
240 The International Arab Journal of Information Technology, Vol. 15, No. 2, March 2018

Hybrid Algorithm with Variants for Feed Forward

Neural Network

Thinakaran Kandasamy
1
 and Rajasekar Rajendran

2

1
Sri Venkateswara College of Engineering and Technology, Anna University, India

2
Excel Engineering College, Anna University, India

Abstract: Levenberg-Marquardt back-propagation algorithm, as a Feed forward Neural Network (FNN) training method, has

some limitations associated with over fitting and local optimum problems. Also Levenberg-Marquardt back-propagation

algorithm is opted only for small network. This research uses hybrid evolutionary algorithm based on Particle Swarm

Optimization (PSO) in FNN training. This algorithm includes a number of components that gives advantage in the

experimental study. Variants such as size of the swarm, acceleration coefficients, coefficient constriction factor and velocity of

the swarm are proposed to improve convergence speed as well as to improve accuracy. The integration of components in

different ways in hybrid algorithm produces effective optimization of back propagation algorithm. Also, this hybrid

evolutionary algorithm based on PSO can be used for complex neural network structure.

Keywords: Back propagation, hybrid algorithm, levenberg-marquardt, Particle swarm optimization, variants of PSO

algorithm.

Received August 31, 2014; accepted April 12, 2015

1. Introduction

The aim of this paper is to show that integration of

components in different ways will produce effective

optimization of algorithm. Stand alone algorithm are

used as components of hybrid Particle Swarm

Optimization (PSO) algorithm [7]. Our comparison

focuses on updating particles velocity and different

population size. This algorithm has been applied in non

linear function optimization. Similar to the Genetic

Algorithm (GA), the PSO algorithm is an optimization

tool based on population and the system is initialized

with a population of random solutions and is searched

for optima by updating the generations.

The performance of the PSO algorithm can be

improved through the inertia weight [3, 8, 10]. The

PSO search is performed by tracing Pb best position in

its history. PSO have tested with different

communication of circles, stars and randomly assigned

edges [12]. In “speciation based PSO” dynamical

change of size of particle used to increase the

convergence speed [14]. The adaptive tuning of

parameters of PSO can improve the convergence speed

[19]. The PSO algorithm use a time varying population

topology to increase the convergence speed [6]. The

Fully Informed PSOs (FIP), highly connected

topology, has quick convergent behavior using a fixed

number of function evaluations [17]. The TRIBES

PSO [5] is also an adaptive PSO algorithm which can

adaptively tune the number of particles. In HRCGA

algorithm different population size was suggested to

get convergence speed [18]. To achieve the best

performance, it is necessary to tune the selection of the

mutation. The Back propagation algorithm will easily

get trapped in local minima then itidentify the local

optima value [2]. To improve the performance of the

Back propagation algorithm, the people concentrated

on two things:

1. Selection of energy function [20].

2. Selection of dynamic learning rate [9, 16, 22].

GA needs encoding operator and decoding operator

i.e., selection, mutation and crossover. Particles use

mutation to jump out of local optima. Of course

mutation can also help particle to explore the search

space. To reduce the data dimensions, fused features

are passed to hybrid PSO-GA that eliminates irrelevant

features [18]. When the FNN becomes complex then

the Genetic algorithm convergent speed will become

slow. PSO applied in real world problems with

promising output [13]. When the FNN becomes

complex then the Genetic algorithm convergent speed

will become slow. PSO applied in real world problems

with promising output [15].

FNN training by the hybrid evolutionary algorithm

is testified by using Iris data classification and the

result shows that the proposed hybrid algorithm

possesses good result to find the global optimum

compared to the LM algorithm. This paper is organized

as follows: section 2 describes PSO algorithm and

Levenberg-Marquardt algorithm. Section 3 describes

that in XOR problem, the convergence speed is better

in Hybrid evolutionary algorithm compared to

Levenberg Marquardt algorithm. Section 4 describes

parameters setting for the hybrid PSO-FNN algorithm

to solve Iris problem. Section 5 describes about the

Hybrid Algorithm with Variants for Feed Forward Neural Network 241

result. Section 6 concludes hybrid evolutionary

algorithm based on PSO in FNN training includes a

number of components that gives advantage to increase

converge speed with accuracy.

2. Particle Swarm Optimization Algorithm

Particle swarm optimization is a heuristic global

optimization method put forward in the year 1995. It is

based on the research of bird movement behavior.

When searching for food, the birds go together before

they locate the place where they can find the food.

Birds are communicating the information, while

searching the food; the birds will eventually flock to

the place where food can be found. The food resource

is equal to the most optimist solution during the whole

course. This algorithm can be used to work out the

complex optimist problems. Due to its easy

implementation, the algorithm can be used widely in

the fields such as function optimization, the model

classification, neutral network training, the signal

procession, automatic adaptation.

In the basic particle swarm optimization algorithm,

particle swarm consists of “n” particles, and the

position of each particle stands for the potential

solution in d-dimensional space. The particles change

its condition according to the following three

principles:

1. To keep its inertia.

2. To change the condition according to its most

optimist position.

3. To change the condition according to the swarm‟s

most optimist position.

The position of each particle in the swarm is affected

both by the most optimist position during its movement

and the position of the most optimist particle in its

surrounding. When the whole particle swarm is

surrounding the particle, the most optimist position of

the surrounding is equal to the one of the whole most

optimist particle; this algorithm is called the PSO.

Each particle is defined by its current speed and

position. To optimize a d-dimensional continuous

objective function f:R->R, a population of

particles={p1,….pn} is initialized. At anytime„t‟, a

particle pi has an associated position vector
t

ipb . This

position vector contains the best position the particle

has ever visited. PSO algorithm updates the particles

velocities and positions.

Let us assume that φ1 and φ2 are two parameters

called acceleration coefficients. These are generated at

every iteration. We describe the variants that are

selected to be part of our study in the following

paragraphs.

)()(
2211

1 k

id

k

d

kk

id

k

id

kk

id

k

id
xgbestrcxpbestrcvv 

21   k

id

k

id

k

id vxx

In this,
k

idv
and

k

idx
stands for the speed of the particle

„i‟ at its „k‟ times. d is dimension of its position.
k

idpbest
 Represents the d-dimension of the individual

„i‟ at its most optimist position at its „k‟ times. gbest
k
d

is the d-dimension of the swarm at its most optimist

position.

In order to avoid particle being far away from the

searching space, the speed of the particle created at its

each direction is confined between -vdmax and vdmax.

If the number of vdmax is too big, the solution is far

from the best. If the number of vdmax is too small, the

solution will be the local. c1 and c2 represent the

speeding figure, regulating the length when flying to

the most optimist individual particle. If the figure is too

small, the particle is probably far away from the target

field. If the figure is too big, the particle may be flying

to the target field suddenly. The proper figures for c1

and c2 can control the speed of the particle‟s flying and

the solution will be the global optima. Usually, c1 is

equal to c2 and they are equal to 2; r1 and r2 represent

random fiction. Each particle pursuits the optimist

particle in its surrounding to regulate its speed and

position. Next we see about the variants which are used

in this research. They are constricted particle swarm

optimizer, time varying acceleration coefficients and

also discussed about topology modification.

2.1. Constricted Particle Swarm Optimizer

Constriction factor of particles velocity avoids the

unlimited growth of the particles‟ velocity [4].

))()((2211

1 k

id

k

d

kk

id

k

id

kk

id

k

id xgbestrcxpbestrcvxv 

Where x value is set to 0.729. This will be referred to

as constricted PSO.

2.2. Time Varying Acceleration Coefficients

PSO can be optimized with time varying acceleration

coefficients. A local search behavior is amplified by

linearly adapting the value of the acceleration

coefficients φ1 and φ2

2.3. Topology Modification

Adaptive algorithm can be used to manage the

Exploration and exploitation behavior of the PSO. At

each iteration, a child particle updates its velocity by

considering the best performance of its parent. A low

branching degree has a more exploratory behavior than

with a high branching degree.

Algorithm1: PSO Algorithm

For each particle

 Initialize particle

End

Do

 For each particle

(1)

(2)

(3)

242 The International Arab Journal of Information Technology, Vol. 15, No. 2, March 2018

 Calculate fitness value

If fitness value is better than its best

Set current (pBest) as the new pBest

 End

Choose best fitness value of all particles as gBest

 For each particle

Calculate particle velocity according to equation

Update particle position according to equation

End

While maximum iterations or minimum error criteria is

not attained Particles' velocities on each dimension are

clamped to a maximum velocity Vmax

2.4. Levenberg-Marquardt Algorithm

The Levenberg-Marquardt (LM) is one of the fastest

and accurate learning algorithms for small to medium

sized networks. The advantage of the LM algorithm

decreases as the number of network parameters

increases. The LM algorithm can find a solution of a

system of non-linear equations, y=φx, by finding the

parameters, φ, that link variables, y, to variables, x, by

minimizing an error of a function of said system by

using error gradient information for every parameter

considered in the system. The LM algorithm in (4),

finding the appropriate change, Δφ, leading to smaller

errors. The LM-algorithm depends on error, E, the

Hessian matrix H, the gradient of the error,  J, a

scalar µ which controls the trust region, and I is the

identity matrix.

JJH 

EJJ 
 JIH  1)(

Algorithm 2: Levenberg-Marquardt algorithm

1. While i < Max Iteration

2. Output of first layer is calculated as below

3. Output after hidden layer is)(HiddenHidden NetfX 

4. Network output is

5. Error in output layer is

6. Weight vector is

7. Jacobian matrix is

8. Error gradient is

EJJ 

9. Hessian matrix is

JJH T 
10. Updating Hessian matrix

)(HdiagonalHH  

11. Weight change is

JH  1
12. New weight vector

  oldnew

13. New hidden-output layer weights

)(222 WWW newoldnew 

14. New input-hidden layer weights

)(111 WWW newoldnew 

15. Updating 

16. Calculating update conditions

old
TT JL  

17. New lambda

18. Check if training conditions are still true. If

true, repeat or go to step 10. Otherwise exit

training

Starting weights are adjusted by a learning

algorithm to reach the desired state with the lowest

errors Equation.

3. Hybrid Evolutionary Algorithm

The PSO is used to find global optimistic result. The

hybrid algorithm is created using the PSO with Back

propagation. Here the PSO is employed to increase the

search speed.

Algorithm 3: hybrid algorithm

1. Initialize the positions and velocities of particles. Pb is

positions of the current particles. Pg is the best

position of the initialized particles.

2. At the Maximum generation, go to step 5 else go to 3.

3. The positions and velocities of all particles are

updated, then group of new particles are generated.

4. If the i
th
 particle’s new position is better than Pib, then

Pib is set as the new position of the i
th
 particle. If the

best position of all new particles is better than Pg,

then Pg is updated.

5. If Pg is unchanged, then output Pg else go to step 2.

6. Use Steepest Descent method to search around Pg, if

search result is better than Pg , output the current

search result

3.1. Neural Network Training

We use an FNN with the structure of 2-2-1 to address

XOR problem. We use the sigmoid functions for the

hidden layer. For our analysis, we considered the

below sigmoidal activation function to generate the

output

Where n is the number of the input node. wij is the

weight of the connection from the nth node of input






















LMSEMSENif

LMSEMSENif

new

new

25.0)(22

75.0)(2
2







xe
xf




1

1
)(











1

0
1

X
WNetHidden

outputNetetTE  arg











1
2

Hidden
output

X
WNet


















)(

)(
)(

log2 Hiddenistics

Hiddenlinear

XfW

Xf
J 











2

1

W

W


(5)

(4)

Hybrid Algorithm with Variants for Feed Forward Neural Network 243

layer to the j
th
 node of hidden layer. The output of the

k
th
 output layer is





n

i

kjkjk sfwy
1

)(. 

Where
w

kj is the connection weight from the j
th
 hidden

node to the k
th
 output node. k is the threshold of the

k
th
 output unit. The learning error E can be calculated

by the following formulation:

)(
2

1
okkk OTE 

Where Tk -Ook is the error of the actual output and

desired output of the i
th
 output unit. When the PSO

algorithm is used in evolving weights of feed forward

neural network, we need to decode each particle into

weight matrix.

4. PSO-FNN Algorithm Parameter Setting

We use an FNN with the structure of 4-6-3 to address

Iris problem. Suppose that the hidden layer has 6

neurons. Here we only evolve the network weights. So

the particle will be a group of weights. There are

4*6+6*3=42 weights. So, the particle consists of 42

real numbers. We apply PSO-FNN algorithm in Iris

classification. The comparison is carried out in our

benchmark suite and analyzed. The Iris data has 135

samples evenly distributed in three classes, called iris-

setosa, iris-versicolor and iris-virginica. Each sample

has four features: sepal length x1 and width x2, petal

length x3 and width x4. The samples evenly distributed

in the three classes are used to train the FNN. 45

samples are used to test the generalization ability. We

considered two population sizes 12 and 30 with fully

connected population. In our experimental setup we

used the parameter settings listed in Table 1.

Table 1. Hybrid parameter settings.

Hybrid Algorithm Parameter Settings

Constricted

Acceleration Coefficients

1=2=2.06,

Coefficients Constriction factor

x=0.729, Maximum velocity
Vmax=±Xmax

Stochastic IW

Acceleration Coefficients =1.494,

inertia weight in the range [0.6,1],

velocity Vmax=±Xmax

Decreasing IW

Acceleration Coefficients 1=2=2,
decreasing inertia weight from 0.9 to

0.4, velocity Vmax=±Xmax

5. Analysis of Results

It is said that Leverberg-Marquardt is one of the fastest

and accurate learning algorithms for small to medium

sized networks. But Hybrid algorithm is faster than

Levenberg-Marquardt algorithm as per our study.

From the below Table 2 observation, you can see the

time taken to converge in Hybrid algorithm is less

when compared to the Levenberg-Marquardt

algorithm. This shows that Hybrid algorithm is faster

than Levenberg-Marquardt algorithm. In general, the

standard LM algorithm does not perform as well on

pattern recognition problems as it does on function

approximation problems. The advantage of the LM

algorithm decreases as the number of network

parameters increases.

Table 2. Performance comparsion.

Hybrid Algorithm LMBP

epoch MAE Time epoch MAE Time

14 0.9501 0.01375 1 0.9408 .02394

28 0.1680 0.01890 2 0.4981 .058795

42 0.1330 0.02403 4 0.4828 .060723

56 0.1055 0.03010 6 0.3818 .061394

70 0.0874 0.03477 8 0.3379 .061927

84 0.0806 0.03985 10 0.3359 .062461

98 0.0781 0.04497 12 0.3347 .063103

 14 0.3344 .063843

 16 0.2821 .064894

 18 0.1466 .065640

 20 0.0896 .066202

When you see Mean Absolute Error (MAE)

between Hybrid algorithm and Levenberg-Marquardt

in Table 2, you can notice that the mean correct

recognition rate of the trained samples for the Hybrid

algorithm is higher than Levenberg-Marquardt. The

Hybrid algorithm can achieve 96% while LMBP

algorithm can only reach 88%.

A graph is drawn considering Time and MAE for

Hybrid and LMBP algorithms. The graph is given

below in Figure 1. We can know that the Hybrid

algorithm is much more accurate and stable than the

LMBP algorithm

Figure 1. Convergence comparison for LM & hybrid

algorithms.

The Hybrid algorithm is apparently better than the

PSO algorithm. The Hybrid algorithm traces the global

optimum using gradient descending method. We

focused on varying population topologies and different

strategies for updating a particle‟s velocities. We used

fully connected topology, in which every particle is

neighbor of four particles. The less connected topology

delays the propagation. Thus, low connected

topologies result in more exploratory behavior than

highly connected ones [17].

Next we considered population size in Hybrid

algorithm. Here, the hitting times for the Hybrid

algorithm for different population sizes are obtained.

The results obtained using different population size are

tabulated and compared in Table 3. As seen from the

Table 3, the Hybrid algorithm converges quickly when

(6)

(7)

244 The International Arab Journal of Information Technology, Vol. 15, No. 2, March 2018

the population size increases. This shows that the

population size is important for the algorithm to

converge quickly. The stagnation tendency is smaller

when using large population sizes.

 Table 3. Performance comparsion with different popultion size.

Population Size 12 Population Size 20

Time epoch MAE Time epoch MAE

0.0272 14 0.37525 0.0393 14 0.41199

0.0429 28 0.2605 0.0664 28 0.33352

0.059 42 0.22904 0.0943 42 0.33352

0.0744 56 0.22081 0.1202 56 0.33335

0.0911 70 0.18765 0.1459 70 0.07862

0.1067 84 0.16583

0.1223 98 0.16583

0.1387 112 0.14419

0.1542 126 0.0888

In Table 4, we are evaluating Hybrid performance

using Root Mean Square Error (RMSE), MAE and

Mean Square Error (MSE). This table enables us to

conclude that mean absolute error is more robust

indicator of Hybrid performance.

Table 4. Hybrid performance using RMSE, MAE and MSE.

Execution Using RMSE Execution Using MAE Execution Using MSE

Time (ms) Epoch RMSE Time

(ms)

Epoch MAE Time

(ms)

Epoch MSE

13 14 0.974 12 14 0.95 14 14 3.8

18 28 0.409 17 28 0.168 19 28 0.672

23 42 0.364 21 42 0.133 24 42 0.532

30 56 0.324 28 56 0.105 30 56 0.422

34 70 0.295 32 70 0.087 35 70 0.349

39 84 0.283 36 84 0.08 40 84 0.322

44 98 0.282 41 98 0.079 44 98 0.319

49 112 0.19 49 112 0.15

53 126 0.16 54 126 0.11

59 140 0.14 59 140 0.08

64 154 0.12 64 154 0.06

68 168 0.12 69 168 0.05

73 182 0.1

77 196 0.08

83 210 0.07

88 224 0.06

93 238 0.06

The goal of comparison presented in this section is

to identify algorithm components that provide good

performance under different operating conditions. In

fact some works are already exploring these issues [11,

21]. The results obtained using different parameter

settings mentioned in Table 1 are tabulated and

compared. As you see in the Table 5, Decreasing IW

converges very quickly. When the acceleration

coefficients value is 1=2=2, the Hybrid algorithm

gives better performance than the other value of

acceleration coefficients. This proves that parameter

settings are also important for algorithm to converge

quickly.

Table 5. Performance comparsion with different parameter
settings.

Constricted Stochastic IW Decreasing IW

Time MAE Time MAE Time MAE

0.038 0.412 0.039 0.411 0.0388 0.178

0.063 0.333 0.066 0.333

0.09 0.333 0.094 0.333

0.115 0.333 0.120 0.333

0.141 0.078 0.145 0.078

6. Conclusions

In this paper, we used a Hybrid algorithm that is PSO

with Feed forward Neural Network. We did a

comparison between Hybrid algorithm and Levenberg-

Marquardt algorithm. The results show that Hybrid

algorithm is better than Levenberg-Marquardt

algorithm in terms of convergence speed and mean

correction rate. And also we discussed the limitations

of Levenberg-Marquardt algorithm. Next, we

considered few variants in our study to improve the

performance of the Hybrid algorithm. In our

implementations we considered most promising PSO

variants. The variants considered in our study are

population size, acceleration coefficient, coefficient

constriction factor and velocity of the swarm. The

Hybrid algorithms such as Constricted algorithm,

Stochastic IW algorithm, Decreasing IW algorithm are

considered. These hybrid algorithms are formed with

different value for the variants. Results implies that

Decreasing IW is most promising than the other two

algorithms. Thus we say that these variants play major

role in improving convergence speed as well as in

improving accuracy of the algorithm. Also it is proved

that the integration of components in different ways in

hybrid algorithm produces effective optimization of

back propagation algorithm.

References

[1] Angeline P., Sauders G., and Pollack J., “An

Evolutionary Algorithm that Construct Recurrent

Neural Network,” IEEE Transactions on Neural

Networks, vol. 5, no. 1, pp. 54-65, 1994.

[2] Behera L., Kumar S., and Patnaik A., “On

Adaptive Learning Rate that Guarantees

Convergence in Feed Forward Networks,”

IEEE Transactions Neural Networks, vol. 17,

no. 5, pp. 1116-1125, 2006.

[3] Clerc M., Particle Swarm Optimization,

Wiley online Library, 2006.

[4] Clerc M. and Kennedy J., “The Particle Swarm-

Explosion, Stability, and Convergence in a

Multidimensional Complex Space,” IEEE

Transactions on Evolutionary Computation, vol.

6, no. 1, pp. 58-73, 2002.

[5] Cooren y., Clerc M., and Siarry P., “Performance

Evaluation of TRIBES, an Adaptive Particle

Swarm Optimization Algorithm,” Swarm

Intelligence, vol. 3, no. 2, pp. 149-178, 2009.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
https://link.springer.com/journal/11721
https://link.springer.com/journal/11721
https://link.springer.com/journal/11721

Hybrid Algorithm with Variants for Feed Forward Neural Network 245

[6] De Oca M., Stutzle T., Birattari M., and Dorigo

M., “Frankenstein‟s PSO; A Composite Particle

Swarm Optimization Algorithm,” IEEE

Transactions on Evolutionary Computation, vol.

13, no. 5, pp. 1120-1132, 2009.

[7] Fan S. and Zahara E., “A Hybrid Simplex

search and Particle Swarm Optimization for

Unconstrained Optimization,” European

Journal of Operational Research, vol. 181, no.

2, pp. 527-548, 2007.

[8] Gori M. and Tesi A., “On the Problem of

Local Minima in Back-propagation,” IEEE

Transactions on Pattern Analysis and

Machine Intelligence, vol. 14, no. 1, pp. 76-

86, 1992.

[9] Jacobs R., “Increased Rates of Convergence

through Learning Rate Adaptation,” Neural

Networks, vol. 1, no. 4, pp. 295-307, 1988.

[10] Janson S. and Middendorf M., “A

Hierarchical Particle Swarm Optimizer and

its Adaptive Variant,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B

(Cybernetics), vol. 35, no. 6, pp. 1272-1282,

2005.

[11] Jordan J., Helwig S., and Wanka R., “Social

Interaction in Particle Swarm Optimization, the

Ranked FIPS and Adaptive Multi Swarms,” in

Proceedings of the 10
th
 Annual Conference on

Genetic and Evolutionary Computation, Atlanta,

pp. 49-56. 2008.

[12] Kennedy J., “Small Worlds and Mega-minds:

Effects of Neighborhood Topology on Particle

Swarm Performance,” in Proceedings of

Congrees on Evolutionary Computation,

Washington, pp. 1931-1938, 1999.

[13] Khan S., Nazir M., Riaz N., and Khan M.,

“Optimized Features Selection using Hybrid

PSO-GA for Multi-view Gender Classification,”

The International Arab Journal of Information

Technology, vol. 12, no. 2, pp. 183-189, 2014.

[14] Li X., “Adaptively Choosing Neighborhood

Bests Using Species in a Particle Swarm

Optimizer for Multimodal Function

Optimization,” in Proceedings of Genetic and

Evolutionary Computation Conference, Seattle,

pp. 105-116. 2004

[15] Liang J., Qin A., Suganthan P., and Baska S.,

“Comprehensive Learning Particle Swarm

Optimizer for Global Optimization of

Multimodal Functions,” IEEE Transactions on

Evolutionary Computation, vol. 10, no. 3, pp.

281-295, 2006.

[16] Magoulas G., Plagianakos V., and Vrahatis M.,

“Globally Convergent Algorithm with Local

Learning Rate,” IEEE Transactions on Neural

Networks, vol. 13, no. 3, pp. 774-779, 2002.

[17] Mendes R., Kennedy J., and Neves J., “The Fully

Informed Particle Swarm: Simpler, Maybe

Better,” IEEE Transactions on Evolutionary

Computation, vol. 8, no. 3, pp. 204-210, 2004.

[18] Nguyen Q., Ong Y., and Lim M., “A

Probabilistic Memetic Framework,” IEEE

Transactions on Evolutionary Computation, vol.

13, no. 3, pp. 604-623, 2009.

[19] Wu Z. and Zhou J., “A Self Adaptive Particle

Swarm Optimization Algorithm with Individual

Coefficient Adjustment,” in Proceedings of

International Conference on Computational

Intelligence and Security, Harbin, pp. 133-136,

2007.

[20] Yao X., “A Review of Evolutionary Artificial

Neural Network,” International Journal Intelligent

Ssystem, vol. 8, no. 4, pp. 539-567, 1993.

[21] Yisu J., Knowles J., Hongmei L., Yizeng L., and

Kell D., “The landscape Adaptive Particle Swarm

Optimizer,” Applied Soft Computing, vol. 8, no. 1,

pp. 295-304, 2008.

[22] Yu X., Chen G., and Cheng S.,

“Acceleration of Backpropagation Learning

using Optimized Learning Rate and

Momentum,” Electronics Letters, vol. 29, no.

14, pp. 1288-1290, 1993.

Thinakaran kandasamy received

M.E., degree in computer science

from Mahendra Engineering

College which is affiliated to

Anna University, Coimbatore,

Tamilnadu in 2009. He is

currently working toward the

Ph.D. degree at the Anna University. He is currently

an Assistant Professor in Computer Science

Engineering, Sri Venkateswara College of

Engineering & Technology, Thiruvallur, India. His

current research interests include Neural Network

and Data Mining.

Rajasekar Rajendran received his

doctorate from Department of

Aeronautics, Imperial College,

London, UK. His aeronautical

masters‟ degree was from IIT,

Madras. He is currently working as

the Professor and Head of

Aeronautical Engineering Department, Excel

Engineering College, Erode, India. (an affiliated

college under Anna University, Chennai). His

specialization and research interests are

aerodynamics,Neural Network and its applications.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science/journal/03772217
http://www.sciencedirect.com/science/journal/03772217
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3477
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3477
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3477
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3477
https://link.springer.com/conference/gecco
https://link.springer.com/conference/gecco
https://link.springer.com/conference/gecco
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=72
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=72
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=72
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2220

