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Abstract: The enormous increase in the amount of web pages day by day leads to progress in semantic web data management. 

The issues in semantic web data management are increasing and there is a need for improvement in research to handle them. 

One of the most important issues is the process of query optimization. The semantic web data stored in the form of Resource 

Description Framework (RDF) data can be queried using the popular query language SPARQL Protocol And RDF Query 

Language (SPARQL). As the size of the data increases, complication arises in querying the RDF data. The problem of 

querying the RDF graphs involves multiple join operations and optimizing those joins becomes NP-hard. Nature inspired 

algorithms are becoming much popular in recent days to handle problems with high complexity. In this research, a hybrid BAT 

Algorithm with Cuckoo Search (BATCS) is proposed to handle the problem of query optimization. The algorithm applies the 

echolocation behaviour of bats and hybrids with cuckoo search if the best solution stagnates for a designated number of 

iterations. Experiments were conducted with benchmark data sets and the algorithm proves that it performs efficiently in terms 

of query execution time. 
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1. Introduction 

Over the last decade, there is an enormous increase in 

the amount of data in the web. These data comes from a 

variety of fields including education, engineering, 

finance, weather reports and many more. Naturally the 

numbers of web users have evolved and gradually there 

is a change from data consumers to data producers. 

Managing the data is becoming very important and 

challenging. Although many new challenges exist in 

semantic web data management, querying the semantic 

web data in an efficient manner is becoming a very 

particular challenge in this context.  

Querying the semantic web data first and foremost 

needs data to be stored in a data model. One of the most 

common frameworks to store the semantic web data is 

the Resource Description Framework (RDF). 

The RDF stores the semantic web data in the form of 

triples which consists of subject, predicate and object. 

The most popular of them is the SPARQL Protocol and 

RDF Query Language (SPARQL).The major challenge 

in processing a query is choosing the optimal query 

plan for execution. A query can be executed in different 

manners to produce the same result. Query optimization 

is the process of choosing the best query plan among all 

possible plans. Although a lot of traditional 

optimization methods exist for query optimization, 

nature inspired algorithms are becoming quite common 

as an alternative to choose the best plan. With increase 

in size and complexity of the data, the application of  

 

nature inspired algorithms are best suited to find the 

optimal solutions. This research work is divided into 

the following sections: section 2 surveys the existing 

algorithms for query optimization; section 3 throws a 

light on the existing nature inspired optimization 

algorithms (Bat and Cuckoo Search); section 4 

describes the implementation of the proposed 

algorithm; section 5 elaborates the datasets used in 

this research; section 6 discusses the experimental 

results obtained by applying the proposed algorithm; 

section 7 deals with the conclusion and the future 

work. 

2. Related Work 

A complex task in query processing is the query 

optimization. With the increase in complexity of the 

queries, searching for the best plan also becomes 

complex. Genetic Algorithm (GA) is becoming a best 

optimization method for handling very difficult 

optimization problems. The application of genetic 

algorithm [7] to the database query optimization was 

studied in literature. The robustness and efficiency of 

the algorithm is the main motivation for this 

application. Query plans are represented using query 

trees. Experimental results show that GA turns out to 

be the best alternative to the existing algorithms. 

An efficient query processing algorithm based on 

swarm intelligence [11] was proposed in literature to 

reduce energy consumption in wireless networks. The 
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algorithm is based on the behaviour of ants and 

clustering and routing behaviour of networks. The 

results of the proposed algorithm show that optimal 

query agents can be produced efficiently. It also 

reduces cost and delay in delivery of events to 

appropriate query agents. 

The increase in the amount of web pages leads to the 

development of new algorithms to process the querying 

mechanism of web data. To query large RDF graphs, an 

efficient algorithm called Adaptive Cuckoo Search 

(ACS) [2] algorithm was proposed in research. The 

algorithm is tested by varying the number of predicates 

and the results prove that the proposed algorithm works 

better than the existing algorithms. 

One of the popular nature inspired algorithms is the 

Particle Swarm Optimization (PSO) algorithm. It has 

the capability to solve a large class of complex search 

problems. An algorithm using Bare Bones PSO [1] was 

modelled to handle the problem of distributed query 

optimization. The capabilities of PSO were evaluated 

against iterative programming and genetic algorithm. 

The semantic web data represented by RDF needs 

fast query engines to process the data. Optimizing a 

special class of queries called RDF chain queries was 

focused in research. A genetic algorithm called RDF 

Chain Queries-Genetic Algorithm (RCQ-GA)[3] which 

determines the order in which the joins are to be 

processed was devised in literature. The proposed 

algorithm outperforms the benchmark quality. 

The difficult and challenging issue in distributed 

database design is the query processing. The problem 

of query optimization was solved by using certain 

heuristics [13] and genetic algorithm. Computational 

experiments were conducted on the proposed 

algorithms and the experiments show that heuristics 

and genetic algorithms are feasible methods for solving 

query optimization problem in large scale distributed 

database systems. 

A hybrid approach to answer SPARQL queries was 

proposed. The proposed approach makes use of both 

link traversal-based and distributed query processing-

based approaches [4] in order to combine query 

answering over the Web of Linked Data and SPARQL 

endpoints respectively. Demonstrations are performed 

on a set of heuristics and optimization techniques for 

queries with time constraints.  

The elementary concepts associated with efficient 

processing [6] of SPARQL queries was studied in 

literature. The study was performed on  

1. The complexity analysis of all operators in SPARQL 

query language.  

2. Equivalences of SPARQL algebra.  

3. Algorithm for optimizing semantic SPARQL 

queries. The complexity analysis shows that all 

fragments of SPARQL fall into the category of NP. 

A semantic technique on queries for retrieving more 

relevant results in cross language [12] information 

retrieval was presented in research. Experiments were 

evaluated in terms of precision and recall. The 

challenging issue in information retrieval is the way to 

express the queries. An interactive query expansion 

methodology [5] based on concept based directions 

finder was proposed. The proposed approach 

determines the directions in which to search the query. 

3. Existing Nature Inspired Approaches 

3.1. Cuckoo Search Algorithm 

The optimization technique [9] based on the brood 

parasitism of cuckoo species by laying their eggs in 

the nests of other host birds is the Cuckoo Search (CS) 

algorithm. If a host bird find out the eggs which are 

not their own, it will either throw these unfamiliar 

eggs away or simply discard its nest and build a new 

nest elsewhere. This activity is used in the CS 

algorithm. A solution is represented by an egg in the 

nest and a cuckoo egg represents a new solution. The 

new solution (cuckoo), if better is replaced with the 

solution which is not so good in the nest. In most 

cases, each nest contains only one egg. A new solution 

was generated by Levy flight. The rules for CS are 

depicted as follows: 

 Only one egg is laid by each cuckoo lays at a time, 

and it is dumped into a randomly chosen nest. 

 The best nests with worthy eggs will be carried 

over to the next generation. 

 The number of available host nests is fixed, and a 

host can discover a foreign egg with a probability 

pa [0, 1]. 

In this case, the host bird can either throw the egg 

away or discard the nest so as to build a completely 

new nest in a new location. 

The algorithm for CS is given in Algorithm1:  

Algorithm 1: Pseudo code for CS 

Generate an initial population of n host nests;  

while (t<MaxGeneration) or (stop criterion) 

Get a cuckoo randomly (say, i) and replace its solution by 

performing Levy flights; 

Evaluate its fitness Fi 

Choose a nest among n (say, j) randomly; 

if (Fi < Fj) 

Replace j by the new solution; 

end if 

A fraction (pa) of the worse nests is abandoned and  

new ones are built; 

Keep the best solutions/nests; 

Rank the solutions/nests and find the current best; 

Pass the current best to the next generation; 

end while 

While generating new solution x(t+1) for a cuckoo i, a 

Levy flight is performed using the following Equation 

(1). 

) Levy(α(t) 
ix1)(t 

ix   (1) 
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(2) 

(7) 

(8) 

(6) 

(3) 

(4) 

(5) 

 

 

The symbol  is an entry-wise multiplication. Levy 

flights provide a random walk while their random steps 

are drawn from a Levy distribution for large steps as 

given in Equation (2) 

                                     
λtu~Levy   

 

which has an infinite variance with an infinite mean. 

Here the consecutive jumps of a cuckoo essentially 

form a random walk process which obeys a power-law 

step-length distribution with a heavy tail. 

3.2. Bat Algorithm 

Microbats are insectivores. Bats use echolocation to 

locate and catch their prey [10]. Bat echolocation is a 

perceptual system where ultrasonic sounds are emitted 

specifically to produce echoes. When the outgoing 

pulse is compared with the returning echoes, the bat 

produces detailed images of the environment. From this 

bats can perceive, limit and even categorize their prey 

in complete darkness. When bats fly, they produce a 

steady stream of high-pitched sounds that can be heard 

only by them. When the sound waves produced by 

these bats hit an insect or other animal, the echoes 

bounce back to the bats, and guide them to the source 

.Their pulses vary in properties and can be correlated 

with their hunting strategies, depending on the species. 

The noise also varies from the loudest when searching 

for prey and to a quieter base when homing towards the 

prey. 

The rules for Bat algorithm are: 

1. Bats use echolocation to sense distance, and they 

also know the difference between food/prey and 

background barriers. 

2. Microbats fly randomly with velocity vi at position xi 

with a fixed frequency fmin, varying wavelength  

and loudness A0 to search for prey. They can 

automatically fine-tune the wavelength (or 

frequency) of their emitted pulses and alter the rate 

of pulse emission r  [0, 1], depending on the 

proximity of their target. 

3. Even though the loudness can vary in many ways, it 

is assumed that the loudness varies from a large 

(positive) value A0 to a minimum constant value 

Amin. 

The pulse frequency, velocity and position of the bat 

are given by 

β)minfmax(fminfif 
 

if)*X(t)i(X1)-(tiv (t)iv   

(t)iv1)(tiX(t)Xi   

Where β[0,1] is a random number drawn from a 

uniform distribution. X
*
 is the current global best 

location among n bat solutions. 

For the local search, once a solution is selected among 

the current best solutions, a new solution for each bat 

is generated locally using random walk. 

tεAoldXnewX   

Where  is a random number [−1, 1] and A
t 

is the 

average loudness of all bats at time step t.  

The loudness Ai and the rate ri of pulse emission 

have to be updated accordingly as the iterations 

proceed. 

Ai(t+1) = αAi(t) 

ri(t+1) = ri(0)[1-exp(-γt)] 

Where α and γ are constants, given by 0 < α < 1 and γ 

> 0 

The bat algorithm [10] is explained in algorithm 2: 

Algorithm 2: Pseudo code for Bat Algorithm 

Initialize the bat population and velocity 

Define pulse frequency fi at xi 

Initialize pulse rates ri and the loudness Ai while (t <max 

number of iterations) 

Generate new solutions by adjusting frequency, and updating 

velocities and locations (using Equations 3, 4 & 5) 

if (rand > ri) 

Select a solution among the best solutions 

Generate a local solution around the selected best solution 

(using Equation 6) 

end if 

if (rand < Ai & f(xi) < f(x
*
)) 

Accept new solutions 

Increase ri and reduce Ai 

end if 

Rank the bats and find the current best x* 

end for 

end while 

4. The Proposed Hybrid BATCS Algorithm 

4.1. Representation of Bats 

The input SPARQL query can be executed in a 

number of diverse ways to produce the same result. 

Each query can be represented as a query tree with 

triples at the leaf nodes and the intermediate nodes 

used to join the triples. Different forms of query trees 

are available like bushy trees, left deep trees, right 

deep trees and so on. A left deep tree representation is 

used in this research. Each query plan (bat) is 

represented as a left deep query tree as in Figure 1.  
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Figure 1. A sample left deep tree. 

In the left deep tree T1, T2, T3, and T4 represent the 

triples and the intermediate nodes join the triples. For 

example consider the sample query, 

 Q4 of LUBM dataset 

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-

syntax-ns#> 

PREFIX ub: 

<http://www.lehigh.edu/~zhp2/2004/0401/univ-

bench.owl#> 

SELECT? X, ?Y1, ?Y2, ?Y3 

WHERE 

{?X rdf:type ub:Professor . 

 ?X ub:worksFor 

<http://www.Department0.University0.edu> . 

 ?X ub:name ?Y1 . 

 ?X ub:emailAddress ?Y2 . 

 ?X ub:telephone ?Y3} 

The query can be represented as a left deep tree as in 

Figure 2. 

 
Figure 2. Left deep tree for sample query Q4.  

4.2. Solution Space 

The solution space of the proposed algorithm consists 

of a set of bats. The number of possible left deep trees 

depends upon the number of predicates in the query 

and the type of query tree used. Since a left deep tree 

is used in this research, there is a possibility of n! [8] 

different query plans for a tree with n predicates. The 

n! bats can be obtained by applying the transformation 

rules like join commutativity, join associativity, left 

join exchange and right join exchange.  

4.3. Encoding of Bats 

To apply any optimization algorithm to solve a 

problem, a suitable encoding format must be chosen 

for the bats in the solution space. Two types of 

encoding are available for left deep trees [8],  

1. Ordered list. 

2. Ordinal number encoding.  

In this research, ordered list is chosen for encoding 

bats (query plans). Solutions are represented as an 

ordered list of leaves. For example, the query plan tree 

in Figure 1, (((T1∞T2) ∞T3) ∞T4) can be encoded as 

“1234”. 
The sample query query4 given in the previous 

section consists of five predicates. So there are 5! 

=120 different ways in which we can represent the 

query tree which gives the same result. 

In Figure 2, consider 

rdf:type as 1 

ub:worksFor as 2 

ub:name as 3 

ub:emailAddress as 4 

ub:telephone as 5 

Then the possible encoding will be as follows: 

12345 

23451 

34512 

45123 

51234 

and so on up to 120 solutions are possible. 

4.4. Fitness Function 

To solve the problem of query optimization, let us 

choose the fitness function. The fitness function in the 

context of query optimization refers to the cost of the 

left deep tree. The cost of a left deep tree relies on the 

selectivity and cardinality estimation. Cardinality of a 

triple pattern is the number of triples that match a 

particular pattern. Selectivity of a join between two 

triples T1 and T2 is defined as the number of triples 

satisfying both T1 and T2. Let Ri be the cardinality 

and fi,j be the selectivity. If pi,j is the join predicate 

between Ri and Rj,we can define. 

                            𝑓𝑖,𝑗 =   
  𝑅𝑖⋈𝑝𝑖 ,𝑗  𝑅𝑗  

𝑅𝑖×𝑅𝑗
    

Resultt 

⋈ 
 

ub:name 

ub:emailAddr

ess 

rdf:type ub:worksFor 

⋈ 
 

⋈ 
 

ub:telephone 

Result  

⋈ 
 

⋈ 
 

⋈ 
 

T1   T2   

T3   

T4   
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(10) 

(12) 

(13) 

(11) 

For a given join tree T, the resultant cardinality |T| can 

be recursively computed as 

                   |T|= | Ri | if T is a leaf Ri  

 𝑇 = ( 𝑓𝑖,𝑗  ) 𝑇1   𝑇2   𝑖𝑓  𝑇=𝑇1 ⋈𝑇2.𝑅𝑖∈𝑇1,𝑅𝑗  ∈𝑇2     

For a given join tree T, the cost function Cout is defined 

as 

                        Cout(T)= 0 if T is a leaf Ri             

                  Cout(T)=|T|+Cout(T1)+Cout(T2), if T=T1 ⋈ T2        

4.5. Implementation of the Proposed Hybrid 

BATCS Algorithm 

The proposed work uses a hybrid of Bat algorithm with 

CS called hybrid BATCS algorithm. In this proposed 

algorithm, initially Bat algorithm is applied to optimize 

the query and if bat algorithm stagnates for a 

designated number of iterations, then the CS algorithm 

is applied to find the optimal query plan. The all 

possible query plans are represented as a population of 

bats in the solution space.  

The proposed hybrid BATCS algorithm is given by 

algorithm 3: 

Algorithm 3: Pseudo code for Hybrid Bat Algorithm with 

Cuckoo Search 

Initialize the bat population and velocity 

Define pulse frequency fi at xi 

Initialize pulse rates ri and the loudness Ai 

while (t <max number of iterations) 

Generate new solutions by adjusting frequency, and updating 

velocities and locations (using equations 3, 4 & 5) 

if (rand > ri) 

Select a solution among the best solutions 

Generate a local solution around the selected best solution 

(using equation 6) 

end if 

if (rand < Ai & f(xi) < f(x
*
)) 

Accept new solutions 

Increase ri and reduce Ai 

end if 

Rank the bats and find the current best x* 

end for 

if best solution stagnates for designated number of iterations 

Apply Cuckoo search algorithm 

end if 

end while 

Table 1 lists the parameters set for the proposed 

algorithm. 

Table 1. Parameters and their values for CS and bat algorithm. 

Parameter Value 

Cuckoo Search algorithm 

No.of iterations 100 

pa 0.3 

 1 

 1.5 

Bat algorithm 

No.of iterations 100 

 rand(0,1) 

β rand(0,1) 

γ 0.5 

A 0.25 

r 0.5 

5. Datasets 

The dataset used to test the proposed algorithm is the 

Lehigh University Benchmark (LUBM) dataset which 

is the most popular benchmark for semantic web 

repositories. Using the data generator available with 

LUBM three datasets LUBM (1, 0), LUBM (3, 0) and 

LUBM (5, 0) of different sizes were generated. The 

benchmark consists of 14 test queries. LUBM (1,0) 

provides an ontology describing the structure of a 

single university. LUBM (3,0) and LUBM (5,0) 

describes an ontology with three and five universities 

respectively. 

6. Experimental Results 

The proposed algorithm is experimented in a 

Microsoft Windows 8 platform on a Intel Pentium 4 

machine with 2GB RAM. Each of the three datasets 

consists of more than 1, 00,000 triples. The number of 

predicates varies according to the type of the query. 

The algorithm is iterated for 100 times and the fitness 

values obtained are recorded. Figure 3 and 4 shows 

the fitness values obtained for a sample set of queries 

using the LUBM (1, 0) dataset. 

 
Figure 3. Fitness value for Query 4. 

 
Figure 4. Fitness value for Query 9. 

The Figures 5 and 6 shows the fitness values 

obtained for a sample set of queries using the LUBM 

(3, 0) dataset. 
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Figure 5. Fitness value for query 8. 

 
 

Figure 6. Fitness value for query 9. 

The Figures 7 and 8 shows the fitness values 

obtained for a sample set of queries using the LUBM 

(5, 0) dataset. 

 
 

Figure 7. Fitness value for Query 7. 

 
 

Figure 8. Fitness value for Query 8. 

The average execution times obtained for three 

datasets for varying number of predicates is recorded. 

The proposed hybrid BATCS algorithm is compared 

with GA and PSO. The Figure 9, 10 and 11 shows the 

execution times of different queries for the three 

datasets compared with GA and PSO algorithms. 

 
Figure 9. Execution time in milliseconds for LUBM(1,0) dataset. 

 
Figure 10. Execution time in milliseconds for LUBM(3,0) dataset. 

 
Figure 11. Execution time in milliseconds for LUBM(5,0) dataset. 

7. Conclusions and Future Work 

In this research, a hybrid algorithm called BATCS 

algorithm was presented to solve the problem of query 

optimization. The algorithm begins with a solution 

space consisting of all possible query plans. The query 

plans represents the bats and eggs of the bat and 

Cuckoo Search algorithms. The cost of the query plan 

is chosen as the fitness function which is calculated 

based on the cardinality and selectivity of the triples 

occurring in the dataset.  
The experimental results show the efficiency of the 

algorithm in terms of query execution time. The 

BATCS algorithm has been applied to three datasets 

of varying sizes and the best query plan is found based 

on the fitness function and the execution time is 

recorded. The BATCS algorithm outperforms when 

compared to GA and PSO. To improve the correctness 

of the work, other hybrid nature inspired algorithms 

Execution time in Milliseconds for LUBM(1,0) 

Execution time in Milliseconds for LUBM(3,0) 

Execution time in Milliseconds for LUBM(5,0) 

Fitness value for query 9 

No.of Iteration 

Fitness value for query 8 

No.of Iteration 

Fitness value for query 7 

No.of Iteration 

Fitness value for query 8 

No.of Iteration 



A Hybrid BATCS Algorithm to Generate Optimal Query Plan                                                                                                   359 

 

can be applied and performance can be measured in the 

future. 
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