
The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018 353

A Hybrid BATCS Algorithm to Generate Optimal

Query Plan

Gomathi Ramalingam
1

and Sharmila Dhandapani
2

1
Department of Computer Science and Engineering, Bannari Amman Institute of Technology, India

2
Department of Electronics and Instrumentation Engineering, Bannari Amman Institute of Technology,

India

Abstract: The enormous increase in the amount of web pages day by day leads to progress in semantic web data management.

The issues in semantic web data management are increasing and there is a need for improvement in research to handle them.

One of the most important issues is the process of query optimization. The semantic web data stored in the form of Resource

Description Framework (RDF) data can be queried using the popular query language SPARQL Protocol And RDF Query

Language (SPARQL). As the size of the data increases, complication arises in querying the RDF data. The problem of

querying the RDF graphs involves multiple join operations and optimizing those joins becomes NP-hard. Nature inspired

algorithms are becoming much popular in recent days to handle problems with high complexity. In this research, a hybrid BAT

Algorithm with Cuckoo Search (BATCS) is proposed to handle the problem of query optimization. The algorithm applies the

echolocation behaviour of bats and hybrids with cuckoo search if the best solution stagnates for a designated number of

iterations. Experiments were conducted with benchmark data sets and the algorithm proves that it performs efficiently in terms

of query execution time.

Keywords: Data management, query optimization, nature inspired algorithms, bat algorithm, cuckoo search algorithm.

Received November 7, 2014; accepted August 3, 2015

1. Introduction

Over the last decade, there is an enormous increase in

the amount of data in the web. These data comes from a

variety of fields including education, engineering,

finance, weather reports and many more. Naturally the

numbers of web users have evolved and gradually there

is a change from data consumers to data producers.

Managing the data is becoming very important and

challenging. Although many new challenges exist in

semantic web data management, querying the semantic

web data in an efficient manner is becoming a very

particular challenge in this context.

Querying the semantic web data first and foremost

needs data to be stored in a data model. One of the most

common frameworks to store the semantic web data is

the Resource Description Framework (RDF).

The RDF stores the semantic web data in the form of

triples which consists of subject, predicate and object.

The most popular of them is the SPARQL Protocol and

RDF Query Language (SPARQL).The major challenge

in processing a query is choosing the optimal query

plan for execution. A query can be executed in different

manners to produce the same result. Query optimization

is the process of choosing the best query plan among all

possible plans. Although a lot of traditional

optimization methods exist for query optimization,

nature inspired algorithms are becoming quite common

as an alternative to choose the best plan. With increase

in size and complexity of the data, the application of

nature inspired algorithms are best suited to find the

optimal solutions. This research work is divided into

the following sections: section 2 surveys the existing

algorithms for query optimization; section 3 throws a

light on the existing nature inspired optimization

algorithms (Bat and Cuckoo Search); section 4

describes the implementation of the proposed

algorithm; section 5 elaborates the datasets used in

this research; section 6 discusses the experimental

results obtained by applying the proposed algorithm;

section 7 deals with the conclusion and the future

work.

2. Related Work

A complex task in query processing is the query

optimization. With the increase in complexity of the

queries, searching for the best plan also becomes

complex. Genetic Algorithm (GA) is becoming a best

optimization method for handling very difficult

optimization problems. The application of genetic

algorithm [7] to the database query optimization was

studied in literature. The robustness and efficiency of

the algorithm is the main motivation for this

application. Query plans are represented using query

trees. Experimental results show that GA turns out to

be the best alternative to the existing algorithms.

An efficient query processing algorithm based on

swarm intelligence [11] was proposed in literature to

reduce energy consumption in wireless networks. The

354 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018

algorithm is based on the behaviour of ants and

clustering and routing behaviour of networks. The

results of the proposed algorithm show that optimal

query agents can be produced efficiently. It also

reduces cost and delay in delivery of events to

appropriate query agents.

The increase in the amount of web pages leads to the

development of new algorithms to process the querying

mechanism of web data. To query large RDF graphs, an

efficient algorithm called Adaptive Cuckoo Search

(ACS) [2] algorithm was proposed in research. The

algorithm is tested by varying the number of predicates

and the results prove that the proposed algorithm works

better than the existing algorithms.

One of the popular nature inspired algorithms is the

Particle Swarm Optimization (PSO) algorithm. It has

the capability to solve a large class of complex search

problems. An algorithm using Bare Bones PSO [1] was

modelled to handle the problem of distributed query

optimization. The capabilities of PSO were evaluated

against iterative programming and genetic algorithm.

The semantic web data represented by RDF needs

fast query engines to process the data. Optimizing a

special class of queries called RDF chain queries was

focused in research. A genetic algorithm called RDF

Chain Queries-Genetic Algorithm (RCQ-GA)[3] which

determines the order in which the joins are to be

processed was devised in literature. The proposed

algorithm outperforms the benchmark quality.

The difficult and challenging issue in distributed

database design is the query processing. The problem

of query optimization was solved by using certain

heuristics [13] and genetic algorithm. Computational

experiments were conducted on the proposed

algorithms and the experiments show that heuristics

and genetic algorithms are feasible methods for solving

query optimization problem in large scale distributed

database systems.

A hybrid approach to answer SPARQL queries was

proposed. The proposed approach makes use of both

link traversal-based and distributed query processing-

based approaches [4] in order to combine query

answering over the Web of Linked Data and SPARQL

endpoints respectively. Demonstrations are performed

on a set of heuristics and optimization techniques for

queries with time constraints.

The elementary concepts associated with efficient

processing [6] of SPARQL queries was studied in

literature. The study was performed on

1. The complexity analysis of all operators in SPARQL

query language.

2. Equivalences of SPARQL algebra.

3. Algorithm for optimizing semantic SPARQL

queries. The complexity analysis shows that all

fragments of SPARQL fall into the category of NP.

A semantic technique on queries for retrieving more

relevant results in cross language [12] information

retrieval was presented in research. Experiments were

evaluated in terms of precision and recall. The

challenging issue in information retrieval is the way to

express the queries. An interactive query expansion

methodology [5] based on concept based directions

finder was proposed. The proposed approach

determines the directions in which to search the query.

3. Existing Nature Inspired Approaches

3.1. Cuckoo Search Algorithm

The optimization technique [9] based on the brood

parasitism of cuckoo species by laying their eggs in

the nests of other host birds is the Cuckoo Search (CS)

algorithm. If a host bird find out the eggs which are

not their own, it will either throw these unfamiliar

eggs away or simply discard its nest and build a new

nest elsewhere. This activity is used in the CS

algorithm. A solution is represented by an egg in the

nest and a cuckoo egg represents a new solution. The

new solution (cuckoo), if better is replaced with the

solution which is not so good in the nest. In most

cases, each nest contains only one egg. A new solution

was generated by Levy flight. The rules for CS are

depicted as follows:

 Only one egg is laid by each cuckoo lays at a time,

and it is dumped into a randomly chosen nest.

 The best nests with worthy eggs will be carried

over to the next generation.

 The number of available host nests is fixed, and a

host can discover a foreign egg with a probability

pa [0, 1].

In this case, the host bird can either throw the egg

away or discard the nest so as to build a completely

new nest in a new location.

The algorithm for CS is given in Algorithm1:

Algorithm 1: Pseudo code for CS

Generate an initial population of n host nests;

while (t<MaxGeneration) or (stop criterion)

Get a cuckoo randomly (say, i) and replace its solution by

performing Levy flights;

Evaluate its fitness Fi

Choose a nest among n (say, j) randomly;

if (Fi < Fj)

Replace j by the new solution;

end if

A fraction (pa) of the worse nests is abandoned and

new ones are built;

Keep the best solutions/nests;

Rank the solutions/nests and find the current best;

Pass the current best to the next generation;

end while

While generating new solution x(t+1) for a cuckoo i, a

Levy flight is performed using the following Equation

(1).

) Levy(α(t)
ix1)(t

ix  (1)

A Hybrid BATCS Algorithm to Generate Optimal Query Plan 355

(2)

(7)

(8)

(6)

(3)

(4)

(5)

The symbol  is an entry-wise multiplication. Levy

flights provide a random walk while their random steps

are drawn from a Levy distribution for large steps as

given in Equation (2)

λtu~Levy 

which has an infinite variance with an infinite mean.

Here the consecutive jumps of a cuckoo essentially

form a random walk process which obeys a power-law

step-length distribution with a heavy tail.

3.2. Bat Algorithm

Microbats are insectivores. Bats use echolocation to

locate and catch their prey [10]. Bat echolocation is a

perceptual system where ultrasonic sounds are emitted

specifically to produce echoes. When the outgoing

pulse is compared with the returning echoes, the bat

produces detailed images of the environment. From this

bats can perceive, limit and even categorize their prey

in complete darkness. When bats fly, they produce a

steady stream of high-pitched sounds that can be heard

only by them. When the sound waves produced by

these bats hit an insect or other animal, the echoes

bounce back to the bats, and guide them to the source

.Their pulses vary in properties and can be correlated

with their hunting strategies, depending on the species.

The noise also varies from the loudest when searching

for prey and to a quieter base when homing towards the

prey.

The rules for Bat algorithm are:

1. Bats use echolocation to sense distance, and they

also know the difference between food/prey and

background barriers.

2. Microbats fly randomly with velocity vi at position xi

with a fixed frequency fmin, varying wavelength 

and loudness A0 to search for prey. They can

automatically fine-tune the wavelength (or

frequency) of their emitted pulses and alter the rate

of pulse emission r  [0, 1], depending on the

proximity of their target.

3. Even though the loudness can vary in many ways, it

is assumed that the loudness varies from a large

(positive) value A0 to a minimum constant value

Amin.

The pulse frequency, velocity and position of the bat

are given by

β)minfmax(fminfif 

if)*X(t)i(X1)-(tiv (t)iv 

(t)iv1)(tiX(t)Xi 

Where β[0,1] is a random number drawn from a

uniform distribution. X
*
 is the current global best

location among n bat solutions.

For the local search, once a solution is selected among

the current best solutions, a new solution for each bat

is generated locally using random walk.

tεAoldXnewX 

Where  is a random number [−1, 1] and A
t

is the

average loudness of all bats at time step t.

The loudness Ai and the rate ri of pulse emission

have to be updated accordingly as the iterations

proceed.

Ai(t+1) = αAi(t)

ri(t+1) = ri(0)[1-exp(-γt)]

Where α and γ are constants, given by 0 < α < 1 and γ

> 0

The bat algorithm [10] is explained in algorithm 2:

Algorithm 2: Pseudo code for Bat Algorithm

Initialize the bat population and velocity

Define pulse frequency fi at xi

Initialize pulse rates ri and the loudness Ai while (t <max

number of iterations)

Generate new solutions by adjusting frequency, and updating

velocities and locations (using Equations 3, 4 & 5)

if (rand > ri)

Select a solution among the best solutions

Generate a local solution around the selected best solution

(using Equation 6)

end if

if (rand < Ai & f(xi) < f(x
*
))

Accept new solutions

Increase ri and reduce Ai

end if

Rank the bats and find the current best x*

end for

end while

4. The Proposed Hybrid BATCS Algorithm

4.1. Representation of Bats

The input SPARQL query can be executed in a

number of diverse ways to produce the same result.

Each query can be represented as a query tree with

triples at the leaf nodes and the intermediate nodes

used to join the triples. Different forms of query trees

are available like bushy trees, left deep trees, right

deep trees and so on. A left deep tree representation is

used in this research. Each query plan (bat) is

represented as a left deep query tree as in Figure 1.

356 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018

(9)

Figure 1. A sample left deep tree.

In the left deep tree T1, T2, T3, and T4 represent the

triples and the intermediate nodes join the triples. For

example consider the sample query,

 Q4 of LUBM dataset

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-

syntax-ns#>

PREFIX ub:

<http://www.lehigh.edu/~zhp2/2004/0401/univ-

bench.owl#>

SELECT? X, ?Y1, ?Y2, ?Y3

WHERE

{?X rdf:type ub:Professor .

 ?X ub:worksFor

<http://www.Department0.University0.edu> .

 ?X ub:name ?Y1 .

 ?X ub:emailAddress ?Y2 .

 ?X ub:telephone ?Y3}

The query can be represented as a left deep tree as in

Figure 2.

Figure 2. Left deep tree for sample query Q4.

4.2. Solution Space

The solution space of the proposed algorithm consists

of a set of bats. The number of possible left deep trees

depends upon the number of predicates in the query

and the type of query tree used. Since a left deep tree

is used in this research, there is a possibility of n! [8]

different query plans for a tree with n predicates. The

n! bats can be obtained by applying the transformation

rules like join commutativity, join associativity, left

join exchange and right join exchange.

4.3. Encoding of Bats

To apply any optimization algorithm to solve a

problem, a suitable encoding format must be chosen

for the bats in the solution space. Two types of

encoding are available for left deep trees [8],

1. Ordered list.

2. Ordinal number encoding.

In this research, ordered list is chosen for encoding

bats (query plans). Solutions are represented as an

ordered list of leaves. For example, the query plan tree

in Figure 1, (((T1∞T2) ∞T3) ∞T4) can be encoded as

“1234”.
The sample query query4 given in the previous

section consists of five predicates. So there are 5!

=120 different ways in which we can represent the

query tree which gives the same result.

In Figure 2, consider

rdf:type as 1

ub:worksFor as 2

ub:name as 3

ub:emailAddress as 4

ub:telephone as 5

Then the possible encoding will be as follows:

12345

23451

34512

45123

51234

and so on up to 120 solutions are possible.

4.4. Fitness Function

To solve the problem of query optimization, let us

choose the fitness function. The fitness function in the

context of query optimization refers to the cost of the

left deep tree. The cost of a left deep tree relies on the

selectivity and cardinality estimation. Cardinality of a

triple pattern is the number of triples that match a

particular pattern. Selectivity of a join between two

triples T1 and T2 is defined as the number of triples

satisfying both T1 and T2. Let Ri be the cardinality

and fi,j be the selectivity. If pi,j is the join predicate

between Ri and Rj,we can define.

 𝑓𝑖,𝑗 =
 𝑅𝑖⋈𝑝𝑖 ,𝑗 𝑅𝑗

𝑅𝑖×𝑅𝑗

Resultt

⋈

ub:name

ub:emailAddr

ess

rdf:type ub:worksFor

⋈

⋈

ub:telephone

Result

⋈

⋈

⋈

T1 T2

T3

T4

A Hybrid BATCS Algorithm to Generate Optimal Query Plan 357

(10)

(12)

(13)

(11)

For a given join tree T, the resultant cardinality |T| can

be recursively computed as

 |T|= | Ri | if T is a leaf Ri

 𝑇 = (𝑓𝑖,𝑗) 𝑇1 𝑇2 𝑖𝑓 𝑇=𝑇1 ⋈𝑇2.𝑅𝑖∈𝑇1,𝑅𝑗 ∈𝑇2

For a given join tree T, the cost function Cout is defined

as

 Cout(T)= 0 if T is a leaf Ri

 Cout(T)=|T|+Cout(T1)+Cout(T2), if T=T1 ⋈ T2

4.5. Implementation of the Proposed Hybrid

BATCS Algorithm

The proposed work uses a hybrid of Bat algorithm with

CS called hybrid BATCS algorithm. In this proposed

algorithm, initially Bat algorithm is applied to optimize

the query and if bat algorithm stagnates for a

designated number of iterations, then the CS algorithm

is applied to find the optimal query plan. The all

possible query plans are represented as a population of

bats in the solution space.

The proposed hybrid BATCS algorithm is given by

algorithm 3:

Algorithm 3: Pseudo code for Hybrid Bat Algorithm with

Cuckoo Search

Initialize the bat population and velocity

Define pulse frequency fi at xi

Initialize pulse rates ri and the loudness Ai

while (t <max number of iterations)

Generate new solutions by adjusting frequency, and updating

velocities and locations (using equations 3, 4 & 5)

if (rand > ri)

Select a solution among the best solutions

Generate a local solution around the selected best solution

(using equation 6)

end if

if (rand < Ai & f(xi) < f(x
*
))

Accept new solutions

Increase ri and reduce Ai

end if

Rank the bats and find the current best x*

end for

if best solution stagnates for designated number of iterations

Apply Cuckoo search algorithm

end if

end while

Table 1 lists the parameters set for the proposed

algorithm.

Table 1. Parameters and their values for CS and bat algorithm.

Parameter Value

Cuckoo Search algorithm

No.of iterations 100

pa 0.3

 1

 1.5

Bat algorithm

No.of iterations 100

 rand(0,1)

β rand(0,1)

γ 0.5

A 0.25

r 0.5

5. Datasets

The dataset used to test the proposed algorithm is the

Lehigh University Benchmark (LUBM) dataset which

is the most popular benchmark for semantic web

repositories. Using the data generator available with

LUBM three datasets LUBM (1, 0), LUBM (3, 0) and

LUBM (5, 0) of different sizes were generated. The

benchmark consists of 14 test queries. LUBM (1,0)

provides an ontology describing the structure of a

single university. LUBM (3,0) and LUBM (5,0)

describes an ontology with three and five universities

respectively.

6. Experimental Results

The proposed algorithm is experimented in a

Microsoft Windows 8 platform on a Intel Pentium 4

machine with 2GB RAM. Each of the three datasets

consists of more than 1, 00,000 triples. The number of

predicates varies according to the type of the query.

The algorithm is iterated for 100 times and the fitness

values obtained are recorded. Figure 3 and 4 shows

the fitness values obtained for a sample set of queries

using the LUBM (1, 0) dataset.

Figure 3. Fitness value for Query 4.

Figure 4. Fitness value for Query 9.

The Figures 5 and 6 shows the fitness values

obtained for a sample set of queries using the LUBM

(3, 0) dataset.

F
it

n
es

s
v

al
u

e
F

it
n

es
s

v
al

u
e

358 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018

F
it

n
es

s
v
al

u
e

F
it

n
es

s
v
al

u
e

F
it

n
es

s
v

al
u

e
F

it
n
es

s
v
al

u
e

E
x
ec

u
ti

o
n
 t

im
e

in
 m

s
E

x
ec

u
ti

o
n

 t
im

e
in

 m
s

E
x

ec
u

ti
o

n
 t

im
e

in
 m

s

Figure 5. Fitness value for query 8.

Figure 6. Fitness value for query 9.

The Figures 7 and 8 shows the fitness values

obtained for a sample set of queries using the LUBM

(5, 0) dataset.

Figure 7. Fitness value for Query 7.

Figure 8. Fitness value for Query 8.

The average execution times obtained for three

datasets for varying number of predicates is recorded.

The proposed hybrid BATCS algorithm is compared

with GA and PSO. The Figure 9, 10 and 11 shows the

execution times of different queries for the three

datasets compared with GA and PSO algorithms.

Figure 9. Execution time in milliseconds for LUBM(1,0) dataset.

Figure 10. Execution time in milliseconds for LUBM(3,0) dataset.

Figure 11. Execution time in milliseconds for LUBM(5,0) dataset.

7. Conclusions and Future Work

In this research, a hybrid algorithm called BATCS

algorithm was presented to solve the problem of query

optimization. The algorithm begins with a solution

space consisting of all possible query plans. The query

plans represents the bats and eggs of the bat and

Cuckoo Search algorithms. The cost of the query plan

is chosen as the fitness function which is calculated

based on the cardinality and selectivity of the triples

occurring in the dataset.
The experimental results show the efficiency of the

algorithm in terms of query execution time. The

BATCS algorithm has been applied to three datasets

of varying sizes and the best query plan is found based

on the fitness function and the execution time is

recorded. The BATCS algorithm outperforms when

compared to GA and PSO. To improve the correctness

of the work, other hybrid nature inspired algorithms

Execution time in Milliseconds for LUBM(1,0)

Execution time in Milliseconds for LUBM(3,0)

Execution time in Milliseconds for LUBM(5,0)

Fitness value for query 9

No.of Iteration

Fitness value for query 8

No.of Iteration

Fitness value for query 7

No.of Iteration

Fitness value for query 8

No.of Iteration

A Hybrid BATCS Algorithm to Generate Optimal Query Plan 359

can be applied and performance can be measured in the

future.

References

 [1] Dokeroglu T., Tosun U., and Cosar A., “Particle

Swarm Intelligence as a New Heuristic for the

Optimization of Distributed Database Queries,” in

Proceedings of International Conference on

Application of Information and Communication

Technologies, Tbilisi, pp.1-7, 2012.

 [2] Gomathi R. and Sharmila D., “A Novel Adaptive

Cuckoo Search for Optimal Query Plan

Generation,” The Scientific World Journal, vol.

2014, pp.1-7, 2014.

 [3] Hogenboom A., Milea V., Frasincar F., and

Kaymak U., “RCQ-GA: RDF Chain Query

Optimization Using Genetic Algorithms,” in

Proceedings of International Conference on

Electronic Commerce and Web Technologies,

Linz, pp. 181-192, 2009.

 [4] Lynden S., Kojima I., Matono A., Nakamura A.,

and Yui M., “A Hybrid Approach to Linked Data

Query Processing with Time Constraints,” in

Proceeding of LDOW 996, Rio de Janeiro, 2013.

 [5] Meiyappan Y. and Iyengar S., “Interactive Query

Expansion using Concept-Based Directions

Finder Based on Wikipedia,” The International

Arab Journal of Information Technology, vol. 10,

no. 6, pp. 571-578, 2013.

 [6] Schmidt M., Meier M., and Lausen G.,

“Foundations of SPARQL Query Optimization,”

in Proceedings of the 13
th
 International

Conference on Database Theory, Lausanne, pp. 4-

33, 2010.

 [7] Sinha M. and Chande S., “Query Optimization

Using Genetic Algorithms,” Research Journal of

Information Technology, vol. 2, no. 3, pp. 139-

144, 2010.

 [8] Steinbrun M., Moerkotte G., and Kemper A.,

“Heuristic and Randomized Optimization for the

Join Ordering Problem,” VLDB Journal, vol. 6,

no. 3, pp. 191-208, 1997.

 [9] Yang X. and Deb S., “Cuckoo Search Via Levy

Flights,” in Proceedings of the World Congress

on Nature and Biologically Inspired Computing,

Coimbatore, pp. 210-214, 2009.

 [10] Yang X. and He X., “Bat Algorithm: Literature

Review and Applications,” International Journal

of Bio-Inspired Computation, vol. 5, no. 3, pp.

141-149, 2013.

 [11] Yu J., Zhang L., Chen M., and Liu X., “Hybrid

Ant Algorithm Based Query Processing with

Multiagents in Sensor Networks,” International

Journal of Distributed Sensor Networks, vol. 9,

no. 9, pp. 1-7, 2013.

 [12] Yunus M., Zainuddin R., and Abdullah N.,

“Semantic Method for Query Translation,” The

International Arab Journal of Information

Technology, vol. 10, no. 3, pp. 253-259, 2013.

 [13] Zhou Z., “Using Heuristics and Genetic

Algorithms for Large-scale Database Query

Optimization,” Journal of Information and

Computing Science, vol. 2, no. 4, pp. 261-280,

2007.

Gomathi Ramalingam completed

her under graduation in the year

2003 and post graduation in the year

2011. She is pursuing her Doctorate

in Anna University, Chennai. At

present she is working as an

Assistant Professor (Sr.Grade) in

the Department of Computer Science and Engineering

at Bannari Amman Institute of Technology,

Sathyamangalam, Erode Dt. She has over 12 years of

teaching experience. She has published her papers in 4

International conferences, 6 National Conferences and

8 International Journals.

Sharmila Dhandapani completed

her under graduation in the year

1996 and post graduation in the year

2004. She has been awarded

Doctorate in the year 2010 from

Anna University, Chennai. At

present she is working as Professor

and Head of Electronics and Instrumentation

Engineering in Bannari Amman Institute of

Technology, Sathyamangalam. She has over 18 years

of teaching experience. She has published her papers

in 2 National and 35 International Journals. She has

also presented her papers in 10 National and 19

International Conferences.

