Figure 

3.The test cases are written for all possibilities where 

each case shows the values taken by the data elements 

and their expected output. 

Tabulating the data obtained from the above steps 

will yield the set of test cases for the given 

functionality of the system under study. These test 

cases can further be optimized by reducing redundant 

data and identifying missing test conditions.  

http://wordnet.princeton.edu/
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Figure 3. Detailed design of test case generation. 

4. Results and Discussion 

The experiment was conducted in two stages; Named 

entity recognition and Scenario matrix construction. 

The testing and discussion mainly focuses on the NER 

section that serves as the baseline for scenario matrix 

and decision table. 

4.1. Dataset   

The input corpus for training had 80 domain 

independent use cases. Each use case was described in 

detail and was expressed in Jacobson template. From 

these use cases 354 constituent entities were obtained 

among which 262 were positive and 92 were negative. 

The test set was divided into 2 sets: set 1 contained 10 

domain dependent use cases and 87 constituent terms; 

set 2 contained 49 domain independent use cases and 

237 constituent terms. The details of the datasets used 

are depicted in table 2. 

Table 2. Domain details of dataset for classification. 

Dataset No of use cases No of Domain List of Domain 

Training data 80 3 

Hotel management 

Stock maintenance 

Weather forecast 

Test set 1 

(domain 

dependent) 

10 1 Stock maintenance 

Test set 2 

(domain 

independent) 

49 8 

Hotel management 

Employee database 

management 
Restaurant service 

Reservation system 

Logistics 
management 

Healthcare 

Security and 
maintenance 

Inventory 

management 

4.2. Feature Extraction 

The four features considered here are N-grams 

frequency count, term frequency scoring, sense-based 

scoring and minor feature scores. These features are 

identified separately and are integrated to form the 

training set. Here the number of terms in N-gram is 

limited to 2 and their frequency is calculated using E-

SVM method [42]. For term frequency scoring, tf-idf 

value was calculated for frequently occurring terms in 

a document and the value for a term was normalized
2
. 

For sense-based scoring, the number of senses for a 

given constituent term was found. A weighted value 

was given for each sense (noun, verb, adjective and 

adverb) and a final score was calculated. 

4.3. NER Classifier 

The scores thus calculated were used to train a MEM 

classifier. In the Figure 4, the classifier was trained 

using 354 constituent terms. The model built had an f-

measure of 70.4. The model had high TP-rate (recall) 

of about 94.5% for positive classification. This model 

was then test with the 2 different test sets. The 

classifier produced good results for both the sets. The 

results of the classifier on various dataset are shown in 

Table 3. 

Table 3. Evaluation of NER classifer. 

Dataset Precision Recall F-score 

Training data 0.716 0.751 0.704 

Test set 1 0.714 0.968 0.822 

Test set 2 0.675 0.934 0.783 

Two minor challenges were encountered during the 

testing of this model. Firstly only noun and noun 

phrases were considered constituent terms for 

classification. Here the incorrect tagging of POS tagger 

is carried on to the next stages. For example, 

“displays_NNS” is a verb tagged as noun. Secondly 

sense based scoring was mainly used to avoid 

ambiguity of the sense of the word in the given 

context. This however was not completely successful. 

For instance, the word “case” has a familiarity rating of 

very familiar for noun sense and rare familiarity rate in 

verb sense. Based on the sense-score, the word falls 

into the category of named entity but the actual word is 

not an entity. Hence additional features may have to be 

included to improve the efficiency of the system. The 

minor features considered in the model are 

capitalization and specific set of special characters. 

Being positive in most of the cases, they also 

contributed to incorrect tagging. For example, 

capitalization at the beginning of a sentence need not 

necessarily be an entity. The greatest challenge of this 

model was high specificity rate (nearly 0.3 for test set 

2). The model lacked few discriminating features to 

correctly reject non-entity terms. 

 

                                                 
2Average value of the score for a term in all possible documents was 
calculated. 
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Figure 4. Evaluation of NER classifier. 

4.4. Test Case Using Named Entities 

The named entities thus obtained are used by the test 

case generation module. In this module, the list of 

entities indicates the data elements of the system. 

When an entity is identified in the use case, possible 

states taken by the entity is obtained. For example, an 

entity „password‟ can be valid, invalid, correct, 

incorrect, empty etc. Hence a test statement is formed 

to check each of these different states. Also the 

scenario matrix is obtained which gives flow of events 

for each scenario. Test condition is identified for each 

of these events. Finally all the test conditions for a 

scenario are tabulated to form a test suit for the given 

scenario. 

The steps can be explained using the example of 

login use case (Algorithm 1). It is to be noted that the 

list of named entities form the basis for the artifacts 

created. Without them, the data elements cannot be 

identified. Hence automation of this step has a greater 

impact on the test case generation. The states of the 

data element are obtained from the given set of use 

cases. Hence it is very essential to identify all possible 

alternate flows for a given module. Thus this method 

of testing from the requirement elicitation phase 

ensures that a proper system is built from the first 

phase of development. The test cases thus produced for 

login use case are shown in Table 4. This method is 

extended to different use cases from a wide range of 

domain.  

Table 4. Test cases for Login use case. 

S no Username Password Verification code Expected output 

1 Correct Correct N/A Success 

2 Incorrect N/A N/A Re-enter username 

3 Correct Incorrect N/A Re-enter password 

4 Correct Forgot Correct Success 

5 Correct Forgot Incorrect Failure 

6 Null Null N/A New user 

Example 1. Test Condition from Use Case 

Named Entities:  

Username, Password, Verification code, Register, 

Result 

Flow of events:  

 Correct user name 

 Correct password 

 Incorrect user name 

 Incorrect password 

 Forgot password 

 Correct verification code 

 Incorrect verification code 

Result: Success, Failure. 

No of Scenarios: 6 

Scenario 1:  

 Correct Username -> Correct Password -> Success 

Test condition for scenario 1: 

 if(username == correct) 

 then 

  if(password == correct) 

  then  

   success; 

  else  

  then 

   error(not expected value); 

  end if 

 else  

 then 

  error(not expected value); 

 end if 

5. Conclusions 

This paper provides a break through attempt in 

employing a very effective data mining technique to 

automate the process of generating test cases during 

the initial stage of software development life cycle. A 

domain independent NER system was built to optimize 

a test case generation system. Though the system had 

to surf through a voluminous list of entities when 

scanning individual use cases, the effort is less when 

compared to manually identifying tagging entity names 

from individual use cases. Also error in tagging shall 

be avoided. The system however can be expanded with 

different sets of feature that may overcome the 

drawbacks of ambiguity and improve the efficiency of 

classification. The NER system can also be used in 

different stages of software development. 
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