
652 The International Arab Journal of Information Technology, Vol. 19, No. 4, July 2022

An Improved Process Supervision and Control

Method for Malware Detection

Behnam Shamshirsaz

Department of Electrical and Computer

Engineering, Kharazmi University, Iran

shamshirsaz@khu.ac.ir

Seyyed Amir Asghari

Department of Electrical and Computer

Engineering, Kharazmi University, Iran

asghari@khu.ac.ir

Mohammadreza Binesh Marvasti

Department of Electrical and Computer

Engineering, Kharazmi University, Iran

marvasti@khu.ac.ir

Abstract: Most modern-day malware detection methods and algorithms are based on prior knowledge of malware

specifications. Discovering new malwares by solely relying on computer based automatic solutions with no human intervention

currently appears out of reach. Many malwares never decode harmful parts of their code until the triggering of a specific

event. Others detect virtual machine or sandbox environments and hide their true nature. Detecting these kinds of malwares-

specifically multi evented ones-are nearly impossible for fully automatic detection methods. Previous research found that

about 75% of malwares studied did not react in a fully automatic environment without user intervention thus being

undetectable. This paper introduces a near automated solution to detect malwares quickly by relying on a supervision and

control method based on user level capabilities of the operating system. Improving on previous methods, this research can

replace the need for debugging new malwares in almost all aspects. This solution forces malwares in automated environments

to activate and be discoverable. Researcher intervention during malware code execution along with the malware’s intent over

calling sensitive operating system functions and parameters aid this process. Since operating system functions are virtualized

malwares are incapable of physically harming the system during execution. The solution reached 98% overall accuracy in

conjunction with reducing code size by 80% in comparison with similar techniques, improving simplicity and reliability.

Keywords: Mid-level code, malware detection, process supervision, microsoft windows, anti-virus, endpoint detection and

response.

Received November 12, 2019; accepted February 9, 2021

https://doi.org/10.34028/iajit/19/4/9

1. Introduction

Multiple detection methods have been proposed since

the early days of computer malware. They broadly fall

under either of two categories: static and dynamic

methods [17]. Many solutions and algorithms have

been proposed for each category. Static methods are

based on detecting specifications of previously known

malwares inside new code known as signatures. This

approach is not fruitful on new malwares with no

known previous signatures. Dynamic methods check

for malware behavior while system applications are

running via monitoring operating system function calls

and reaching a conclusion on whether an application is

behaving like malware or not. This type of decision

making is key to new malware discovery. However,

doing this task effectively within a reasonable

timeframe is not trivial considering the rapidly

growing number of newly generated malwares and

their variety. Discovering new malwares quickly and

with certainty are key requirements in a reliable anti-

malware solution thus making investigation of

different approaches necessary. Previous methods

involving artificial intelligence, clustering and data

mining alongside using virtual machines and

sandboxes did not provide certainty in malware

discovery either. This hints semi-automatic solutions

as being a desirable approach. Anti-virus researchers

commonly use debuggers to inspect suspiciously

complex applications. However, working with

debuggers is complex and time consuming. With tools

developed based on this research an anti-malware

developer can check suspicious applications much

more easily than using a general debugger. Our method

is based on virtual environments surrounding user level

Operating System (OS) functions and does not use

kernel drivers or kernel level coding. It neither relies

on Artificial Intelligence (AI) methods nor

mathematical formulations but rather by placing the

researcher in control of the malware identification

process. It should be noted however, that AI

techniques can be combined with our technique.

Microsoft Windows was chosen as our testing platform

and code samples were developed in the C

programming language with visual studio 6.0 for

simplicity and robustness. The rest of the paper is

organized as follows: Related work is presented in

section 2. Section 3 describes the proposed approach.

Results and analytical comparisons are presented in

section 4. conclusions follow in section 5.

2. Related Works

Previous techniques have been based on either static or

https://doi.org/10.34028/iajit/19/4/9

An Improved Process Supervision and Control Method for Malware Detection 653

dynamic approaches including methods such as

Application Programming Interface (API) hooking [4,

5, 6, 7, 8, 9, 11, 17, 18], patching the OS service

dispatcher [4, 16], discovering API calling sequences

[2, 14, 15, 16, 17] O.S. Kernel System Service

Dispatcher Table (SSDT) patching [3, 4, 5, 6, 14] and

Intel Pin [10]. Some unorthodox methods such as

malware detection via image code have also been

presented in the past [12]. Such methods have not been

tested in production environments and may suffer from

a high error rate. In this paper we discuss methods

relevant to our technique and will utilize foundational

elements related to our approach.

Examination of various OS development efforts

over time has identified four general capabilities

critical for a process research environment. Some of

these elements have been previously used by other

solutions in a partial manner [2, 16, 17]. These

elements are numerated below:

1) Process Modification: previous solutions allowed

applications to run unmodified in sandbox or

Virtual Machine (VM) environments except for

perhaps logging capabilities. This was deemed

sufficient for their purposes.

2) Process Injection: in sandbox or VM environments,

applications injecting code into other processes are

not stopped or modified at runtime.

3) Process Supervision: previous methods did not

supervise application code at runtime in a sandbox

or VM environment. This was to replicate a setting

as close to a physical machine as possible. Often the

only supervision available was the VM or sandbox

supervisor.

4) Process Control: redirecting the flow of an

application while it is running in a VM or sandbox

environment is not possible. Consequently,

encryption or decryption of code, hidden messages

and other important information are not

discoverable leaving only the final results for

observation.

Most previous methods paid no attention to these

elements and allowed VM environments to proceed as

usual. The few that did, used kernel level code and

drivers such as [16]. In general, previous methods can

be divided into two major categories.

1. VM and sandbox-based methods without specific

supervision and control solutions: these methods

focus on AI solutions and mathematical

formulations and usually do not provide a specific

implementation. These methods are completely

dependent on VM and Sandbox logging capabilities

and environments. This limits their usability.

2. Solutions with specific supervision and control

mechanisms: these solutions present an

implementation method to supervise code flow

inside operating systems. Until now almost all

methods presented focused on mixed user level and

kernel level coding, using kernel level code for full

OS control and user level code for Import Address

Table (IAT) filtering. In some cases, such as [16]

user level code was used alone but such cases

lacked critical control over process creation and

chaining.

Usually, category 1 solutions focus on the ability to

detect new malwares but those solutions are not

focused on usability and effectiveness since they

ignore sandbox usage limitations. This combined with

their high AI error rate makes them undesirable. Also,

a high number of malwares detect sandbox

environments or require user intervention and are not

detectable in automatic environments. Category 2

solutions are usually designed for end user systems and

are not suitable for anti-malware solutions such as

[16]. Unorthodox solutions such as image analysis or

usage of disassemblers are not in our scope. These

methods have limited effectiveness in certain cases and

do not present a general solution.

3. Proposed Method

The method proposed will be described as follows and

shall be called User Process Chaining (UPC)

henceforth.

3.1. Overview

Today, malware detection mechanisms are almost

entirely mixed mode applications. They have kernel

mode device drivers along with their user mode

applications since system control is often perceived as

not possible without a kernel component. However,

this may not be necessary. In modern operating

systems (especially Windows) application processes

are more isolated than ever before and can be seen as

small VMs. Calling lower-level OS services is not

possible directly or is strongly prohibited. User level

code should call OS services via standard APIs. Given

this, control over standard APIs allows us to make a

controlled VM by only accessing user level

environment specifications with no kernel level

programming. At this point, kernel level programming

is only needed when an application wants to install a

new device driver. This however, for a normal

application should be recognized as a highly suspicious

attempt at system breach and should be reported as

such. Supervisory kernel level code is only necessary

when suspicious kernel level code is already running

on the system and is in need of examination or a user

mode application has exited supervision and should be

stopped or terminated. UPC highlights that a complete

user mode supervisor is enough to control any user

mode application. Making such a supervisor is not

difficult and could be done without kernel level coding

or system level violations such as utilization of

654 The International Arab Journal of Information Technology, Vol. 19, No. 4, July 2022

undocumented functions or structures. In previous

solutions we can see extensive use of New Technology

(NT) Kernel patches, device drivers, disassemblers and

sandboxes used. Despite using these tools previous

techniques did not create sufficiently successful

solutions. This could be seen at times due to

similarities between harmful and non-harmful code.

A desirable anti-malware solution should be

dynamic, smart and able to provide a level of certainty

while allowing a researcher to determine the final

verdict. Previous automated methods could not exceed

25% accuracy, despite only a 98% success rate within

that margin using fully automated detection methods

based on clustering and heavy data mining algorithms

[19]. This paper aims to tackle all cases including the

remaining 75%.

3.2. System Design

As previously stated, our design utilizes user level

code only and sample applications are implemented on

Microsoft Windows. Replicating this structure is

feasible in a similar manner on other operation systems

such as GNU/Linux. Figure 1 provides an overview of

the OS layers in Windows.

Application Level

Our Supervision and Control Level

NTDLL.DLL (System Service Dispatcher)

Intermediate Drivers Device Drivers

HAL Drivers

Hardware

Figuer 1. System position in microsoft windows OS layers.

3.3. Primitives

1. No use for undocumented API or structures:

previous software tracers or VMs used

undocumented or discouraged Windows APIs for

controlling program execution. This behavior would

cause serious problems with new Windows versions

or patches.

2. New Design for compatibility with Windows:

previous works mostly designed for Linux

environments, had process control flow and

chaining that applied poorly under Windows.

Process memory mapping and control flow is now

more enhanced and requires special care. Our paper

aims to provide a comprehensive solution to this

issue.

3.4. Process Handling in Windows

 Process Creation and Control Functions: UPC

modifies application processes in a manner that

sensitive OS functions fall under supervision and

control. Windows API functions such as

CreateProcess(), OpenProcess(),

TerminateProcess(), ExitProcess(), CreateThread(),

CreateRemoteThread() and ExitThread() provide a

complete set that can be used to monitor and

redirect process control flow under Windows. A

supervision diagram is utilized that guides control

over these without ignoring their interdependency.

 Process Memory Supervision: Functions such as

WriteProcessMemory(), ReadProcessMemory() and

VirtualProtectEx() can be used for all process

handling requirements at application level. A

complete overview of how Windows handles user

level memory pages could be helpful in resolving

memory access problems. UPC provides a local

supervisor for processes under investigation.

 Process Code Injection: In Windows a parent user

level supervisor injects extra code into a child

process to control its API calls or memory mapping.

Code injections however, may cause crashes or

conflicts if done incorrectly. UPC aims to do this

silently with a minimal footprint and controls

injections requested by the monitored process.

 Process Runtime Redirection: UPC provides the

ability to control API calls and their effects at

runtime. We can allow the application to run a

partial or complete subset of the Windows API with

modified or unmodified parameters and halt some

executions in need of review. Given these tools the

supervisor can analyse rare or special events,

maintain control over memory allocations/de-

allocations, reveal secret codes/messages and much

more. To summarize, UPC provides a virtual

environment capable of redirecting application flow.

3.5. Design Properties

 Windows User Mode VM: given that UPC is

limited to OS user mode the analysis is limited to

WinAPI, its structures and CPU Protected Mode

Level 3 capabilities. Undocumented structures will

change in the future and are not suited for use. We

use standard hook methods and link chaining of

process creation and memory handling. Avoiding

undocumented structures prevents incompatibility

with future system developments.

 Control Flow Chaining: our CreateProcess() based

control flow chaining mechanism and other

compatible functions will guarantee that UPC will

not lose control flow of application processes in any

situation. Not using this approach, previous methods

were forced to use kernel patches.

An Improved Process Supervision and Control Method for Malware Detection 655

3.6. Process Chaining View

Figure 2 demonstrates how process chaining is handled

by our system.

First Process Private Memory Injected Code OS Mapped Memory Shared Memory

First Child Process Private Memory Injected Code OS Mapped Memory Shared Memory

Second Process Private Memory Injected Code OS Mapped Memory Shared Memory

Parent
Supervisor

Figuer 2. Process chaining control diagram.

As demonstrated UPC supervisor application injects

control code not only inside the process under

investigation but will also replicate such code inside

newly spawned processes as well. This ensures

uninterrupted supervision until process termination.

3.7. Process VM View

Any process created by Windows’s application loader

has its own memory and a copy of system libraries. As

such it resembles an independent VM. At execution

start the function addresses needed by the process are

known via its import table. Address of system

functions not defined in the import table are unknown

to the process image and are requested by

GetProcAddress(). Guessing system addresses or

calculating them by using undocumented structures is

prohibited, not to mention in violation of system

programming rules under Windows. As expected

newer Microsoft Windows versions and patches

eliminate all previous methods of non-standard calling

of OS routines. Utilizing OS and application DLLs are

portrayed in Figure 3.

Figure 3. Process VM calls and addressing.

With this in mind, we can be sure that sensitive system

calls will pass through our filters with a correct patch.

3.8. Process Supervision View

UPC process supervision routines will be inside the

process memory undiscoverable by it via being

accessed from inside an injected dll. At this point

process call handling changes from Figures 3 to 4.

Figure 4. O.S. Filtering diagram with UPC supervision.

3.9. Sensitive APIs

1. Searching, Creating and Erasing file functions: in

Microsoft Windows a process can create new files

or modifying existing ones with the CreateFile()

function. This function has two variants: the A and

W extensions for American National Standards

Institute (ANSI) and Wide character file names.

Many other functions in Windows have the same

variants. Since version 7.1, Windows places some

base libraries under main ones such as

kernelbase.dll under kernel32.dll. Some functions of

main libraries have equivalents in their base

versions and should be considered for filtering as

needed. Functions such as CreateFile2(), ReadFile(),

WriteFile(), FindFirstFile(), FindNextFile() and

DeleteFile() should also be considered for filtering.

2. Creating new process functions: createProcess(),

CreateProcessInternal(), ShellExecute(),

CreateService() and StartService() should be

considered for filtering. Any process that calls

CreateService() is creating a new driver and if it is

not a hardware installation application or a known

filter driver it should be considered as malware.

3. Creating and controlling new threads functions:

functions such as CreateThread(), ResumeThread()

and CreateRemoteThread() should all be considered

for controlling and filtering.

4. Process Memory Access and Modify functions:

functions such as ReadProcessMemory(),

WriteProcessMemory(), VirtualProtectEx(),

VirtualAllocEx() and VirtualFreeEx() should all be

filtered.

656 The International Arab Journal of Information Technology, Vol. 19, No. 4, July 2022

(1)

(2)

5. Device drivers access and control function:

deviceIoControl() which is currently the main

function to communicate between application level

code and device driver or kernel level code should

be filtered.

6. Process communication functions: libraries such as

ws_32.dll and wsock32.dll that provide socket

communication should be monitored. Control over

LoadLibrary() and LoadLibraryEx() functions

provides control over these system DLLs and their

functions. Given that some processes use

CreateFileMapping() for intercommunication, this

function too should be supervised. This list

however, is not exhaustive.

7. System time functions: getTickCount(),

GetTickCount64(), GetSystemTime(),

GetSystemTimeAsFileTime() and

GetSystemTimes() should be controlled by the

supervisor to prevent recognition of time elapses by

the investigated application.

8. Process supervision and control / ACL functions:

createToolhelp32Snapshot(), Process32First() and

Process32Next() are in need of supervision.

Windows ACL functions such as

OpenProcessToken(), OpenThreadToken() and

AdjustTokenPrivilages() must also be supervised.

Please note that this is not an exhaustive list and

there are unmentioned functions in ntdll.dll in need

of supervision.

9. Registery access functions: functions such as

RegOpenKey(), RegOpenKeyEx(),

RegSetKeyValue() and RegQueryValue() should be

all be controlled.

3.10. System Operation

UPC commences by loading the target application via

a supervisor loader. Target is loaded by the

CreateProcess() function with the

CREATE_SUSPENDED flag set and conduct

supervisor routine injection before ResumeThread() is

called for the main process. This ensures that the main

thread of the executable image won’t be called before

UPC filtering system and UPC supervisor routine will

have full control. In rare cases where other libraries

may contain the malware code supervisor should test

those libraries with other methods such as debugging

which is outside of the scope of this paper. Flow of the

suspicious application is halted by any supervisor

routine calls to sensitive OS APIs and a dialog box is

displayed showing the function name and its

parameters. The researcher can then allow function

execution unimpeded, change function call parameters

before the execution or prevent/allow function

execution and report fake values to the caller.

Using this system, the supervisor can handle almost

all scenarios at runtime for the application under

investigation and find hidden actions under special

events. In practice we have found that using the

supervisor application is very simple and fast.

Execution of the supervisor application can be stopped

or restarted at any point. Memory view of the process

under investigation is possible at runtime and the

supervisor can inspect this view any time there is a

sensitive OS API call.

4. Comparison Results

4.1. Implementation Comparison with Mixed

Mode Solutions

A complete mixed mode solution like [16] contains

different parts. These code sections have different

complexity and execution times. In this case, code size

and code execution time have a close relation.

Considering the following variables:

SET=Service Execution Time, AI=Artificial

Intelligence, CM=Control Module

For which the following exist:

IAT=Import Address Table, IRP=I/O Request

Packet, IDT=Interrupt Descriptor Table,

HYP=Hypervisor, EMU=CPU Emulation and

SSDT=System Service Descriptor Table patched

handler

We will have service execution times for each part

calculated roughly via:

SSDT_SET≈IAT_SET * 2 IRP_SET≈SSDT_SET * 7

IDT_SET≈SSDT_SET * 2 HYP_SET≈SSDT_SET* 7

EMU_SET≈SSDT_SET*7

In [15] execution time of all code parts is:

IAT_SET + SSDT_SET + IRP_SET + IDT_SET +

HYP_SET + EMU_SET + AI_SET + CM_SET and our

execution time is: IAT_SET+CM_SETConsider that

our IAT_SET and CM_SET is very close in size and

execution time to [16]. Removing AI_SET from

computation, [16] code execution time demonstrates

that IAT_SET+CM_SET are only 4% of overall code

execution time and other parts occupy the remaining

96%. These parts also occupy 80% the code volume.

With such smaller code size and complexity our

method demonstrates the simplicity required for rapid

development and reliability.

The AI method used in [16] is based on the

weighted API mechanism presented in Equation (1)

and its accuracy is measured with Equation (2)

provided below:

M = A * Ax + B * Bx + C * Cx … , A,B,C,… are weighted APIs

and Ax, Bx, Cx are their frequencies.

Accuracy = Approximate Matching Index of (M) with (Malware

Classification Database)

UPC accuracy is however, based on computing and

relying on multiple approximate matching indices by a

human supervisor. This results in much higher

accuracy compared to using a single M Approximate

Matching Index such as in [16].

An Improved Process Supervision and Control Method for Malware Detection 657

4.2. Comparison with Fully Automated

Sandbox-Based Methods

Previous methods of malware detection, including

Weighting Mechanisms [1, 2], Properties’ Extraction

[2, 15] and Classification [10, 11, 12, 13] concentrated

on reaching maximum precision. In their research,

samples were selected that could be run without user

intervention in sandbox environments such as CW or

Cuckoo. The important point missed was that many

malwares are dormant without user intervention and

some recently developed recognize sandbox and VM

environments and do not activate. A recent quantitative

Zhang et al. [19] inspected 60000 samples from which

only 17400 samples activated in a sandbox

environment. From the ones that activated some did

not successfully operate in their sandbox

environments. The article concluded that 75% of the

sample set could not be tested on a fully automatic

detection system. The automated detection system

presented reached 98% precision on the remaining

25% of the sample set.

Given these facts, the effective accuracy of the

[19]’s technique is placed at 24.5%. This is not

remotely acceptable by industry standards. Anti-

malware software should be able to inspect and

discover harmful code inside samples with a high

success rate with a low rate of false positives. The

overall accuracy of the system should not fall below

95%. Considering these facts, the industry has largely

avoided fully automated detection systems and relies

heavily on debugging. Since debugging is time

consuming, this approach has not been able to keep

pace with the rapid rate with which new malwares are

appearing. The technique that we have presented here

activated nearly all of the 75% of samples that [19]’s

technique discounted. Since a researcher has control

over the filtering process in UPC the only parameter

that may affect results is to a small degree human

error. This however, should be minimal given that the

malware researcher should be a qualified domain

expert. We have determined the worst-case error rate

as being 2%. This leaves us with a 98% accuracy not

to mention the time savings realized by the near-

automated nature of the technique. Fully automated

techniques may improve their results by

complementing their technique with UPC. However,

this may incur additional development costs avoided

by simply using UPC technique alone. UPC can also

be used in Endpoint Detection and Response (EDR)

systems developed by anti-virus companies such as

Kaspersky. Their solution is described in the detail in

[18]. A combination of current Endpoint Protection

Platform (EPP) and EDR systems developed by UPC

mechanism will raise efficiency on detecting new

malwares/Advanced Persistent Threat (APT) as shown

in Figure 5. Simulation was done by a 2.00 GHZ

Pentium 4 (8 Core), 6 GB RAM and 640 GB HDD.

Figure 5. EPP plus EDR efficiency.

5. Conclusions and Future Works

Developing methods enhancing malware detection is a

priority in cyber security. What we have demonstrated

here was an enhancement on supervision and control

methods presented and discussed in previous works.

This method could be used as a standalone malware

reconnaissance solution or developed as a module

inside existing EDR tools. The method presented was

designed for and capable of achieving the following

goals: saving time, achieving simplicity in design,

forward compatibility with future OS versions,

drastically improving accuracy and greatly reducing

dependence on debugging as a malware inspection

tool. To this end UPC method reached 98% overall

accuracy in comparison with the 24.5% reached via

fully automated methods such as [19]’s. This was done

in conjunction with reducing code size by 80% in

comparison with [16] improving simplicity and

reliability. Future avenues of exploration may pursue

code execution in kernel mode for differentiating

legitimate driver installations from malware system

breach attempts or involve crash resistance and

recovery methods described in [1, 19].

References

[1] Asghari S. and Taheri H., “An Effective Soft

Error Detection Mechanism Using Redundant

Instructions,” The International Arab Journal of

Information Technology, vol. 12, no. 1, pp. 69-

76, 2015.

[2] Chen F. and Fu Y., “Dynamic Detection of

Unknown Malicious Executables Based on API

Interception,” in Proceedings of 1st International

Workshop on Database Technology and

Applications, Wuhan, pp. 329-332, 2009.

[3] Cheng J., Tsai T., and Yang C., “An Information

Retrieval Approach for Malware Classification

Based on Windows API Calls,” in Proceedings

of the International Conference on Machine

Learning and Cybernetics, Tianjin, pp. 1678-

1683, 2013.

[4] Fu W., Pang J., Zhao R., Zhang Y., and Wei B.,

“Static Detection of API-calling Behavior from

658 The International Arab Journal of Information Technology, Vol. 19, No. 4, July 2022

Malicious Binary Executable,” in Proceedings of

International Conference on Computer and

Electrical Engineering, Phuket, 2008.

[5] Javaheri D., Hosseinzadeh M., and Rahmani A.,

“Detection and Elimination of Spyware and

Ransomware by Intercepting Kernel-Level

System Routines,” IEEE Access, vol. 6, pp.

78321-78332, 2018.

[6] Liu Y., Lai Y., Wang Z., and Yan H., “A New

Learning Approach to Malware Classification

Using Discriminative Feature Extraction,” IEEE

Access, vol. 7, pp. 13015-13023, 2019.

[7] Musavi A. and Kharrazi M., “Back to Static

Analysis for Kernel-Level Rootkit Detection,”

IEEE Transactions on Information Forensics

And Security, vol. 9, no. 9, pp. 1465-1476, 2014.

[8] Muthumanickam K. and Ilavarasan E., “Behavior

based Authentication Mechanism to Prevent

Malicious Code Attacks in Windows,”

International Conference on Innovations in

Information, Embedded and Communication

Systems, Coimbatore, pp. 1-5, 2015.

[9] Pektaş A. and Acarman T., “Malware

Classification Based on API Calls and Behavior

Analysis,” IET Information Security, vol. 12, no.

2, pp. 107-117, 2018.

[10] Qiao Y., He J., Yang Y., and Ji L., “Analyzing

Malware by Abstracting the Frequent Item sets in

API call Sequences,” in Proceedings of 12th IEEE

International Conference on Trust, Security and

Privacy in Computing and Communications,
Melbourne, pp. 265-270, 2013.

[11] Qu-Nguyen L., Demir T., Rowe J., Hsu F., and

Levitt K., “A Framework for Diversifying

Windows Native APIs to Tolerate Code Injection

Attacks,” in Proceedings of the 2nd ACM

Symposium on Information, computer and

Communications Security, New York, pp. 392-

394, 2007.

[12] Skaletsky A., Devor T., Chachmon N., Cohn R.,

Hazelwood K., Vladimirov V., and Bach M.,

“Dynamic Program Analysis of Microsoft

Windows Applications,” in Proceedings of

International Symposium on Performance

Analysis of Systems and Software, White Plains,

pp. 2-12, 2010.

[13] Shevchenko Y., “EPP Plus EDR: The Future of

Endpoint Cybersecurity” Kaspersky Corporation

EPP-EDR Importance.

https://www.kaspersky.com/blog/epp-edr-

importance/22366/, Last Visited, 2019.

[14] Sun H., Wang H., Wang K., and Chen C., “A

Native APIs Protection Mechanism in the Kernel

Mode Against Malicious Code,” IEEE

Transactions on Computers, vol. 60, no. 6, pp.
813-823, 2011.

[15] Sun S., Fu X., Ruan H., Du X., Luo B., and

Guizani M., “Real-Time Behavior Analysis and

Identification for Android Application,” IEEE

Access, vol. 6, pp. 38041-38051, 2018.

[16] Tsaur W. and Chen Y., “Exploring Rootkit

Detectors’ Vulnerabilities Using a New Windows

Hidden Driver Based Rootkit,” in Proceedings of

2nd International Conference on Social

Computing, Minneapolis, pp. 842-848, 2010.

[17] Volynkin A., Skormin V., Summerville D., and

Moronski J., “Evaluation of Run-Time Detection

of Self-Replication in Binary Executable

Malware,” in Proceedings of the IEEE Workshop

on Information Assurance, West Point, pp. 184-

191, 2006.

[18] Xu S., Ma X., Liu Y., and Sheng Q., “Malicious

Application Dynamic Detection in Real-Time

API Analysis,” in Proceedings of IEEE

International Conference on Internet of Things

(iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber,

Physical and Social Computing (CPSCom) and

IEEE Smart Data (SmartData), Chengdu, pp.
788-794, 2016.

[19] Zhang F., Leach K., Stavrou A., and Wang H.,

“Towards Transparent Debugging,” IEEE

Transactions on Dependable and Secure

Computing, vol. 15, no. 2, pp. 321-335, 2016.

https://dl.acm.org/doi/proceedings/10.1145/1229285
https://dl.acm.org/doi/proceedings/10.1145/1229285
https://dl.acm.org/doi/proceedings/10.1145/1229285
https://www.kaspersky.com/blog/epp-edr-importance/22366/
https://www.kaspersky.com/blog/epp-edr-importance/22366/

An Improved Process Supervision and Control Method for Malware Detection 659

Behnam Shamshirsaz received his

B.Sc. degree in 2017 (IT

engineering) from Azad University

and M.Sc. (Computer Architecture)

in 2019, Kharazmi University,

Tehran. His research interests

include Computer Architecture and

Software Security system design.

Seyyed Amir Asghari received his

B.Sc. degree in 2007 (hardware

engineering major), M.Sc. and Ph.D.

in 2009 and 2013 respectively

(computer architecture major) from

Amirkabir University of

Technology. His current research

interests include fault-tolerant

design and real-time embedded system design. He has

served as a faculty member in the Department of

Electrical and Computer Engineering at Kharazmi

University.

Mohammadreza Binesh

Marvasti received the M.Sc. degree

from Department of ECE University

of Tehran, Iran, in 2007 and the

Ph.D. degree in ECE from

McMaster University, Canada, in

2013. His research interests include

Computer Architecture, Low-Power Digital Design,

FPGAs, Approximate Computing, and On-chip

Interconnection Network. He has served as a faculty

member in the Department of Electrical and Computer

Engineering at Kharazmi University.

