
112 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

Named Entity Recognition for Automated Test Case

Generation

Guruvayur Mahalakshmi
1
, Vani Vijayan

2
, and Betina Antony

1

1
Department of Computer Science and Engineering, Anna University, India

2
Department of Information Technology, Easwari Engineering College, India

Abstract: Testing is the process of evaluating a software or hardware against its requirement specification. It helps to verify

and grade a given system. Recent emphasis on Test Driven Development (TDD) has increased the need for testing from the

early stages of software development. System test cases can be obtained from a number of user specifications such as

functional requirements; UML diagrams and use case specification. This paper focuses on automating the test process from

the early stages of requirement elicitation in the development of software. It describes a semi-supervised technique to generate

test cases by identifying named entities in the given set of use cases. The named entities along with flow listing of the use cases

serves as the source for scenario matrix from which a number of test cases can be obtained for a given scenario. The Named

Entity Recognizer (NER) is trained by a set of features extracted from the use cases. The automated generation of entity list

was found to increase the efficiency of the overall system.

Keywords: Named entity recognition, test case generation, scenario matrix, decision table december.

Received July 14, 2014; accepted December 16, 2014

1. Introduction

Software testing plays an important role in estimating

reliability of a system, assuring software quality and

for verifying and validating the functionalities of

software. As the complexity and size of software grow,

the time and effort required to do effective testing

increase. Studies indicate that more than 50% of the

cost of software development is devoted to testing [7].

The main concern in software testing is the generation

of test cases. Designing and execution of test cases for

any software is highly time consuming and labour

intensive. The increasing size of software only

escalates the complexity of creating test cases. Hence

automation of test cases has become an inevitable

process in the course of software testing.

There are essentially two main approaches to

automatic design of test cases. One approach attempts

to design test cases from requirement and design

specification and the other from code. Since generation

of test cases from code is cumbersome, the alternate

approach is given more importance in research point of

view. The process of generating tests from design will

often help the test engineer to discover problems with

design itself. If this step is done early, the problems

can be eliminated early, saving time and resources.

Generating tests during design also allows testing

activities to be shifted to an earlier part of the

development process, allowing for more effective

planning of test cases.Another advantage is that the test

data is independent of any particular implementation.

Generating test cases at early stages is a good

supplement to testing. These test cases can be tested at

later stages coding. Though testing essentially starts at

the design phase, the error in understanding or design

can be carried on to consecutive phases. Hence it is

essential to commence the examination modules right

from the requirement phase. This leads to a more stable

system covering aspects of both user specification and

developer understanding.

In a software development project, use cases define

system software requirements. Use case development

begins early on, so real use cases for key product

functionality are available in early iterations [21]. A

use case fully describes the sequence of actions

performed by a system to provide an observable result

of value to a person or another system using the

product under development. Use cases tell the

customer what to expect, the developer what to code,

the technical writer what to document, and the tester

what to test. Thus use cases can be deployed

effectively in the development of test cases. These test

cases identify and communicate the conditions that

will be implemented in test and are necessary to verify

successful and acceptable implementation of the

product requirements. They are all about making sure

that the product fulfils the requirements of the system.

Named-Entity Recognition (NER) also known as

entity identification and entity extraction is a subtask

of information extraction that seeks to locate and

classify atomic elements in text into predefined

categories. The Named Entities refer to one or more

rigid designators which includes proper nouns as well

as certain kinds of natural terms. The ability of

recognizing previously unknown entities is an essential

part of NERC systems [36]. These abilities depend on

recognizing and classifying based on distinctive

Named Entity Recognition for Automated Test Case Generation 113

features associated with positive and negative

examples.

In this paper, the authors provide a semi-supervised

method of extracting named entities from use cases.

Different features like orthographic and semantic

features are extracted from the dataset along with

general features such as POS tags and word frequency.

These entities along with flow specification can be

used to generate test cases from the given set of use

cases.

2. Related Work

Data mining has found its application in a wide range

of fields [26] such as data modelling like language

modelling [9], XML document modelling [32] meta

learning [41]; knowledge discovery [48], Knowledge

Management [14]; neural networks [54] medical

system [24], CRM [37], web education [43] etc. A data

mining project has a list of phases such as business

understanding, data understanding, data preparation,

modelling and deployment. A number of data mining

techniques [27] are applied in various applications.

Some of these techniques include clustering,

classification, pattern matching, data summarization

and deviation detection [17].

2.1. Intelligent Approaches for Test Case

Generation

Generating Test cases via machine learning techniques

[5] is two-decade old. Applying metaheuristic search

techniques and genetic algorithms [53] have been

extensively used to automate the process of generating

test cases, and thus providing solutions for a more cost-

effective testing process. SBST is a branch of Search-

Based Software Engineering (SBSE) [18], in which

optimisation algorithms are used to automate the

search for test data that maximises the achievement of

test goals, while minimising testing costs. SBST has

been applied to a wide variety of testing goals

including structural [19, 30, 31, 33, 47], functional

[49], non-functional [50] and state-based properties

[11]. Lakhotia et al. [25] used a local search to

augment the Pex DSE-based testing tool from

Microsoft, while [45] augmented „standard‟ constraint

solving with a Particle Swarm optimiser to improve the

performance of Symbolic PathFinder. Ali et al. [1]

provide a good review of the existing attempts to test

case generation. DeSantiago and Vijaykumar [10]

presented a methodology, SOLIMVA, which aims at

model-based test case generation considering NL

requirements deliverables. The methodology is

supported by a Semantic Translation Model in which,

among other features, a word sense disambiguation

method helps in the translation process. Application of

Constraint Logic Programming to Test Case

Generation is also experimented [34].

2.2. Mining in Software Engineering

Software engineering is a wide domain packed with

textual artifacts written in natural language such as

requirement specification documents, design

documents, code, execution logs, test suites and bug

logs. Various sources of software engineering data

include documentation, SCM documents, Source code,

issues and bugs database and mailing list [22]. Mining

of these units is one of the key requisite for automating

the activities of software development. Mining

activities may include tracing of requirements; retrieval

of components from a repository; extracting functional

and non functional attributes; conversion of design to

action, identify and eradicate bugs etc [20]. Text

mining done in software documents have also led to

ontology building. Here the software data documents

are mined at semantic level and the extracted

information is used in automated population of

documentation ontology [51].

2.3. Mining Techniques in Software Testing

Testing plays a major role software development

process. It is but natural to try and automate this

process to optimise the development. Before actually

generating test cases, researches were carried out to

study software behaviour. An active learning technique

was suggested by [8] where a Morkov classifier was

built and trained to predict the behaviour of program

execution. Data mining techniques such as cluster

analysis played a major role in operation-based testing

[12]. The filtering of these clusters based on certain

metrics improved the efficiency of the system to

identify more failures in the execution profile.

Works on automating the process of software testing

started as early as in 2000‟s. Initial works included

automated input-output analysis of data-driven

software systems where an Info-Fuzzy Network (IFN)

was constructed [26]. The network was employed to

automatically generate non-redundant set of test cases

for execution data with the help of Legacy systems and

random test generator. A number of different

techniques to generated test cases from functional

requirements that are presented in natural language

were studied [16]. Test cases can also be generated

from state charts drawn using SRS. Here a rule based

classifier is used to identify functional and non-

functional requirements which are used to produce

state diagrams. These in turn are used to produce test

suites on which DM techniques such as association,

clustering etc are done for optimization [40].

Test cases can be generated from dynamic models

such as control flow graphs and sequence diagrams by

considering full predicate coverage criteria [46]. The

test cases thus formed can be used to identify object

interaction and operational faults. The test cases

produced can be prioritized by k-means clusters and

code complexity metrics [2].

114 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

2.4. Named Entity Recognition

Named Entity Recognition (NER) is one of the

subtasks of information extraction. NER aims at

locating the Named Entities (NE‟s) in a given context

and classifying them into different categories. NER

finds its application in text summarization, machine

learning, information retrieval etc. [15]. NER is

employed in a number of applications some of which

are shown in table 1.

Table 1. Applications of NER.

Application Method used Author

Newswire MEM model Mikheev et al. [35]

Multi-lingual
Semi-CRF model Kim et al. [23]

Gazeetter based classification Nothman et al. [38]

Tweet
LabeledLDA Ritter et al. [42]

KNN with Linear CRF Liu et al. [28]

Biomedicine

Semi-CRF model Yang and Zhou [52]

SVM model Song et al. [44]

MEM model Patrick and Wang [39]

SVM with HMM model Atkinson and Bull [3]

Diverse

domain

General Architecture for Text

Engineering (GATE)
Maynard et al. [29]

SVM with HMM model Etter et al. [13]

3. System Description
The process of generating test cases from use cases

follows a given set of tasks. Flow analysis and scenario

listing are two main components needed for generating

test case matrix as shown in Figure 1.

Figure 1. Test case generation.

3.1. Scenario Matrix Generation

Scenario matrix plays a major role in test case

generation from use cases. The creation of scenario

matrix is done in three steps:

 Alternate flow identification

 Decision table construction

 Scenario matrix generation

3.1.1. Alternate Flow Identification

Alternate flows are a conditional set of steps that are an

alternative to one or more steps in another flow after

which the use case continues to pursue its goal. The

alternate flow can be option flow, exception flow or

recovery flow. These alternate flows are identified

from the given set of use cases. Redundant flows are

eliminated and the final set of alternate flows is saved.

These form the basis for the scenario matrix.

3.1.2. Decision Table Construction

The decision table is a multidimensional data structure

which gives information about the set of characteristics

that lead to the success or failure of a scenario. The

table contains a list of scenarios and the set of entities

used in that application. The flow steps in each

scenario are mapped against the entity in it. Finally the

success or failure of the usecase is denoted in the result

section. The decision table plays an important role in

test case generation. That is the nature of input data

and system response for each test scenario can be

obtained. The decision table however does not gives

details about the required sequencing of flows or which

data to test for.

3.1.3. Scenario Matrix Generation

The scenario matrix is a deductive method useful for

constructing scenarios in volatile and uncertain

situations. The matrix describes the alternate flows

taken in each scenario when the basic flow fails. The

final state of the system is also indicated. The change

in flow depends on the input action performed.

3.2. Named Entity Recognition from Use Cases

The domain related named entities that are used in the

construction of decision table can be generated from

the uses cases by machine learning techniques. The

NE‟s thus found are saved in the NE dictionary in their

domain which can be referred in future for other set of

use cases. However the Named Entity Recognition

(NER) module is domain independent. Named Entity

Recognition uses four different features as depicted in

Figure 2, namely n-gram frequency, term frequency

scoring, gazetteer reference and certain minor features.

Using these features, the use cases are trained by

machine learning algorithms.

Figure 2. Named entity recognition for use cases.

Named Entity Recognition for Automated Test Case Generation 115

3.2.1. Feature Set

When it comes to NER, a number of features such as

contextual, lexical, morphological and shallow

syntactic features play a prominent role [4]. For

training the model both orthographic and semantic

features are extracted from the data set.

 N-gram frequency analysis: N-grams are two or

more adjacent elements in a string of tokens that

represent a single word. They are used to provide

better representation of document than Bag-Of-

Words (BOW). N-grams provide conditional

probability of a token given its preceding and

succeeding token (BIO tags). The analysis done uses

Enhances-SVM approach to identify frequency of n-

grams where in addition to the frequencies, the

positions of the terms are also considered [6].

 Term frequency scoring: For term scoring, tf-idf is

used which serves as a weighing factor for

information retrieval and central tool for scoring and

ranking frequently occurring words and a document

relevant to a query.

 Dictionary reference scoring: A simple way to

guess the sense of a particular phrase is to look it up

in a local dictionary. Look-up systems with large

entity lists work pretty well if the entities are not

ambiguous. Princeton‟s wordnet
1
 provides various

details such as the sense of a word and their

meaning to resolve ambiguity to an extent. It also

provides various other details such as synonyms,

antonyms, hyper and hyponyms for the given term

and also the domain to which they may belong. The

dictionary provides an additional grade called

familiarity which has values such as very familiar,

familiar, common, uncommon, rare and very rare

based on the number of forms the word takes for a

given sense. Thus the wordnet reference scoring

calculates a value based on the number of senses.

The terms with a positive score have higher

possibility of being a named entity.

 Minor features: Other minor features include

identifying words with special characters (eg. „_‟,‟*‟

etc.) and capitalized words.

3.2.2. Training by Machine Learning

The features thus obtained are used to train an NER

identification model. The authors employ Maximum

Entropy Model (MEM) to train the dataset. MEM is

also known as multinominal logistic regression model

that assigns conditional probabilities on the hidden

structures in the given data. This model assigns to each

feature a weight. A positive weight indicates the

configuration is likely to be correct whereas the

negative weight indicates the configuration is possibly

incorrect.

1
 http://wordnet.princeton.edu/

3.3. Test Case Generation

The generation of test cases involves identifying test

conditions or data elements for a given functionality,

identifying all possible scenarios in the given operation

and finally identifying data element states in each

scenario and their corresponding output. The generated

test case contains information such as the input to

provided, expected result and actual result for each

scenario in a given functionality. The system uses

finite-state automation technique where each input

sequence transit to finite number of states.

3.3.1. Identify Data Elements

The data elements or the data conditions are the

entities that are used in a use case. They can take up

different values which determine the success or failure

of the system. These entities are obtained by matching

the input data against a domain based NE dictionary.

3.3.2. Identify Possible Scenarios

Dividing the use case into set of scenarios enhances the

number of test cases generated. Each scenario is

formed by considering different values for the data

elements and the corresponding result of the system.

The results are listed in the form of a scenario matrix.

The different states of data elements are termed as

alternate flows. Thus a scenario matrix generated

above contains list of scenarios, their set of basic and

alternate flows and the nature of the output for that

scenario.

3.3.3. Identify State of Data Elements and

Corresponding Output

From the data elements and the scenarios identified,

the last step in creating use case is providing values for

the data elements. As shown in the finite-state diagram,

the outcome of a given scenario depends upon the

value of these data elements or conditions. The

possible values for these elements are found from the

given use case sequences as represented in Figure

3.The test cases are written for all possibilities where

each case shows the values taken by the data elements

and their expected output.

Tabulating the data obtained from the above steps

will yield the set of test cases for the given

functionality of the system under study. These test

cases can further be optimized by reducing redundant

data and identifying missing test conditions.

http://wordnet.princeton.edu/

116 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

Figure 3. Detailed design of test case generation.

4. Results and Discussion

The experiment was conducted in two stages; Named

entity recognition and Scenario matrix construction.

The testing and discussion mainly focuses on the NER

section that serves as the baseline for scenario matrix

and decision table.

4.1. Dataset

The input corpus for training had 80 domain

independent use cases. Each use case was described in

detail and was expressed in Jacobson template. From

these use cases 354 constituent entities were obtained

among which 262 were positive and 92 were negative.

The test set was divided into 2 sets: set 1 contained 10

domain dependent use cases and 87 constituent terms;

set 2 contained 49 domain independent use cases and

237 constituent terms. The details of the datasets used

are depicted in table 2.

Table 2. Domain details of dataset for classification.

Dataset No of use cases No of Domain List of Domain

Training data 80 3

Hotel management

Stock maintenance

Weather forecast

Test set 1

(domain

dependent)

10 1 Stock maintenance

Test set 2

(domain

independent)

49 8

Hotel management

Employee database

management
Restaurant service

Reservation system

Logistics
management

Healthcare

Security and
maintenance

Inventory

management

4.2. Feature Extraction

The four features considered here are N-grams

frequency count, term frequency scoring, sense-based

scoring and minor feature scores. These features are

identified separately and are integrated to form the

training set. Here the number of terms in N-gram is

limited to 2 and their frequency is calculated using E-

SVM method [42]. For term frequency scoring, tf-idf

value was calculated for frequently occurring terms in

a document and the value for a term was normalized
2
.

For sense-based scoring, the number of senses for a

given constituent term was found. A weighted value

was given for each sense (noun, verb, adjective and

adverb) and a final score was calculated.

4.3. NER Classifier

The scores thus calculated were used to train a MEM

classifier. In the Figure 4, the classifier was trained

using 354 constituent terms. The model built had an f-

measure of 70.4. The model had high TP-rate (recall)

of about 94.5% for positive classification. This model

was then test with the 2 different test sets. The

classifier produced good results for both the sets. The

results of the classifier on various dataset are shown in

Table 3.

Table 3. Evaluation of NER classifer.

Dataset Precision Recall F-score

Training data 0.716 0.751 0.704

Test set 1 0.714 0.968 0.822

Test set 2 0.675 0.934 0.783

Two minor challenges were encountered during the

testing of this model. Firstly only noun and noun

phrases were considered constituent terms for

classification. Here the incorrect tagging of POS tagger

is carried on to the next stages. For example,

“displays_NNS” is a verb tagged as noun. Secondly

sense based scoring was mainly used to avoid

ambiguity of the sense of the word in the given

context. This however was not completely successful.

For instance, the word “case” has a familiarity rating of

very familiar for noun sense and rare familiarity rate in

verb sense. Based on the sense-score, the word falls

into the category of named entity but the actual word is

not an entity. Hence additional features may have to be

included to improve the efficiency of the system. The

minor features considered in the model are

capitalization and specific set of special characters.

Being positive in most of the cases, they also

contributed to incorrect tagging. For example,

capitalization at the beginning of a sentence need not

necessarily be an entity. The greatest challenge of this

model was high specificity rate (nearly 0.3 for test set

2). The model lacked few discriminating features to

correctly reject non-entity terms.

2Average value of the score for a term in all possible documents was
calculated.

Named Entity Recognition for Automated Test Case Generation 117

Figure 4. Evaluation of NER classifier.

4.4. Test Case Using Named Entities

The named entities thus obtained are used by the test

case generation module. In this module, the list of

entities indicates the data elements of the system.

When an entity is identified in the use case, possible

states taken by the entity is obtained. For example, an

entity „password‟ can be valid, invalid, correct,

incorrect, empty etc. Hence a test statement is formed

to check each of these different states. Also the

scenario matrix is obtained which gives flow of events

for each scenario. Test condition is identified for each

of these events. Finally all the test conditions for a

scenario are tabulated to form a test suit for the given

scenario.

The steps can be explained using the example of

login use case (Algorithm 1). It is to be noted that the

list of named entities form the basis for the artifacts

created. Without them, the data elements cannot be

identified. Hence automation of this step has a greater

impact on the test case generation. The states of the

data element are obtained from the given set of use

cases. Hence it is very essential to identify all possible

alternate flows for a given module. Thus this method

of testing from the requirement elicitation phase

ensures that a proper system is built from the first

phase of development. The test cases thus produced for

login use case are shown in Table 4. This method is

extended to different use cases from a wide range of

domain.

Table 4. Test cases for Login use case.

S no Username Password Verification code Expected output

1 Correct Correct N/A Success

2 Incorrect N/A N/A Re-enter username

3 Correct Incorrect N/A Re-enter password

4 Correct Forgot Correct Success

5 Correct Forgot Incorrect Failure

6 Null Null N/A New user

Example 1. Test Condition from Use Case

Named Entities:

Username, Password, Verification code, Register,

Result

Flow of events:

 Correct user name

 Correct password

 Incorrect user name

 Incorrect password

 Forgot password

 Correct verification code

 Incorrect verification code

Result: Success, Failure.

No of Scenarios: 6

Scenario 1:

 Correct Username -> Correct Password -> Success

Test condition for scenario 1:

 if(username == correct)

 then

 if(password == correct)

 then

 success;

 else

 then

 error(not expected value);

 end if

 else

 then

 error(not expected value);

 end if

5. Conclusions

This paper provides a break through attempt in

employing a very effective data mining technique to

automate the process of generating test cases during

the initial stage of software development life cycle. A

domain independent NER system was built to optimize

a test case generation system. Though the system had

to surf through a voluminous list of entities when

scanning individual use cases, the effort is less when

compared to manually identifying tagging entity names

from individual use cases. Also error in tagging shall

be avoided. The system however can be expanded with

different sets of feature that may overcome the

drawbacks of ambiguity and improve the efficiency of

classification. The NER system can also be used in

different stages of software development.

References

[1] Ali S., Briand L., Hemmati H., and Panesar-

Walawege R., “A Systematic Review of the

Application and Empirical Investigation of

Search-Based Test Case Generation,” IEEE

Transactions on Software Engineering, vol. 36,

no. 6, pp. 742-762, 2010.

[2] Arafeen M. and Do H., “Test Case Prioritization

Using Requirements-Based Clustering,” in

Proceedings of IEEE Sixth International

Conference on Software Testing, Verification and

Validation, Luxembourg, pp. 312-321, 2013.

[3] Atkinson J. and Bull V. “A Multi-Strategy

Approach to Biological Named Entity

Recognition,” Expert Systems with Applications,

vol. 39, no. 17, pp. 12968-12974, 2012.

[4] Benajiba Y., Diab M., and Rosso P., “Using

Language Independent and Language Specific

Features to Enhance Arabic Named Entity

Recognition,” The International Arab journal of

118 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

Information Technology, vol. 6, no. 5, pp. 463-

471, 2009.

[5] Bergadano F., “Test Case Generation by Means

of Learning Techniques,” in Proceedings of the

1
st
 ACM SIGSOFT symposium on Foundations of

Software Engineering, Los Angeles, pp. 149-162,

1993.

[6] Bhakkad A., Dharamadhikari S-C., and Kulkarni

P., “Efficient Approach to Find Bigram

Frequency in Text Document Using EVSM,”

International Journal of Computer Applications,

vol. 68, no. 19, pp. 9-11, 2013.

[7] Binder R., Testing Object-Oriented Systems:

Models, Patterns, and Tools, Addison-Wesley

Professional, 2000.

[8] Bowring J., Rehg J., and Harrold M., “Active

Learning for Automatic Classification of

Software Behavior,” ACM SIGSOFT Software

Engineering Notes, vol. 29, no. 4, pp. 195-205,

2004.

[9] Chen Y., Constructing Language Model by Using

Data Mining Technique, Theses, The University

of Hong Kong, 2004.

[10] DeSantiago V. and Vijaykumar N., “Generating

Model-Based Test Cases from Natural Language

Requirements for Space application

software,” Software Quality Journal, vol. 20, no.

1, pp. 77-143, 2012.

[11] Derderian K., Hierons R., Harman M., and Guo

Q., “Automated Unique Input Output Sequence

Generation for Conformance Testing of FSMs,”

The computer Journal, vol. 49, no. 3, pp. 331-

344, 2006.

[12] Dickinson W., Leon D., and Fodgurski A.,

“Finding Failures by Cluster Analysis of

Execution Profiles,” in Proceedings of Software

Engineering, Toronto, pp. 339-348, 2001.

[13] Etter D., Ferraro F., Cotterell R., and Buzek O.,

“Nerit: Named Entity Recognition for Informal

Text,” Technical Report 11, Human Language

Technology Center of Excellence, 2013.

[14] Fesharaki M., Shirazi H., and Bakhshi A., “A

Knowledge Acquisition from Database of

Information Management and Documentation

Softwares by Data Mining Techniques,”

Information Sciences and Technology, vol. 26,

no. 2, pp. 259-283, 2011.

[15] Grishman R. Information Extraction: Techniques

and Challenges, in Proceedings of International

Summer School on Information Extraction: A

Multidisciplinary Approach to an Emerging

Information Technology, Frascati, pp. 10-27

1997.

[16] Gutiérrez J., Escalona M., Mejías M., and Torres

J., “Generation of Test Cases from Functional

Requirements,” A survey in 4ş Workshop on

System Testing and Validation, 2006.

[17] Halkidi M., Spinellis D., Tsatsaronis G., and

Vazirgiannis M., “Data Mining in Software

Engineering,” Intelligent Data Analysis, vol. 15,

no. 3, pp. 413-441, 2011.

[18] Harman M., Mansouri S., and Zhang Y.,

“Search-Based Software Engineering: Trends,

Techniques and Applications,” ACM Computing

Surveys, vol. 45, no. 1, pp. 1-64, 2012.

[19] Harman M. and McMinn P., “A Theoretical and

Empirical Study of Search Based Testing: Local,

Global and Hybrid Search,” IEEE Transactions

on Software Engineering, vol. 36, no. 2, pp. 226-

247, 2010.

[20] Hayes J., Dekhtyar A., and Sundaram S., “Text

Mining for Software Engineering: How Analyst

Feedback Impacts Final Results,” In ACM

SIGSOFT Software Engineering Notes, vol. 30,

no. 4, pp. 1-5, 2005.

[21] Heumann J., Generating Test Cases from Use

Cases, the Rational Edge, 2001.

[22] Ismail N., Ibrahim, R., and Ibrahi N., “Automatic

Generation of Test Cases from Use-Case

Diagram,” in International Conference on

Electrical Engineering and Informatics,

Teknologi, pp. 17-19, 2007.

[23] Kim S., Toutanova K., and Yu H., “Multilingual

Named Entity Recognition Using Parallel Data

and Metadata from Wikipedia,” in Proceedings

of the 50
th
 Annual Meeting of the Association for

Computational Linguistics, JejuIslan, pp. 694-

702, 2012.

[24] Kusiak A., Kernstine K., Kern J., Melaughlin K.,

and Tseng T., “Data Mining: Medical and

Engineering Case Studies,” in Proceedings of the

Industrial Engineering Research Conference,

Cleveland, pp. 1-7, 2000.

[25] Lakhotia K., Tillmann N., Harman M., and de

Halleux J., “Flopsy-Search-Based Floating Point

Constraint Solving for Symbolic Execution,” in

Proceedings of the 23
rd

 IFIP International

Conference on Testing Software and Systems,

Natal, pp. 142-157, 2010.

[26] Last M., Friedman M., and Kandel A., “The Data

Mining Approach to Automated Software

Testing,” in Proceedings of the Ninth ACM

SIGKDD International Conference on

Knowledge Discovery and Data Mining,

Washington, pp. 388-396, 2003.

[27] Liao S., Chu P., and Hsiao P., “Data Mining

Techniques and Applications-A Decade Review

from 2000 to 2011,” Expert Systems with

Applications, vol. 39, no.12, pp. 11303-11311,

2012.

[28] Liu X., Zhang S., Wei F., and Zhou M.,

“Recognizing Named Entities in Tweets,” in

Proceedings of the 49
th
 Annual Meeting of the

Association for Computational Linguistics:

Named Entity Recognition for Automated Test Case Generation 119

Human Language Technologies, Portland, pp.

359-367, 2011.

[29] Maynard D., Tablan V., and Ursu C., “Named

Entity Recognition from Diverse Text Types,” in

Proceedings of the Recent Advances in Natural

Language Processing, TzigovChark, pp. 257-

274, 2001.

[30] McMinn P., Harman M., Hassoun Y., Lakhotia

K., and Wegener J., “Input Domain Reduction

Through Irrelevant Variable Removal and its

Effect on Local, Global and Hybrid search-based

Structural Test Data Generation,” IEEE

Transactions on Software Engineering, vol. 38,

no. 2, pp. 453-477, 2012.

[31] McMinn P., Shahbaz M., and Stevenson M.,

“Search-Based Test Input Generation for String

Data Types Using the Results of Web Queries,”

in Proceedings of the 5
th
 International

Conference on Software Testing Verification and

Validation, Montreal, 2012.

[32] Mei D. and ZhangX., “Data Mining Sechniques

for Structure of Single XML Document,” Journal

of Petrochemical Universities, vol. 20, no. 1, pp.

94-98, 2007.

[33] Michael C., McGraw G., and Schatz M.,

“Generating Software Test Data by Evolution,”

IEEE Transactions on Software Engineering, vol.

27, no. 12, pp. 1085-1110, 2001.

[34] Miguel G., Albert E., and Puebla G., “Test Case

Generation for Object-Oriented Imperative

Languages in Clp,” Theory and Practice of Logic

Programming, vol. 10, no. 4-6, pp. 659-674,

2010.

[35] Mikheev A., Moens M., and Grover C., “Named

Entity Recognition Without Gazetteers,” in

Proceedings of the 9
th
 Conference on European

Chapter of the Association for Computational

Linguistics, Bergen, pp. 1-8, 1999.

[36] Nadeau D. and Sekine S., “A Survey of Named

Entity Recognition and

Classification,” Lingvisticae Investigationes, vol.

30, no. 1, pp. 3-26, 2007.

[37] Ngai E., Xiu L., and Chau D., “Application of

Data Mining Techniques in Customer

Relationship Management: A Literature Review

and Classification,” Expert Systems With

Applications, vol. 36, no. 2, pp. 2592-2602, 2009.

[38] Nothman J., Ringland N., Radford W., Murphy

T., and Curran J., “Learning Multilingual Named

Entity Recognition from Wikipedia,” Artificial

Intelligence, vol. 194, pp. 151-175, 2013.

[39] Patrick J. and Wang Y., “Biomedical Named

Entity Recognition System,” in Proceedings of

the 10
th
 Australasian Document Computing

Symposium, Sydney, 2005.

[40] Raamesh L. and Uma G., “Knowledge Mining of

Test Case System,” International Journal on

Computer Science and Engineering, vol. 2, no. 1,

pp. 69-73, 2010.

[41] Radosavljevic V., Vucetic S., and Obradovic Z.,

“A Data-Mining Technique for Aerosol Retrieval

Across Multiple Accuracy Measures,” IEEE

Geoscience and Remote Sensing Letters, vol. 7,

no. 2, pp. 411-415, 2010.

[42] Ritteri A., Clarki S., and Etzioni O., “Named

Entity Recognition in Tweets: An Experimental

Study,” in Proceedings of the Conference on

Empirical Methods in Natural Language

Processing, Edinburgh, pp. 1524-1534, 2011.

[43] Romero C. and Ventura S., “Educational Data

Mining: a Review of the State of the Art, IEEE

Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), vol. 40, no.

6, pp. 601-618, 2010.

[44] Song Y., Yi E., Kim E., Lee G., and Park S.,

“POSBIOTM-NER: a Machine Learning

Approach for Bio-Named Entity Recognition,” in

Proceedings the EMBO Workshop on Critical

Assessment of Text Mining Methods in Molecular

Biology, 2004.

[45] Souza M., Borge M., D‟Amorim M., and

Pasareanu C., “CORAL: Solving Complex

Constraints for Symbolic Pathfinder,” in

Proceedings of Third International Symposium

NASA Formal Methods, Pasadena, pp. 359-374,

2011.

[46] Swain S., Mohapatra D., and Mall R., “Test

Case Generation Based on Use Case and

Sequence Diagram,” International Journal of

Software Engineering, vol. 3, no. 2, pp. 21-52,

2010.

[47] Tonella P., “Evolutionary Testing of Classes,” in

Proceedings of ACM SIGSOFT International

Symposium on Software Testing and Analysis,

Boston, pp. 119-128, 2004.

[48] Wasan S., Bhatnagar V., and Kaur H., “The

Impact of Data Mining Techniques on Medical

Diagnostics,” Data Science Journal, vol. 5, pp.

119-126, 2006.

[49] Wegener J. and Buhler O., “Evaluation of

Different Fitness Functions for the Evolutionary

Testing of an Autonomous Parking System,” in

Proceedings of Genetic and Evolutionary

Computation Conference, Seattle, pp. 1400-1412,

2004.

[50] Wegener J. and Grochtmann M., “Verifying

Timing Constraints of Real-Time Systems by

Means of Evolutionary Testing,” Real-Time

Systems, vol. 15, no. 3, pp. 275 -298, 1998.

[51] Witte R., Li Q., Zhang Y., and Rilling J.,

“Ontological Text Mining of Software

Documents,” in Proceedings of International

Conference on Application of Natural Language

to Information Systems, Paris, pp. 168-180, 2007.

120 The International Arab Journal of Information Technology, Vol. 15, No. 1, January 2018

[52] Yang L. and Zhou Y., “Exploring Feature Sets

for Two-Phase Biomedical Named Entity

Recognition Using Semi-CRFs,” Knowledge and

Information Systems, vol. 40, no. 2, pp. 1-15,

2014.

[53] Yuehua D. and Jidong P., “Automatic

Generation of Software Test Cases Based on

Improved Genetic Algorithm,” in Proceedings of

International Conference on Multimedia

Technology, Hangzhou, pp. 227-230, 2011.

[54] Zhang C. and Marquez J., “Approximation of

Minimal Cut sets for a Flow Network Via

Evolutionary Optimization and Data Mining

Techniques,” International Journal of

Performability Engineering, vol. 7, no. 1, pp. 21-

31, 2011.

Guruvayur Mahalakshmi is an

Assistant Professor (Senior Grade)

in the Department of Computer

Science and Engineering, College of

Engineering, Anna University,

Chennai. She completed her B.E.

(Computer Science and Engineering) from R.V.S.

College of Engineering and Technology, Dindigul and

M.E. (Computer Science and Engineering) and Ph.D.

from College of Engineering, Anna University,

Chennai. She has numerous international journal and

conference publications to her credit. She is also the

author of Tamil Edition of B.E. course - text books -

Fundamentals of Computing and Computer Practice of

Anna University. She has authored many book

chapters and derives 100+ citations to her credit. Her

research interests include Reasoning, Knowledge

Sharing and representation, Text Mining, Social

Network Analysis, bibliometrics, and Natural

Language Computing.

Vani Vijayan is a Senior Assistant

Professor in Department of

Information Technology in Easwari

Engineering College, Anna

University, Chennai, Tamilnadu. She

completed her Masters from Anna

University in 2009 in Computer Science and

Engineering and Bachelors from Bharathiar University,

Coimbatore, TamilNadu in 2002 in Information

Technology. She is currently working towards

pursuing Ph.D.degree from Anna University, Chennai

in Faculty of Information and Communication

Engineering, registered in July 2010. She has

experience of 10 years in the field of teaching. She has

guided around 20 UG/PG projects and has published

few papers in National and International Conferences.

Her primary research interest is Natural Language

Processing, Text mining and Software Engineering.

Betina Antony is a Research

Scholar in the Department of

Computer Science and Engineering

in Anna University, Chennai,

Tamilnadu, India. She finished her

Bachelors (Computer Science and

Engineering) in Sri Sivasubramania

Nadar College of Engineering and her Post graduation

(Software Engineering) in College of Engineering,

Guindy, Anna University, in which she secured gold

medal for being the first rank holder. She has presented

many papers in national and international conferences.

She is currently working on Named Entity Recognition

for Tamil Biomedical texts. Her research interests are

Natural Language Processing, Text and Data mining.

