
128 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

Modeling of a Procedural Knowledge

by a Dialogue Knowledge Base
Igor Chimir 1 and Waheeb Abu-Dawwas 2

1 Cherkassy Academy of Management, Ukraine
2 Computer Information Systems Department, Al-Zaytoonah University, Jordan

Abstract: This paper depicts theoretical results obtained in the line of projects related to constructing dialogue applications
based on a formal cognitive model of a human-machine dialogue. One of the aims of the paper is to propose an appropriate
model of question-answering dialogue, which can be used in designing relevant computer software. The theory proposes
formal descriptions of declarative and procedural knowledge of dialogue’s agents and introduces the idea of a dialogue
knowledge base, which is capable of storing the procedural and the declarative knowledge of dialogue’s agents. Emphasis on
declarative-procedural typology of knowledge, allows us to consider a dialogue process as a goal-oriented behavior; and,
hence, as a general method of solving some classes of problems.

Keywords: Human-machine dialogue, question-answering dialogue, logic of questions and answers, dialogue knowledge
base, problem solving process.

Received April 21, 2003; accepted July 27, 2003

1. Introduction
Declarative vs. procedural dichotomy of knowledge
has an influence on practically all key aspects of
cognitive science, e.g: teaching (teaching of skills
usually starts from the knowledge of declarative
representation of a target domain and continues by
teaching the ability to manipulate an acquired
declarative knowledge in order to achieve a goal);
automatic and conscious processes (acquiring of
certain skills entails transition of the procedural
knowledge into the rank of automatic, when initial
declarative knowledge declines, and the concept
“automatic process” becomes a synonym of the
concept “procedural knowledge”); schema (a schema
can be considered as a “keeper” of a chunk of
declarative knowledge in the form of properties and
relations between chunks); memory (a set of linked
schemata stores in memory, which represents both
types of knowledge, and where links between schemata
simulate procedural knowledge); sensory system (a
sensory system plays a significant role in forming the
initial collection of elements of declarative knowledge,
whereas conscious processes are mainly responsible
for forming a procedural knowledge in the form of
links between schemata).

Representation of a dialogue process from the point
of view of declarative-procedural typology can be
helpful in building a theory of solving ill-formalized
problems by means of dialogue methods. Two main
ideas are at the heart of the theory: logical structure of
question-answering pairs, and conception of a dialogue
knowledge base, which can store knowledge of a goal-

oriented behavior of both dialogue agents.

2. Declarative-Procedural Typology of

Knowledge in the Dialogue Process
Separation of knowledge as declarative and procedural
is a generally adopted classification and is a basis for
models of memory and problem solving processes [8,
18]. Declarative-procedural distinction of knowledge
representation is also in the foundation of architecture
and behavior of unified cognitive models ACT [1] and
SOAR [12].

Declarative knowledge is usually associated with
facts or factual knowledge, which can be described
verbally, e.g. in the form of propositions such as “a
bird is an animal which can fly.” To represent a chunk
of declarative knowledge in addition to symbolic
description, we might also use images, especially in
those cases when an image is hard or impossible to be
reduced to symbols. There are some ways of modeling
of chunks of declarative knowledge: schemata [9],
frames [10], etc. In order to model a system of
declarative knowledge we often use semantic network ,
which is a set of declarative knowledge chunks along
with a set of relationships between them.

We associate procedural knowledge with abilities
and skills, e.g. the ability to ride a bicycle or the ability
to type using a blind keyboard. As a rule, to operate
procedural knowledge people do not need conscious
efforts and do not use an attentional system. The
fundamental way of formal modeling of a fragment of
procedural knowledge is production rules [1, 12].

Modeling of a Procedural Knowledge by a Dialogue Knowledge Base 129

Declarative-procedural typology of knowledge yields
two types of long-term memory organization: a system
with two long-term memory types (declarative and
procedural), and a system with one universal long-term
memory.

The most famous cognitive system based on two
long-term memories is a family of models called ACT,
and offered by John Anderson [1]. Anderson
presupposes that the human’s mental system indeed
includes two types of long-term memory for keeping
declarative and procedural knowledge separate, and
implements this supposition into his ACT models.

SOAR cognitive system, proposed by Allen Newell
[12], has a lot of features in common with the ACT
family, but in contrast to the latter presupposes that a
long-term memory should keep both types of
knowledge. While solving a problem, SOAR retrieves
needed declarative knowledge from its long-term
memory and temporarily locates them in the working
(short-term) memory. Hence, SOAR’s short-term
memory accumulates only the declarative knowledge
which is relevant to the current problem and will be
used to find a solution of the problem.

Two questions arise when we are trying to apply
declarative-procedural typology of knowledge to the
dialogue process modeling: (1) what kind of semantics
are behind the declarative and procedural knowledge
concepts in the context of a dialogue? (2) is it a
rational idea to keep declarative and procedural
knowledge separately within a dialogue system?.

Among a number of problem-oriented and problem-
independent theories of dialogue, we are emphasizing a
theory of question-answering dialogue [4, 5, 19]. The
name of the theory reflects the fact that it based on
certain fundamental assertions of the logic of questions
and answers [3]. During a question-answering dialogue
the messages (in symbolic or non-symbolic form),
which dialogue agents send to each other have the
status and logical structure of questions and answers.
We focus our attention on question-answering dialogue
because, as will be shown later in the paper, this type
of a dialogue can serve as a problem-solving procedure
for some types of problems.

First, we must explain that we consider a dialogue
to be a discrete or step-by-step process. We consider a
step to be a “behaviorist molecule” of a dialogue and
assume that all dialogue scenarios can be created from
a finite number of steps. During each step an
elementary cycle of agents' knowledge interchange is
completed.

The knowledge interchange within a step
presupposes an agent’s asymmetry. This means that
one of the agents initiates the knowledge interchange,
and that the second agent responds. Let the agent-
initiator of knowledge interchange be called an active
agent or A-agent, and the opposite agent be called a
reactive agent or R-agent.

The R-agent is logically dependent on the A-agent.
The R-agent is not free in choosing the answer but
must return to the A-agent a relevant chunk of
knowledge. This is because, in the opposite case, the
logic of dialogue is disturbed, and dialogue process is
transformed into two independent monologues.

Within a dialogue step the active and reactive agents
transmit to each other chunks of declarative
knowledge. In a question-answering dialogue, a chunk
of declarative knowledge, which A-agent transmits to
the R-agent, has the logical structure of a question. A
chunk of knowledge that R-agent returns to the A-
agent has the logical structure of an answer. We use
the term "logical structure" to allow for cases where
questions and/or answers have non-symbolic
representations.

Let knowledge chunks that have a logical structure
of questions and answers be called Q and Achunks,
respectively. Results obtained in the logic of questions
and answers [3] allow us to state that Q-chunk carries
two types of information: a fragment of declarative
knowledge from which all answers for the given
question can be formed, called the subject of the
question; and a specification of the desired answer
called the prerequisite of the question.

The subject is the "raw material" for the answer.
The R-agent, while generating the answer, does not use
all the accessible declarative knowledge, but only this
fragment. The prerequisite determines what part of the
Subject should be in the answer. Consequently, general
logical structure of Q and A chunks is as follows:

 def: Q-chunk = Pre, Subj (1)

 def: A-chunk ∈ Subj (2)

Where Subj and Pre are the Subject and the
prerequisite of the question, respectively. We will
consider that the Subject is a set of semantically
relative elements, and that the prerequisite is an
encoded specification of the answer:

 Q-chunk = Pre, {Subja} a = 1 . . m (3)

Where: {Subja} a = 1 . . m set of the Subject
elements.
The A-chunk subsequently is a subset of the Subject
elements:

 A-chunk = {Subja} a = 1 . . n; n < m (4)

Let us consider two simple verbal examples

illustrating the concepts of Subject and prerequisite.

1. What prime numbers are between ten and twenty?
2. Give an example of a prime number between ten

and twenty?
Both questions have the same subject: {11, 13, 17, 19},
but different prerequisites. The prerequisite in the first

130 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

question defines a single answer: "Between ten and
twenty there are the following prime numbers: 11, 13,
17, 19". The prerequisite in the second question
defines several answers: "An example of a prime
number between ten and twenty is: 11"; "An example
of a prime number between ten and twenty is: 13" and
so forth.

Every Q-chunk therefore can yield a set of possible
answers:

 A-set = {A-chunkß} ß = 1 . . k (5)

The A-agent, in accordance with the goal of the
dialogue, plans to receive and recognize a more
restricted set than the A-set set of answers. Let this set
be called the recognizable set of answers or RA-set.
RA-set unites answers that A-agent needs at the current
step. All other answers can be classified as non-
recognizable or NA answers.

The subject and prerequisite structure of the Q-
chunk given above allows us to evaluate possibilities
of verbal and nonverbal representation of information
within a question. Clearly, at least subject’s elements
can be represented nonverbally. As for the prerequisite,
an explanation might have a verbal representation,
either textual or sound.

Formulas (3) and (4) represent the structure of
declarative knowledge within a question-answering
pair in the form of a set of elements. Such
representation is enough on the level of general
definitions, but from a practical point of view it seems
to be simplified and needs some elaboration. Analysis
of question-answering pairs from real question-
answering dialogues demonstrates that, as a rule, two
entities appear as the subject of a question: (1) a single
object, which has a status of a thing or property; and
(2) associated – with this object – a list of properties or
things, respectively.

Thus, we can state that along with the question A-
agent transmits to R-agent a subject of the question,
which has one of the following structures:

 def: Subj = <object-thing>
 {expanded list of properties} (6)

 def: Subj = <object-property>
 {expanded list of things} (7)

The R-agent constructs the answer by extracting a sub-
list from the expanded subject’s list. The answer
therefore might have one of the following structures.

def: A-chunk = <object-thing> HAS PROPERTIES
 {list of properties} (8)

def: A-chunk = <object-property> ATTRIBUTED TO
 {list of things} (9)

Example 1
Question: Is glass a liquid when the temperature is 70
F?
Answer: Glass is not a liquid when the temperature is
70 F.
Subject in the form (6): <glass under 70 F>, {<to be a
liquid, not to be a liquid>}
Answer in the form (8): <glass under 70 F> HAS
PROPERTY <not to be a liquid>

Example 2
Question: What prime numbers are between 10 and
20?
Answer: Between 10 and 20 there are the following
prime numbers: 11,13,17,19.
Subject in the form (7): <be a prime number>
{11,12,13,14,15,16,17,18,19,20}
Answer in the form (9): <be a prime number>
ATTRIBUTED TO {11,13,17,19}

We can rewrite formulas (6) – (9) in strict notation
using conceptual basis of first order logic interpreting a
property as a one-place predicate. Hence, we can treat
subject as the following expression

 Subj = x, {Pα(x)}, α = 1, . . ,m (10)

Where Pα(x) is a one-place predicate, X HAS
PROPERTY Pα
Expression (10) is the analogue of expression (6),
whereas the analogue of expression (7) is:

 Subj = P(x), {xα}, α = 1, . . ,m (11)

Where xα is the value of variable x.

From the R-agent’s point of view the subject
contains false and true propositions yielded by P(x)
predicate. It is worth noticing that truthfulness or
falsity of the subject’s elements, in the case of
question-answering dialogue, are not absolute
categories but rather have relative meaning in relation
to R-agent’s vision of the world. For instance, smoking
could be a bad habit for one agent and a pleasure for
another. This is a reason why one question yields more
than one true answer.

Hence, we can interpret an answer as a question,
from an expanded list in which R-agent has eliminated
all false elements (of course, in accordance with R-
agent’s vision of the world.) Therefore, we can use
expressions like (10) and (11) to model possible
structures of the answer:

 Ans = x, {Pα(x)}, α = 1, . . ,n (12)

 Ans = P(x), {xα}, α = 1, . . ,n (13)

 n < m

The prerequisite sets the completeness (number of

elements n in (12) and (13)) of selection from the

Modeling of a Procedural Knowledge by a Dialogue Knowledge Base 131

question subject’s expanded list.). Analysis of
examples suggests seven classes of prerequisites as
depicted in Table 1.

Table 1. Classes of perquisites.

Discussion given above allows us to structure

fragments of declarative knowledge, which are
relevant to question-answering pairs in the question-
answering dialogue by means of two collections of
alternative expressions:

Q-chunk= Preγ, x, {Pα(x)}; α=1, . . ,m; γ=1, .. , l;
A-set= {A-chunkβ}; β= 1,..,k;
A-chunkβ= x, {Pα(x)}; α=1, . . ,n; n < m

(14)

Q-chunk= Preγ, P(x), {xα}; α=1, . . ,m; γ=1, . ., l;
A-set = {A-chunkβ}; β= 1,..,k;
A-chunkβ= P(x), {xα}; α=1, . . ,n; n < m

(15)
Where:

Q-chunk: a question;
A-chunk: an answer;
A-set: a set of possible answers;
Preγ: γ class of prerequisite;
P(x): a one-place predicate X HAS
 PROPERTY P(x)";
k: number of possible answers;
l: number of classes for prerequisite;
m: number of elements for the expanded list of a

 question’s subject;
n: number of elements for the list of an answer.

Before we start our discussion regarding procedural

knowledge in the context of the question-answering
dialogue, we have to consider a concept of a dialogue
goal. Such an approach is probably correct in all cases
when we are speculating about procedural knowledge.
Procedural knowledge is skill, which is always directed
toward achieving a certain goal. We can find
confirmation of this claim – for instance – in a number
of arguments regarding practical value of the ACT
model in which the authors devoted much attention to
the concept of goal [2].

We are considering procedural knowledge of agents
on two levels: (1) the level of a dialogue scenario; and
(2) the level of a dialogue step. Procedural knowledge
of an active agent on a scenario level is a strategy of
achieving the goal by the active agent. An active agent
must know how to direct the dialogue to achieve the
goal, which means knowledge of what particular
question must be returned to the reactive agent as a
response to his current answer. The goal of the active
agent on this level is an achievement of an expected
(target) answer. A reactive agent, as well as an active
one, has its own goal which is obviously not the same
as that of the goal of the active agent. Therefore,
procedural knowledge of our reactive agent on the
scenario level is similar to the procedural knowledge of
the active agent with only one distinction: the agent
must know what particular answer must be returned to
the active agent as a response to his current question.

Procedural knowledge of an active agent on the
level of a dialogue step is its ability to generate a
question, which is relevant to the current step (ability
to generate subject and prerequisite of the question);
and procedural knowledge of a reactive agent on the
level of a dialogue step is the ability to construct an
answer in accordance to a given subject and
prerequisite.

3. Dialogue Knowledge Base
As a procedural-declarative typology of knowledge
takes place in question-answering dialogue, it is worth
considering the problem of storing declarative and
procedural knowledge within a dialogue system
architecture. Generally speaking, activity or reactivity
is not a fixed attribute of an agent, but rather a role
which an agent plays within a dialogue segment. Let us
consider a case when these roles are fixed, and a
program system simulates the behavior of an active
agent. From our point of view, in such a case, the most
efficient architecture is an architecture, which is based
on the idea of separate storing of declarative and
procedural knowledge.

Let declarative knowledge of an active agent (in the
form of encoded descriptions of questions needed for
the question-answering dialogue in a given domain) be
stored in the memory of questions, QueMem. Despite

Classes of
prerequisites

Completeness of
answer

Natural language
formulations

Pre1 One element

Pre2
Some elements. Exact
number of elements is
unknown

Pre3
Uncertain number of
elements from upper to
lower bound

“...less then <up.b.>
but greater then

<lw.b.>...”

Pre4

Uncertain number of
elements from lower
bound and up to the
whole list

1. “...not less then
 <lw.b.>...”

2. “...at least
 <lw.b.>...”

Pre5

Uncertain number of
elements from one
element and up to the
upper bound

“...at most <up.b.>...”

Pre6

Uncertain number of
elements from one
element and up to the
whole list

“...at least one ...”

Pre7 The whole list

132 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

the fact that during the dialogue process a certain
question can appear in many parts of the dialogue,
QueMem keeps only one copy of each question. We
consider QueMem as a memory with direct access to
its elements; and, hence, we need an address to get
access to the concrete question.

Let procedural knowledge of an active agent (on the
scenario level) be stored in the structure called a
dialogue access method, DiAM. The dialogue access
method keeps a sort of knowledge such as “which
question should be next;” and, therefore, is able to
transform the current answer of a reactive agent into
the QueMem address.

A dialogue knowledge base, DiKB, we define as an
aggregate of the memory of questions, QueMem, and
the dialogue access method, DiAM. One of the
advantages of such a structure of the dialogue
knowledge base is that it excludes multiple storing of
encoded descriptions of questions. Storing of
declarative knowledge of an active agent requires
much more computer memory resources than storing
of its procedural knowledge because declarative
knowledge of an active agent (represented by
question’s subject elements) might have not only
symbolic, but also non-symbolic, representation in the
form of graphical and sound files. DiAM operates only
with references to active agent’s questions and reactive
agent’s answers; and, therefore, does not require
substantial computer memory resources.

As is shown from the definition of DiKB, an active
agent does not “compute” the subsequent question but
searches it out in QueMem, using DiAM as a method
of achieving the goal. Therefore, we can also consider
DiAM as a certain problem-solving method of an
active agent which the agent uses for achieving the
goal. question-answering dialogue is a discrete process
with a step as its structural and dynamic element.
Figure 1 depicts the structure of question-answering
dialogue step in Petri net notation and illustrates also
the conceptual basis of DiAM.

Dialogue step includes a reference to the question,
which corresponds to the step and is designated by Q-
chunk position in Figure 1. As different steps of the
dialogue can use the same question, then the step
should be marked by a unique step identifier – StepID.
Transitions in Figure 1 correspond to answers.
Denotation of the dialog step includes two sets of
answers for a given step: a set expected of answers, or
RA-set, and a set of all other answers designated by
NA transition. A set of expected answers unites those
answers, which in accordance with the dialogue
scenario, is expected on a given step, and hence must
be recognized by an active agent. Cardinality of this
set, therefore, must vary from step to step. A set of all
other answers is modeled by a single transition NA
because these answers should not be recognized. Thus
any answer which is unrecognizable by an active agent
on a given step belongs to NA set.

A-chunk: current answer of reactive agent, Q-chunk: reference on
subsequent question in QueMem, RA-set: expected (recognizable)
set of answers of reactive agent, NA–all other (non-recognizable)
answers of reactive agent, NextQue: link between current answer
and subsequent question, NextAns: link between current question
and subsequent answer, StepID: step identifier.

Figure 1. Graphical illustration of DiAM main concepts.

4. Dialogue Problem Solving Process
The group of ill-formalized problems is vast. Methods
of solving these problems are usually based on such a
formulation of the problem which reduces the process
of solving the problem to the procedure of search of
the goal state in the problem space. One of the earliest,
and probably most well-known, theories in this area is
a model called General Problem Solver (GPS) [13, 14].

There is much in common between the question-
answering dialogue and a general strategy of searching
for the solution within the problem space, implemented
in GPS-agent. General search strategy [17]
presupposes a step-by-step and cyclically repeated
process of constructing a search tree with the following
phases: (1) current collection of frontier nodes is
generated (at the first step the collection of frontier
nodes consists of a single node, which corresponds to
the initial state of the problem); (2) every node from
the collection of frontier nodes is tested by a goal-test
procedure (if result is positive then search is finished--
otherwise, the search continues); (3) a node from the
collection of frontier nodes which must be expanded
next is selected; and (4) the procedure of node
expansion is applied to the selected node, and then the
search strategy returns to the first phase.

The ability of GPS to find a solution to the problem
(in the form of a goal state) from the declarative-
procedural typology of knowledge is related to the
category of procedural knowledge because the
procedural knowledge of dialogue agents is also
related to the ability of finding a goal state (in the form
of an answer). Therefore, the dialogue process itself
can be considered as a general process of solving ill-
formalized problems. However, in the case of
question-answering dialogue, procedural knowledge is
not concentrated in one agent, but rather shared
between both dialogue agents.

• • •

NA

RA-set

Q-chunk

A-chunk
NextAns NextQue

Dialogue step

•
•

•

• StepID

Modeling of a Procedural Knowledge by a Dialogue Knowledge Base 133

In the case of question-answering dialogue, the
collection of frontier nodes corresponds to the subject
of a question, which an active agent presents to the
reactive one. An expanded list of properties (or things),
which in fact represents the subject of a question,
possesses substantial advantages over a classical
collection of frontier nodes. The “capacity” of a
subject of a question oscillates from one question to
another but does not exceed a certain limit, which is
determined by a system of focused attention of a
human. Consequently in the case of a dialogue this
“capacity” is approximately the same and does not
depend on the number of steps. On the other hand, in
the case of GPS-agent number of nodes (in the
collection of frontier nodes) is an increasing function
of the depth of the search tree.

In the case of question-answering dialogue, we do
not need to apply a goal test (recognition procedure) to
all elements of the expanded list, but only to those
elements, which passed on to the answer. Therefore, in
some sense, a procedural knowledge of a reactive
agent carries out the function of “filtration” of the
subject. On the other hand, the GPS-agent, as a rule,
must apply the goal test to every node (without
exception) from the collection of frontier nodes.

One of the most extensive groups of ill-formalized
problems is a group of methods for machine/computer
teaching. The history of evolution of these methods
demonstrates that: (1) all known methods of machine
teaching have an interactive nature and presuppose a
dialogue; (2) dialogue mainly realizes only a function
of interface between the teaching material and the
student [16, 20].

The idea of using a dialogue knowledge base for the
construction of personalized tutoring systems was
tested during the elaboration of a family of lingua-
didactical programs [6, 7]. Our experience of
elaboration of ready-for-use software in the area of
foreign languages self-study allows us to emphasize
two aspects related to the dialogue knowledge base.
First, design and filling in the knowledge base on both
levels (the scenario level and the dialogue step level) is
quite natural for the end-user (in our case it is a
teacher) and could be done by the end-user himself.
Second, as far as the dialogue knowledge base is
formed by an expert without any mediator, the
dialogue process yielded by this knowledge base
reflects not only the method of teaching a particular
person, but also the cognitive identity of the expert.

5. Conclusion
Further elaboration of the theory presented in the paper
could be evolved in two directions: investigation of
applicability of Neisser’s cycle of perception [11] as a
psychological basis for the dialogue; and investigation
of applicability of object-oriented modeling conception
for the purpose of specification of a program simulator

for the dialogue agents.
We suppose that at least one of the dialogue agents

is a human. Therefore, a “good” model of the dialogue
must be adequate to the processes of perception and
information processing in a human. In the case when a
formal model of the dialogue is based on a relevant
psychological model, we can expect that the “artificial”
dialogue agents will naturally inherit flexibility and
universality of human’s perceptual and information
processing systems. The model of perception proposed
by Ulric Neisser in 1976 integrates the “bottom-up”
(from the sensory system to the long-term memory)
and “top-down” (from the long-term memory to the
motor system) processes into a unified and cyclical
process.

The dialogue process, in relation to any of the
dialogue agents, is very similar to Neisser’s cycle of
perception; and, therefore, it is rational to investigate
the applicability of Neisser’s model to the theory of
problem-independent dialogue. In the dialogue process
a real environment is substituted by an artificial one
(formed by the opposite agent); but it is obvious that
perception of the environment (real or artificial), and
further processing of perceived sensory events, is
realized by the same psychological “rules and laws.”

Object-oriented modeling technology achieved such
a degree of depth and universality that it could be
considered as a generic theory of modeling applicable
not only to the program systems, but rather for all
kinds of systems. We pay special attention to Unified
Modeling Language (UML), which transfers Object-
oriented conception into a strict and formalized theory
[15]. The singularity and attractiveness of UML is in
its diagrammatical notation in which diagrams model
various aspects of a system and play the role of certain
“formulas” of system’s structure, behavior, etc. We
believe that the expressive power and modeling ability
of UML are not less than, for instance, the system of
production rules used by Anderson in his “rules of the
mind” [1] and that by means of the UML we can
construct certain “diagrammatical formulas” of
cognitive systems and agents. However, in describing
cognitive systems by UML we have one indisputable
advantage, UML “diagrammatical formulas” are ready-
to-use specifications for a computer program system.

References
[1] Anderson J. R., Rules of the Mind, Hillsdate, NJ,

Lawrence Erlbaum Associates, 1993.
[2] Anderson J. R., Corbett A. T., Koedinger K. R.,

and Pelletier R., “Cognitive Tutors: Lessons
Learned,” The Journal of the Learning Science,
vol. 4, no. 2, pp. 167-207, 1995.

[3] Belnap D. N. and Steel T. B., The Logic of
Questions and Answers, New Haven and London,
Yale University Press, 1976.

134 The International Arab Journal of Information Technology, Vol. 1, No. 1, January 2004

[4] Chemyr A. I., “Dialogue Behavior as a problem
solving method and its informal model,” Karpina
D. and Evdokimova T. (Eds), Collection of
Scientific Works of the Institute of Problems of
Modeling in Energetic, National Ukrainian
Academy of Science, Kiev, Ukraine, issue 4, pp.
140-145, 1998.

[5] Chemyr A. I., Horney M. A., and Anderson-
Inman L., “SmartText: Using Agents Supporting
Personalized Reading Comprehension,” Personal
Technologies, vol. 2, no. 3, pp. 152-161, 1998.

[6] Chimir I. A., Bondar A., Abu-Dawwas A. W.,
and Chemyr A. I., “Computer Tutor of the
Ukrainian Language: Theoretical Basis and
Practical Experience,” Scientific Knowledge:
Methodology and Technology, South Ukrainian
State Pedagogical University, Ukrainia, no. 1-2,
1998.

[7] Chimir I. A., Popov P. S., and Kharkovskaya M.
S., “Dialogue Processor for the Generation of
Teaching Courses,” in Proceedings of The
International Conference (INFO’89), Minsk,
USSR, vol. 1, part 2, pp. 957-962, 1989.

[8] Cohen N. J. and Squire L. R. “Preserved
Learning and Retention of Pattern-Analyzing
Skills in Amnesia Using Perceptual Learning,”
Cortex, vol. 17, pp. 273-278.

[9] Haberlandt K., Cognitive Psychology, Allyn &
Bacon, Needham Heights, MA, 1997.

[10] Minsky M., “A Framework for Representing
Knowledge,” in Winston P. H. (Ed), The
Psychology of Computer Vision, New York,
McGraw-Hill, 1975.

[11] Neisser U., Cognition and Reality Principles and
Implications of Cognitive Psychology, W. H.
Freeman and Company, San Francisco, 1976.

[12] Newell A., Unified Theories of Cognition,
Harvard University Press, 1994.

[13] Newell A. and Simon H. A., “GPS, a Program
that Simulates Human Thought,” in Feigenbaum
E. A. & Feldman J. (Eds), Computers and
Thought. New York, McGraw-Hill, 1963.

[14] Newell A., Shaw J. C., and Simon H. A.,
“Elements of a Theory of Human Problem
Solving,” Psychological Review, vol. 65, pp.151-
166, 1958.

[15] Page-Jones M., Fundamentals of Object-Oriented
Design in UML, Addison-Wesley, 2000.

[16] Richmond W. K., Teachers and Machines: An
Introduction to the Theory and Practice of
Programmed Learning, Collins, London &
Glasgow, 1965.

[17] Russell S. and Norvig P., Artificial Intelligence:
A Modern Approach, Prentice Hall, New Jersey,
1995.

[18] Ryle G., The Concept of Mind, London,
Hutchinson, 1949.

[19] Verlan A. and Chimir I. A., “Systems with
Embedded Intelligence Based on the Architecture
of a Dialogue Machine,” Electronic Modeling,
Kiev, Ukraine, vol. 23, no. 1, pp. 75-83, 2001.

[20] Wenger E., Artificial Intelligence and Tutoring
Systems: Computational and Cognitive
Approaches to the Communication of Knowledge,
Morgan Kaufmann Publishers, California, 1987.

Igor Chimir is a professor of
computer science at the Cherkassy
Academy of Management, Ukraine.
He has been involved in cognitive
science research for more than 15
years and has particular interests in
the subject-independent theory of

computer and human dialogue, intelligent tutoring
systems, and in object-oriented modeling of cognitive
processes. Dr. Chimir has published more than 90
technical papers and is the author of several textbooks.
His current activities focus on investigating the
applicability of modern software engineering
approaches to the area of cognitive psychology.

Waheeb Abu-Dawwas is an
assistant professor at the
Department of Computer
Information Systems, Al-Zaytoonah
University, Jordan. He obtained his
PhD from the Ukrainian National
Academy of Science, Ukraine, in

1999. His research interests include dialogue process
modeling, and the development of personalized
computer educational systems. Dr. Abu-Dawwas has
published many original contributions in the field of
dialogue-oriented tutoring systems, personalized
tutoring systems, and in cognitive systems.

