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Abstract: Most modern-day malware detection methods and algorithms are based on prior knowledge of malware 

specifications. Discovering new malwares by solely relying on computer based automatic solutions with no human intervention 

currently appears out of reach. Many malwares never decode harmful parts of their code until the triggering of a specific 

event. Others detect virtual machine or sandbox environments and hide their true nature. Detecting these kinds of malwares-

specifically multi evented ones-are nearly impossible for fully automatic detection methods. Previous research found that 

about 75% of malwares studied did not react in a fully automatic environment without user intervention thus being 

undetectable. This paper introduces a near automated solution to detect malwares quickly by relying on a supervision and 

control method based on user level capabilities of the operating system. Improving on previous methods, this research can 

replace the need for debugging new malwares in almost all aspects. This solution forces malwares in automated environments 

to activate and be discoverable. Researcher intervention during malware code execution along with the malware’s intent over 

calling sensitive operating system functions and parameters aid this process. Since operating system functions are virtualized 

malwares are incapable of physically harming the system during execution. The solution reached 98% overall accuracy in 

conjunction with reducing code size by 80% in comparison with similar techniques, improving simplicity and reliability.  
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response. 
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1. Introduction 

Multiple detection methods have been proposed since 

the early days of computer malware. They broadly fall 

under either of two categories: static and dynamic 

methods [17]. Many solutions and algorithms have 

been proposed for each category. Static methods are 

based on detecting specifications of previously known 

malwares inside new code known as signatures. This 

approach is not fruitful on new malwares with no 

known previous signatures. Dynamic methods check 

for malware behavior while system applications are 

running via monitoring operating system function calls 

and reaching a conclusion on whether an application is 

behaving like malware or not. This type of decision 

making is key to new malware discovery. However, 

doing this task effectively within a reasonable 

timeframe is not trivial considering the rapidly 

growing number of newly generated malwares and 

their variety. Discovering new malwares quickly and 

with certainty are key requirements in a reliable anti-

malware solution thus making investigation of 

different approaches necessary. Previous methods 

involving artificial intelligence, clustering and data 

mining alongside using virtual machines and 

sandboxes did not provide certainty in malware 

discovery either. This hints semi-automatic solutions  

 
as being a desirable approach. Anti-virus researchers 

commonly use debuggers to inspect suspiciously 

complex applications. However, working with 

debuggers is complex and time consuming. With tools 

developed based on this research an anti-malware 

developer can check suspicious applications much 

more easily than using a general debugger. Our method 

is based on virtual environments surrounding user level 

Operating System (OS) functions and does not use 

kernel drivers or kernel level coding. It neither relies 

on Artificial Intelligence (AI) methods nor 

mathematical formulations but rather by placing the 

researcher in control of the malware identification 

process. It should be noted however, that AI 

techniques can be combined with our technique. 

Microsoft Windows was chosen as our testing platform 

and code samples were developed in the C 

programming language with visual studio 6.0 for 

simplicity and robustness. The rest of the paper is 

organized as follows: Related work is presented in 

section 2. Section 3 describes the proposed approach. 

Results and analytical comparisons are presented in 

section 4. conclusions follow in section 5. 

2. Related Works 

Previous techniques have been based on either static or 

https://doi.org/10.34028/iajit/19/4/9
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dynamic approaches including methods such as 

Application Programming Interface (API) hooking [4, 

5, 6, 7, 8, 9, 11, 17, 18], patching the OS service 

dispatcher [4, 16], discovering API calling sequences 

[2, 14, 15, 16, 17] O.S. Kernel System Service 

Dispatcher Table (SSDT) patching [3, 4, 5, 6, 14] and 

Intel Pin [10]. Some unorthodox methods such as 

malware detection via image code have also been 

presented in the past [12]. Such methods have not been 

tested in production environments and may suffer from 

a high error rate. In this paper we discuss methods 

relevant to our technique and will utilize foundational 

elements related to our approach. 

Examination of various OS development efforts 

over time has identified four general capabilities 

critical for a process research environment. Some of 

these elements have been previously used by other 

solutions in a partial manner [2, 16, 17]. These 

elements are numerated below: 

1) Process Modification: previous solutions allowed 

applications to run unmodified in sandbox or 

Virtual Machine (VM) environments except for 

perhaps logging capabilities. This was deemed 

sufficient for their purposes.  

2) Process Injection: in sandbox or VM environments, 

applications injecting code into other processes are 

not stopped or modified at runtime.  

3) Process Supervision: previous methods did not 

supervise application code at runtime in a sandbox 

or VM environment. This was to replicate a setting 

as close to a physical machine as possible. Often the 

only supervision available was the VM or sandbox 

supervisor.  

4) Process Control: redirecting the flow of an 

application while it is running in a VM or sandbox 

environment is not possible. Consequently, 

encryption or decryption of code, hidden messages 

and other important information are not 

discoverable leaving only the final results for 

observation. 

Most previous methods paid no attention to these 

elements and allowed VM environments to proceed as 

usual. The few that did, used kernel level code and 

drivers such as [16]. In general, previous methods can 

be divided into two major categories.  

1. VM and sandbox-based methods without specific 

supervision and control solutions: these methods 

focus on AI solutions and mathematical 

formulations and usually do not provide a specific 

implementation. These methods are completely 

dependent on VM and Sandbox logging capabilities 

and environments. This limits their usability. 

2. Solutions with specific supervision and control 

mechanisms: these solutions present an 

implementation method to supervise code flow 

inside operating systems. Until now almost all 

methods presented focused on mixed user level and 

kernel level coding, using kernel level code for full 

OS control and user level code for Import Address 

Table (IAT) filtering. In some cases, such as [16] 

user level code was used alone but such cases 

lacked critical control over process creation and 

chaining. 

Usually, category 1 solutions focus on the ability to 

detect new malwares but those solutions are not 

focused on usability and effectiveness since they 

ignore sandbox usage limitations. This combined with 

their high AI error rate makes them undesirable. Also, 

a high number of malwares detect sandbox 

environments or require user intervention and are not 

detectable in automatic environments. Category 2 

solutions are usually designed for end user systems and 

are not suitable for anti-malware solutions such as 

[16]. Unorthodox solutions such as image analysis or 

usage of disassemblers are not in our scope. These 

methods have limited effectiveness in certain cases and 

do not present a general solution.  

3. Proposed Method 

The method proposed will be described as follows and 

shall be called User Process Chaining (UPC) 

henceforth. 

3.1. Overview 

Today, malware detection mechanisms are almost 

entirely mixed mode applications. They have kernel 

mode device drivers along with their user mode 

applications since system control is often perceived as 

not possible without a kernel component. However, 

this may not be necessary. In modern operating 

systems (especially Windows) application processes 

are more isolated than ever before and can be seen as 

small VMs. Calling lower-level OS services is not 

possible directly or is strongly prohibited. User level 

code should call OS services via standard APIs. Given 

this, control over standard APIs allows us to make a 

controlled VM by only accessing user level 

environment specifications with no kernel level 

programming. At this point, kernel level programming 

is only needed when an application wants to install a 

new device driver. This however, for a normal 

application should be recognized as a highly suspicious 

attempt at system breach and should be reported as 

such. Supervisory kernel level code is only necessary 

when suspicious kernel level code is already running 

on the system and is in need of examination or a user 

mode application has exited supervision and should be 

stopped or terminated. UPC highlights that a complete 

user mode supervisor is enough to control any user 

mode application. Making such a supervisor is not 

difficult and could be done without kernel level coding 

or system level violations such as utilization of 
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undocumented functions or structures. In previous 

solutions we can see extensive use of New Technology 

(NT) Kernel patches, device drivers, disassemblers and 

sandboxes used. Despite using these tools previous 

techniques did not create sufficiently successful 

solutions. This could be seen at times due to 

similarities between harmful and non-harmful code. 

A desirable anti-malware solution should be 

dynamic, smart and able to provide a level of certainty 

while allowing a researcher to determine the final 

verdict. Previous automated methods could not exceed 

25% accuracy, despite only a 98% success rate within 

that margin using fully automated detection methods 

based on clustering and heavy data mining algorithms 

[19]. This paper aims to tackle all cases including the 

remaining 75%. 

3.2. System Design 

As previously stated, our design utilizes user level 

code only and sample applications are implemented on 

Microsoft Windows. Replicating this structure is 

feasible in a similar manner on other operation systems 

such as GNU/Linux. Figure 1 provides an overview of 

the OS layers in Windows. 

Application Level

Our Supervision and Control Level

NTDLL.DLL (System Service Dispatcher)

Intermediate Drivers Device Drivers

HAL Drivers

Hardware
 

Figuer 1. System position in microsoft windows OS layers. 

3.3. Primitives 

1. No use for undocumented API or structures: 

previous software tracers or VMs used 

undocumented or discouraged Windows APIs for 

controlling program execution. This behavior would 

cause serious problems with new Windows versions 

or patches. 

2. New Design for compatibility with Windows: 

previous works mostly designed for Linux 

environments, had process control flow and 

chaining that applied poorly under Windows. 

Process memory mapping and control flow is now 

more enhanced and requires special care. Our paper 

aims to provide a comprehensive solution to this 

issue. 

 

3.4. Process Handling in Windows 

 Process Creation and Control Functions: UPC 

modifies application processes in a manner that 

sensitive OS functions fall under supervision and 

control. Windows API functions such as 

CreateProcess(), OpenProcess(), 

TerminateProcess(), ExitProcess(), CreateThread(), 

CreateRemoteThread() and ExitThread() provide a 

complete set that can be used to monitor and 

redirect process control flow under Windows. A 

supervision diagram is utilized that guides control 

over these without ignoring their interdependency. 

 Process Memory Supervision: Functions such as 

WriteProcessMemory(), ReadProcessMemory() and 

VirtualProtectEx() can be used for all process 

handling requirements at application level. A 

complete overview of how Windows handles user 

level memory pages could be helpful in resolving 

memory access problems. UPC provides a local 

supervisor for processes under investigation. 

 Process Code Injection: In Windows a parent user 

level supervisor injects extra code into a child 

process to control its API calls or memory mapping. 

Code injections however, may cause crashes or 

conflicts if done incorrectly. UPC aims to do this 

silently with a minimal footprint and controls 

injections requested by the monitored process. 

 Process Runtime Redirection: UPC provides the 

ability to control API calls and their effects at 

runtime. We can allow the application to run a 

partial or complete subset of the Windows API with 

modified or unmodified parameters and halt some 

executions in need of review. Given these tools the 

supervisor can analyse rare or special events, 

maintain control over memory allocations/de-

allocations, reveal secret codes/messages and much 

more. To summarize, UPC provides a virtual 

environment capable of redirecting application flow. 

3.5. Design Properties 

 Windows User Mode VM: given that UPC is 

limited to OS user mode the analysis is limited to 

WinAPI, its structures and CPU Protected Mode 

Level 3 capabilities. Undocumented structures will 

change in the future and are not suited for use. We 

use standard hook methods and link chaining of 

process creation and memory handling. Avoiding 

undocumented structures prevents incompatibility 

with future system developments. 

 Control Flow Chaining: our CreateProcess() based 

control flow chaining mechanism and other 

compatible functions will guarantee that UPC will 

not lose control flow of application processes in any 

situation. Not using this approach, previous methods 

were forced to use kernel patches. 



An Improved Process Supervision and Control Method for Malware Detection                                                                        655 

3.6. Process Chaining View 

Figure 2 demonstrates how process chaining is handled 

by our system. 

 

First Process Private Memory Injected Code OS Mapped Memory Shared Memory

First Child Process Private Memory Injected Code OS Mapped Memory Shared Memory

Second Process Private Memory Injected Code OS Mapped Memory Shared Memory

Parent 
Supervisor

 

Figuer 2. Process chaining control diagram. 

As demonstrated UPC supervisor application injects 

control code not only inside the process under 

investigation but will also replicate such code inside 

newly spawned processes as well. This ensures 

uninterrupted supervision until process termination. 

3.7. Process VM View 

Any process created by Windows’s application loader 

has its own memory and a copy of system libraries. As 

such it resembles an independent VM. At execution 

start the function addresses needed by the process are 

known via its import table. Address of system 

functions not defined in the import table are unknown 

to the process image and are requested by 

GetProcAddress(). Guessing system addresses or 

calculating them by using undocumented structures is 

prohibited, not to mention in violation of system 

programming rules under Windows. As expected 

newer Microsoft Windows versions and patches 

eliminate all previous methods of non-standard calling 

of OS routines. Utilizing OS and application DLLs are 

portrayed in Figure 3. 

 

Figure 3. Process VM calls and addressing. 

With this in mind, we can be sure that sensitive system 

calls will pass through our filters with a correct patch. 

3.8. Process Supervision View 

UPC process supervision routines will be inside the 

process memory undiscoverable by it via being 

accessed from inside an injected dll. At this point 

process call handling changes from Figures 3 to 4. 

 

Figure 4. O.S. Filtering diagram with UPC supervision. 

3.9. Sensitive APIs 

1. Searching, Creating and Erasing file functions: in 

Microsoft Windows a process can create new files 

or modifying existing ones with the CreateFile() 

function. This function has two variants: the A and 

W extensions for American National Standards 

Institute (ANSI) and Wide character file names. 

Many other functions in Windows have the same 

variants. Since version 7.1, Windows places some 

base libraries under main ones such as 

kernelbase.dll under kernel32.dll. Some functions of 

main libraries have equivalents in their base 

versions and should be considered for filtering as 

needed. Functions such as CreateFile2(), ReadFile(), 

WriteFile(), FindFirstFile(), FindNextFile() and 

DeleteFile() should also be considered for filtering. 

2. Creating new process functions: createProcess(), 

CreateProcessInternal(), ShellExecute(), 

CreateService() and StartService() should be 

considered for filtering. Any process that calls 

CreateService() is creating a new driver and if it is 

not a hardware installation application or a known 

filter driver it should be considered as malware. 

3. Creating and controlling new threads functions: 

functions such as CreateThread(), ResumeThread() 

and CreateRemoteThread() should all be considered 

for controlling and filtering. 

4. Process Memory Access and Modify functions: 

functions such as ReadProcessMemory(), 

WriteProcessMemory(), VirtualProtectEx(), 

VirtualAllocEx() and VirtualFreeEx() should all be 

filtered. 



656                                                             The International Arab Journal of Information Technology, Vol. 19, No. 4, July 2022 

(1) 

(2) 

 

5. Device drivers access and control function: 

deviceIoControl() which is currently the main 

function to communicate between application level 

code and device driver or kernel level code should 

be filtered. 

6. Process communication functions: libraries such as 

ws_32.dll and wsock32.dll that provide socket 

communication should be monitored. Control over 

LoadLibrary() and LoadLibraryEx() functions 

provides control over these system DLLs and their 

functions. Given that some processes use 

CreateFileMapping() for intercommunication, this 

function too should be supervised. This list 

however, is not exhaustive. 

7. System time functions: getTickCount(), 

GetTickCount64(), GetSystemTime(), 

GetSystemTimeAsFileTime() and 

GetSystemTimes() should be controlled by the 

supervisor to prevent recognition of time elapses by 

the investigated application. 

8. Process supervision and control / ACL functions: 

createToolhelp32Snapshot(), Process32First() and 

Process32Next() are in need of supervision. 

Windows ACL functions such as 

OpenProcessToken(), OpenThreadToken() and 

AdjustTokenPrivilages() must also be supervised. 

Please note that this is not an exhaustive list and 

there are unmentioned functions in ntdll.dll in need 

of supervision. 

9. Registery access functions: functions such as 

RegOpenKey(), RegOpenKeyEx(), 

RegSetKeyValue() and RegQueryValue() should be 

all be controlled. 

3.10. System Operation 

UPC commences by loading the target application via 

a supervisor loader. Target is loaded by the 

CreateProcess() function with the 

CREATE_SUSPENDED flag set and conduct 

supervisor routine injection before ResumeThread() is 

called for the main process. This ensures that the main 

thread of the executable image won’t be called before 

UPC filtering system and UPC supervisor routine will 

have full control. In rare cases where other libraries 

may contain the malware code supervisor should test 

those libraries with other methods such as debugging 

which is outside of the scope of this paper. Flow of the 

suspicious application is halted by any supervisor 

routine calls to sensitive OS APIs and a dialog box is 

displayed showing the function name and its 

parameters. The researcher can then allow function 

execution unimpeded, change function call parameters 

before the execution or prevent/allow function 

execution and report fake values to the caller. 

Using this system, the supervisor can handle almost 

all scenarios at runtime for the application under 

investigation and find hidden actions under special 

events. In practice we have found that using the 

supervisor application is very simple and fast. 

Execution of the supervisor application can be stopped 

or restarted at any point. Memory view of the process 

under investigation is possible at runtime and the 

supervisor can inspect this view any time there is a 

sensitive OS API call. 

4. Comparison Results 

4.1. Implementation Comparison with Mixed 

Mode Solutions 

A complete mixed mode solution like [16] contains 

different parts. These code sections have different 

complexity and execution times. In this case, code size 

and code execution time have a close relation. 

Considering the following variables: 

SET=Service Execution Time, AI=Artificial 

Intelligence, CM=Control Module 

For which the following exist: 

IAT=Import Address Table, IRP=I/O Request 

Packet, IDT=Interrupt Descriptor Table, 

HYP=Hypervisor, EMU=CPU Emulation and 

SSDT=System Service Descriptor Table patched 

handler 

We will have service execution times for each part 

calculated roughly via: 

SSDT_SET≈IAT_SET * 2 IRP_SET≈SSDT_SET * 7 

IDT_SET≈SSDT_SET * 2 HYP_SET≈SSDT_SET* 7 

EMU_SET≈SSDT_SET*7 

In [15] execution time of all code parts is: 

IAT_SET + SSDT_SET + IRP_SET + IDT_SET + 

HYP_SET + EMU_SET + AI_SET + CM_SET and our 

execution time is: IAT_SET+CM_SETConsider that 

our IAT_SET and CM_SET is very close in size and 

execution time to [16]. Removing AI_SET from 

computation, [16] code execution time demonstrates 

that IAT_SET+CM_SET are only 4% of overall code 

execution time and other parts occupy the remaining 

96%. These parts also occupy 80% the code volume. 

With such smaller code size and complexity our 

method demonstrates the simplicity required for rapid 

development and reliability. 

The AI method used in [16] is based on the 

weighted API mechanism presented in Equation (1) 

and its accuracy is measured with Equation (2) 

provided below: 

M = A * Ax + B * Bx + C * Cx … , A,B,C,… are weighted APIs 

and Ax, Bx, Cx are their frequencies. 

Accuracy = Approximate Matching Index of (M) with (Malware 

Classification Database) 

UPC accuracy is however, based on computing and 

relying on multiple approximate matching indices by a 

human supervisor. This results in much higher 

accuracy compared to using a single M Approximate 

Matching Index such as in [16]. 
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4.2. Comparison with Fully Automated 

Sandbox-Based Methods 

Previous methods of malware detection, including 

Weighting Mechanisms [1, 2], Properties’ Extraction 

[2, 15] and Classification [10, 11, 12, 13] concentrated 

on reaching maximum precision. In their research, 

samples were selected that could be run without user 

intervention in sandbox environments such as CW or 

Cuckoo. The important point missed was that many 

malwares are dormant without user intervention and 

some recently developed recognize sandbox and VM 

environments and do not activate. A recent quantitative 

Zhang et al. [19] inspected 60000 samples from which 

only 17400 samples activated in a sandbox 

environment. From the ones that activated some did 

not successfully operate in their sandbox 

environments. The article concluded that 75% of the 

sample set could not be tested on a fully automatic 

detection system. The automated detection system 

presented reached 98% precision on the remaining 

25% of the sample set. 

Given these facts, the effective accuracy of the 

[19]’s technique is placed at 24.5%. This is not 

remotely acceptable by industry standards. Anti-

malware software should be able to inspect and 

discover harmful code inside samples with a high 

success rate with a low rate of false positives. The 

overall accuracy of the system should not fall below 

95%. Considering these facts, the industry has largely 

avoided fully automated detection systems and relies 

heavily on debugging. Since debugging is time 

consuming, this approach has not been able to keep 

pace with the rapid rate with which new malwares are 

appearing. The technique that we have presented here 

activated nearly all of the 75% of samples that [19]’s 

technique discounted. Since a researcher has control 

over the filtering process in UPC the only parameter 

that may affect results is to a small degree human 

error. This however, should be minimal given that the 

malware researcher should be a qualified domain 

expert. We have determined the worst-case error rate 

as being 2%. This leaves us with a 98% accuracy not 

to mention the time savings realized by the near-

automated nature of the technique. Fully automated 

techniques may improve their results by 

complementing their technique with UPC. However, 

this may incur additional development costs avoided 

by simply using UPC technique alone. UPC can also 

be used in Endpoint Detection and Response (EDR) 

systems developed by anti-virus companies such as 

Kaspersky. Their solution is described in the detail in 

[18]. A combination of current Endpoint Protection 

Platform (EPP) and EDR systems developed by UPC 

mechanism will raise efficiency on detecting new 

malwares/Advanced Persistent Threat (APT) as shown 

in Figure 5. Simulation was done by a 2.00 GHZ 

Pentium 4 (8 Core), 6 GB RAM and 640 GB HDD. 

 
Figure 5. EPP plus EDR efficiency. 

5. Conclusions and Future Works 

Developing methods enhancing malware detection is a 

priority in cyber security. What we have demonstrated 

here was an enhancement on supervision and control 

methods presented and discussed in previous works. 

This method could be used as a standalone malware 

reconnaissance solution or developed as a module 

inside existing EDR tools. The method presented was 

designed for and capable of achieving the following 

goals: saving time, achieving simplicity in design, 

forward compatibility with future OS versions, 

drastically improving accuracy and greatly reducing 

dependence on debugging as a malware inspection 

tool. To this end UPC method reached 98% overall 

accuracy in comparison with the 24.5% reached via 

fully automated methods such as [19]’s. This was done 

in conjunction with reducing code size by 80% in 

comparison with [16] improving simplicity and 

reliability. Future avenues of exploration may pursue 

code execution in kernel mode for differentiating 

legitimate driver installations from malware system 

breach attempts or involve crash resistance and 

recovery methods described in [1, 19]. 
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