
The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018 445

Hybrid Metaheuristic Algorithm for Real Time

Task Assignment Problem in Heterogeneous

Multiprocessors

Poongothai Marimuthu, Rajeswari Arumugam, and Jabar Ali

Department of Electronics and Communication Engineering, Coimbatore Institute of Technology, India

Abstract: The assignments of real time tasks to heterogeneous multiprocessors in real time applications are very difficult in

scenarios that require high performance. The main problem in the heterogeneous multiprocessor system is task assignment to

the processors because the execution time for each task varies from one processor to another. Hence, the problem of finding a

solution for task assignment to heterogeneous processor without exceeding the processors capacity in general is an NP hard

problem. In order to meet the constraints in real time systems, a Hybrid Max-Min Ant colony optimization algorithm (H-

MMAS) is proposed in this paper. Max-Min Ant System (MMAS) is extended with a local search heuristic to improve task

assignment solution. The Local Search has resulted in maximizing the number of tasks assigned as well as minimizing the

energy consumption. The performance of the proposed algorithm H-MMAS is compared with the Modified Binary Particle

Swarm Optimization algorithm (BPSO), Ant Colony Optimization (ACO), MMAS algorithms in terms of the average number of

task assigned, normalized energy consumption, quality of solution and average Central Processing Unit (CPU) time. From the

experimental results, the proposed algorithm has outperformed MMAS, Modified BPSO and ACO for consistency matrix. In

case of inconsistency matrix H-MMAS performed better than Modified BPSO, similar to ACO and MMAS, but there is an

improvement in the normalized energy consumption.

Keywords: Multiprocessors, task assignment, heterogeneous processors, ant colony optimization, real time systems.

Received September 21, 2014; accepted December 21, 2015

1. Introduction

Embedded Systems are frequently implemented up on

hardware a platform that includes different types of

processors such as a general-purpose processor, a

special-purpose processor, and a coprocessor. In

general, a heterogeneous multiprocessor platform is

based on different Instruction Set Architectures (ISAs)

with configurable and extensible features [10]. This

multiprocessor platform meets the computational

demands for various applications. Real-time embedded

systems are more complex as it includes many

heterogeneous components. It is very difficult to

implement the real time applications up on the

heterogeneous multiprocessor system. Therefore,

implementation of real-time application on the

heterogeneous platform needs additional effort than the

homogeneous platform [4]. The processors are

identical in a homogeneous platform, task assignment

can be done by solving Bin Packing Problem (BPP)

[8]. The complexity increases in such a way that every

real time application is in need of different execution

times on heterogeneous processors [4]. Hence, Task

assignment in a heterogeneous multiprocessor is a

combinatorial problem which is an NP hard problem

[6, 9]. It can be solved by applying approximate or

meta-heuristic algorithms to obtain sub-optimal results

within a reasonable time [9]. In this paper, a Hybrid

Max-Min Ant Colony Optimization algorithm (H-

MMAS) is proposed. It is based on Max-Min Ant

System (MMAS) along with the local search

algorithms which act as a daemon action to enhance

the proposed algorithm further for finding a solution

for real-time task assignment to the heterogeneous

processors without exceeding the processors

computing capacity and fulfilling the deadline

constraints. This paper considers the two objectives for

the task assignment algorithm. The foremost one is

resource objective and the objective is to achieve

maximum task assignment in the heterogeneous

multiprocessors. The second one is energy objective

and the aim is to minimize the cumulative energy

consumption for all assigned tasks in a solution.

2. System Model and Problem Statement

In this paper, the heterogeneous multiprocessor

environment with m preemptive processors {P1,

P2……Pm} based on CMOS technology is considered

[4, 10]. The processors in the heterogeneous

environment are operated at different speeds and one

instruction per cycle is limited to execute in each

processor at variable speed. The energy consumption

(Ei,j) of the task Ti on processor Pj per period is

calculated using Equation (1).

446 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018

3
, 2

, , , ,2 2
()

i j ef
i j i j i j ef i j i ij

s C
Energy E Power C e c s

k K

   
     
    

Where, Cef is the effective switching capacitance

related to tasks, k is the constant. ei,j is the execution

time for task Ti on processor Pj , si,j is the speed of Pj

for Ti and ci is the number of clock cycles to execute a

task Ti. Equation (1) shows that the energy

consumption is directly proportional to the ci. sij
2
. This

equation is significant, because the processors operate

at different speeds [2].

A set of N periodic tasks T= {T1,T2, … ………TN} is

considered. The tasks are assumed to be mutually

independent and there is no inter task communication

[4, 12]. Ti is defined as Ti ={ ei,j, pi,j} where ei,j is the

estimated worst-case execution time for task Ti on

processor Pj and pi,j is the period of Ti on processor Pj.

The task assignment problem considered here is the

off-line version, under the condition that the utilization

of each processor is less than or equal to 1. In this

paper, the partitioned scheme for task assignment and

Earliest Deadline First algorithm (EDF) for scheduling

the tasks on each processor is considered. The

proposed task assignment algorithm has two

objectives.

 The first objective aims at maximizing the number

of tasks assigned (resource objective) in the

heterogeneous multiprocessor under the condition

that the cumulative utilization of any processor does

not exceed the utilization bound of the EDF

algorithm [8], which is considered to be NP-hard

problem [2, 4].

 The second objective is to minimize the cumulative

energy consumption for all assigned tasks in a

solution (energy objective). The resource objective

is given precedence over the energy consumption

objective.

3. Related Work

Chen et al. [4] proposed a new algorithm based on Ant

Colony Optimization (ACO) meta-heuristic with 1-Opt

and 2-Exchange local search techniques for assigning

real-time tasks to heterogeneous processors with the

resource and energy objectives. The results are

compared with Genetic Algorithm and Linear

Programming based approaches and it is shown that

the ACO algorithm outperforms the major existing

algorithms. Prescilla and Selvakumar [12] proposed

Modified Binary Particle Swarm Optimization

algorithm (Modified BPSO) and Novel Binary Particle

Swarm Optimization to solve the real-time task

assignment in a heterogeneous multiprocessor. The

results of Modified BPSO, Novel BPSO are compared

with ACO and proved that Modified BPSO performs

better than Novel BPSO and ACO for consistent

utilization matrix and ACO performs better than

Modified BPSO and Novel BPSO for inconsistent

utilization matrix. From the results, it is observed that

these algorithms need more number of iterations to

converge and ACO trained input. Braun et al. [3]

proposed eleven static heuristic algorithms for

mapping a class of independent tasks into the

heterogeneous distributed computing system to solve

the heterogeneous multiprocessor task partitioning

problem with the objective of minimizing the

makespan. Srikanth et al. [13] proposed a task

scheduling algorithm using Ant Colony Optimization

for scheduling a task set on heterogeneous processors

by considering load balancing across the processors.

The authors have modeled the heterogeneity of the

processors by assuming different utilization times for

the same task in different processors. The results are

compared and it is observed that the ACO algorithm

performs better than the First Come First Serve (FCFS)

in terms of waiting time. Although the processor

utilization is more for some processors using FCFS

algorithm, it is shown that the load is better balanced

among the processors using ACO. Jin et al. [7]

proposed a new feasible algorithm based on Ant

Colony Optimization meta-heuristic to solve the

multiprocessor control system problem for task

assignment and scheduling by taking into account the

scheduling performance index and the control

performance index as fitness functions of optimization.

Wu et al. [15] proposed the independent task

assignment algorithm for space weapons based on

Multi-agent System and Ant Colony Optimization and

proved that the proposed model is feasible and

effective.

The difference between the MMAS and the

proposed Hybrid MMAS (H-MMAS) is that, the

former one includes heuristic information to construct

solution, whereas the later one excludes heuristic

information which is compensated by two local search

procedures. To the best of our knowledge, this is the

first paper that applies H-MMAS to optimize

assignment solution in terms of resource utilization of

tasks and energy consumption.

4. MAX–MIN Ant System [MMAS]

Dorigo and Stützle [5] and Stützle and Hoos [14]

proposed the Max-Min Ant System. The key feature of

MMAS is that the pheromone trails are updated with

only one ant, and this ant could be the iteration-best ant

or global-best ant which finds the best solution.

Moreover, the maximum and minimum values of the

pheromones are limited to certain values to escape

getting stuck at local solutions. Additionally,

pheromone trails initialize to the upper bound τmax to

have uniform exploration in the whole search space [1,

5]. It differs from Ant System (AS) mainly in the

following three aspects:

1. Only one single ant adds pheromone after each

iteration.

(1)

http://link.springer.com/search?facet-author=%22Hong+Jin%22

Hybrid Metaheuristic Algorithm for Real Time Task Assignment ... 447

2. The range of possible pheromone trails on each

solution component is limited to an interval [τmin

,τmax] .

3. The initial pheromone trails are set to τ max.

MMAS uses either the global or iteration best solution

for the pheromone trail update. In order to avoid

stagnation, the amount of pheromone is restricted to a

range [τmin, τmax] [1, 5]. The ants are situated at random

places initially. At each construction step, ant k applies

a probabilistic action choice rule to choose a next node

to visit next, until a complete solution has been built.

After all ants have constructed a tour, pheromones

are updated by applying evaporation as in ant system

as given in the Equation (2).

 (,) (1) (,) (,) ()i j i j i j N s    

Where 0 < ρ < 1 is the pheromone evaporation rate

and τ (i, j) is the pheromone trail. This is followed by

the deposit of the new pheromone given by

 (,) (,) (,)besti j i j i j    

Where Δτ(i, j)
best

 = 1/f(s)
best

; f(s)
best

 denotes the

solution cost of the iteration-best (s
best

 = sib).

 The pheromone limits are calculated by:

max () /bestf s  

min max / ((1))In    

Where ϴ is the sequential number of the current

iteration starting with 1, ω is a constant and ω ≥1. s
best

denotes the iteration best solution.

Initially, all pheromone values are set to τ max and

after each iteration pheromone limits are updated.

Pheromone trails are evaporated by Equation (2). The

pheromones associated with the best solution are

increased by Equation (3). Then the validity of limits is

checked by the algorithm shown in Algorithm 1.

Algorithm 1: Pheromone update operator

Procedure Update_Pheromone()

{

if τ(i,j) <τmin

{ set τ(i,j) = τmin. }

if τ(i,j) >τmax

{ set τ(i,j) = τmax. }

}//End Procedure

If the current best solution has not improved for a

certain number of iterations reinitialize the pheromone

table by τ(i,j) = τmax setting for all i, j. Because of

pheromone limits, convergence condition is easily

formulated: when only one pheromone trail reaches

τmax and all other trails become τmin, convergence

occurs.

5. Proposed Hybrid Max–Min Ant System

for Task Assignment Problem

5.1. Construction Graph and Constraints

For a given set of heterogeneous multiprocessor and

task set, each task assigned to one processor by the

artificial ant stochastically until each of the tasks is

assigned to specific processor without exceeding its

computing capacity. The construction graph is shown

in the Table1 [4].

Table 1 . Utilization Matrix with 'n' Tasks 'm' Processors.

Task _id P1 P2 P3 P4 ……. Pm

T1 U1,1 U1,2 U1,3 U1,4 ……. U1,m

T2 U2,1 U2,2 U2,3 U2,4 ……. U2,m

T3 U3,1 U3,2 U3,3 U3,4 ……. U3,m

T4 U4,1 U4,2 U4,3 U4,4 ……. U4,m

……. ……. ……. ……. ……. ……. …….

Tn Un,1 Un,2 Un,3 Un,4 ……. Un,m

In Table 1, Ti (1≤i≤n) represents the task Ti, Pj

(1≤j≤m) represents the j
th
 processor, and ui,j represents

the utilization of the i
th
 task on the j

th
 processor. The

utilization matrix ui,j is an nxm matrix in which m is the

number of heterogeneous processors and n is the

number of tasks. The row of utilization matrix

represents the estimated amount of computation of

a given task on each heterogeneous processor.
Similarly, the column of utilization matrix represents

the estimated amount of computation for a given

processor for each task in the task set. The utilization

matrix Un*m holds the real numbers in (0, 1) and

infinity. If Uij = ∞ means, the particular task is not

suitable to execute on a specified processor Pj.[4, 11,

12]. An artificial ant finds to travel across the

construction graph based on the constraints given by

Equations (5) and (6).

 Constraint (1): A task needs to be allocated to only

one processor

 ,
1

1
m

s
i j

j 

  i=1,2,……..n ; j=1,2…….m

 Constraint (2): The total utilization of each

processor does not exceed unity

 , ,
1

. 1
n

s
i j i j

i

u


 

where,

,

s

i j = 1 if square (Ti,Pj) is used in solution s

 0 otherwise

5.2. Solution Construction

An artificial ant increases the pheromone value τ(i,j) at

the edge between Ti and Pj which represents the

possibility of assigning the task Ti to the processor Pj.

(5)

(6)

(2)

(4)

(3)

448 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018

The pheromone values of the ant are initialized as

same for solution construction. Each ant builds a tour

from a starting pair of task and processor [5]. The

probability of selecting the next pair of task and

processor is given by Equation (7).

 p(s,i,j) =
(', ') ()

(,)()

(', ')()n
i j N s

i j t

i j t





if(i,j)  N(s

0

otherwise

where, N(s) denotes the set of eligible pairs of task and

processor is obtained; τ(i,j) denotes the pheromone trial

of (Ti, Pj).

5.2.1. Exclusion of Heuristic Information

From the literature survey, it can be understood that the

existing ACO algorithms for the heterogeneous

environment have included heuristic information

(η(i,j)) for deriving the best solution [4, 12, 13]. The

heuristic information calculation degrades the

performance of the ant system when the values of

utilization matrix become very small, thereby heuristic

calculation approaches close to the worst case scenario

making it difficult for choosing the particular cell for

including it in the ant’s solution [4]. In order to avoid

this, the heuristic information has been excluded in the

proposed algorithm. The heuristic information

excluded formula is given in the Equation (7).

5.2.2. Inclusion of Two Local Searches

The proposed H-MMAS algorithm includes two local

search procedures such as1-Optimal (1-OPT) and 1-

Difference (1-DIFF) for compensating the exclusion of

heuristic information to improve the task assignment

solution after the construction procedure is completed.

The local search algorithm starts with an initial task

assignment solution, and then search for better

solutions using the following neighborhood structures

using following the local search procedures

5.2.2.1. Local Search 1: Reducing Average

Utilization (1-OPT)

A task is removed from the assigned processor and

then assigned to a different processor, only if the

overall utilization is reduced (1-OPT). If the total

utilization exceeds unity; it is replaced in the initial

position.

Algorithm 2: Local Search 1(1-opt)

1. Procedure 1-OPT ()

2. {

3. for each ant k

4. {

5. Uavg = (Σ
m

j=1Uj)/m

6. for each task i

7. {

8. Remove a task from one processor and assign

 it to the neighborhood processor;

9. Unew = (Σ
m

j=1Uj)/m

10. If Unew<Uavg; new task assignment is updated;

11. Elseif Unew>Uavg; old task assignment is

 retained;

12. }// end for

13. }//end for

14. }//end procedure

5.2.2.2. Local Search 2: Reducing Difference in

Utilization (1-Diff)

A task is removed from the assigned processor and

then assigned to a different processor, only if the sum

of the differences between individual utilization and

overall utilization is reduced (1-Difference). If the total

utilization exceeds unity; it is replaced in the initial

position.

Algorithm 3: Local Search 2(1-Diff)

1. Procedure 1-DIFF ()

2. {

3. for each ant k

4. {

5. Dorg= Σ
m

j=1(abs(Unew-Uj))

6. for each task i

7. {

8. Remove a task from one processor and

 assign it to the neighborhood processor;

9. Compute Dnew = Σ
m

j=1(abs(Unew-Uj))

10. Unew = (Σ
m

j=1Uj)/m

11. if Dnew< Dorg; new task assignment is

 updated;

12. Elseif Dnew> Dorg ; old task assignment is

 retained;

13. }//end for

14.}//end for

15.}//end Procedure

Figure 1. Flow chart of local search algorithm.

Figure 1 shows the flowchart of local search

algorithm for each ant. Initially, a solution is

constructed randomly and then the local search is

(7)

Hybrid Metaheuristic Algorithm for Real Time Task Assignment ... 449

applied onto this solution to improve the quality of the

solution. The initial solution is given as input to the 1-

OPT and local search is performed [4]. The fitness of

the resulting solution is calculated and compared with

the previous fitness. To further improve the quality of

the solution, another local search (1-DIFF) is proposed.

The local search is repeated until no further improving

solution is found.

When a solution is constructed, the artificial ants

continue to update the pheromone trials by H-MMAS

according to the Equation (8) [4]. The pheromone is

updated as follows:

 τ (i, j) = (1-) τ(i, j) + f(s best) if(i,j) ϵ s best

 (1-τ (i, j) otherwise

f(s) is a quality function which measures the quality of

the solution and is given

()
() () 1

max

EC s
f s TA s

EC

 
   

 

where,

 1 , ,
1

() ()
n sm

j i j i j
i

EC s E


  

2

,
1

() max()
n

i i j
i

MaxEC s c s

 

TA(s) is equal to the number of assigned tasks in the

solution s. Ei,j is the energy utilized by task Ti on

processor Pj; ci is the execution cycle of task Ti ; si,,j is

the speed at which task Ti is executed on processor Pj.

EC(s) represents the energy consumed by the schedule

(s). MaxEC represents the maximum energy consumed

by the schedule. TA(s) reflects the distance between the

solution s and a feasible solution. EC(s) is normalized

by the maximum possible energy consumption

MaxEC.

The energy consumption of each task is proportional

to the square of processor speed (Ei,j = ci  s
2

i,j),

whereas its computing capacity consumption is

inversely proportional to the processor speed (ui,j =

ci/(si,j pi)), which means that the energy objective

conflicts with the resource objective, and no single

solution can optimize both of them simultaneously. To

achieve a better compromise between both objectives,

the energy local search algorithm and resource local

search algorithm are applied at different stages of the

proposed algorithm. Both the resource and energy local

search procedures follow the same neighborhood

structures such as 1-Opt and 1-Diff as shown in

Algorithm 4. In energy local search, the quality of the

solution s is inversely proportional to the energy

consumed by all tasks in it. The proposed H-MMAS

algorithm performs energy local search algorithm for

every feasible solutions and resource local search

algorithm for every infeasible solutions until no

improvement can be made to any of them [4]. The

pseudo code of proposed H-MMAS algorithm is

shown in Algorithm 4.

5.3. Pseudo code of Proposed H-MMAS

Algorithm

The algorithm is terminated when a pre-specified

number of iterations are completed or the maximum

number of iterations is met, and then the present

solutions are the task assignment solutions.

Algorithm 4: Proposed H-MMAS

Input: Problem instances

Output: Set of tasks mapped to processor j

1. Procedure: H-MMAS

2. {

3. Set parameters, Initialize pheromone trail to τmax , i =

1,2… number of ants

4. While (termination condition not met)

5. {

6. do

7. {

8. for each ant i;

9. {

10. Construct Solution Si under the condition U<=1;

11. if (S is a partial solution)

12. {

13. move ant i one step further;

14. }

15. else if (S is a feasible solution)

16. {

17. Apply energy local search algorithm to improve

 the solution S;

18. Calculate quality for each solution

19. }

20. else if (S is an infeasible solution)

21. {

22. Apply resource search algorithm;

23. Find unassigned task and assign it randomly

 with EDF bound;

24. Calculate quality for each solution

25. }

26. }// end else if

27. Calculate objective function f(s)

28.  1: () max (() ;ants

ib j j i jS S f S f S 

29. Choose the Ant with the best fitness value of all ants

 as the gbest

30. if f (sib) > f (sgb) then f (sgb) = f (sib);

31. Update pheromone trails of only the gbest solution

32. Procedure Update_Pheromone ()

33. }// end for

34. } // end do

35. }//end- while

36. }//end – procedure

6. Results and Discussion

To test the proposed H-MMAS algorithm, experiments

are performed on an Intel core i3 Central Processing

Unit (CPU) processor running at 2.27 Gigahertz speed

with 1.87 GB RAM. The operating system is MS

(8)

(9)

(10)

(11)

450 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018

Windows 7, 64 bit running the MATLAB R2011b

environment.

6.1. Data Set Description

The utilization matrix Un*m holds the real numbers in

(0, 1). In the experiments, the utilization matrix is

generated for considering real-time heterogeneous

environment situations based on task heterogeneity,

processor heterogeneity, and consistency for evaluating

the performance of the proposed and existing

algorithms. The utilization matrix is generated as in [4,

10]. The steps are given below:

1. A nx1 clock cycle matrix C is generated, the number

of cycles to execute task Ti is a random number

between [100, 1000].

2. A nx1 task frequency matrix TB is generated, the

task frequency of Ti is a random number between

[1,ΦT], here ΦT is task heterogeneity. It is either

High Task heterogeneity (HT; [ΦT=100]) or Low

Task heterogeneity (LT; [ΦT=5]).

3. A 1xm speed vector is generated for each TB(i), the

speed to execute task Ti on Pj that is Si(j) to a

random number between [ΦT, ΦT.Φp], here Φp is

processor heterogeneity; it is either High Processor

heterogeneity (HP) or Low Processor heterogeneity

(LP). For High processor heterogeneity, Φp=20 and

for Low Processor heterogeneity, Φp =5.

4. A nxm utilization matrix Ui,j is generated by TB(i)/

Si(j) and Ui,j ϵ [1/ (ΦT.Φp),1]

5. The utilization matrix is said to be consistent(C) if

each speed vector values are sorted by descending

with processor P0 which is always the fastest and

processor P(m-1) as the slowest. This implies that a

particular processor always runs at same speed for

the entire task (i.e., Processor speed doesn’t depend

on task characteristics). But the inconsistent matrix

(IC) holds unsorted speed vector values that are

random state athey were generated. This implies

that a particular processor runs at different speed for

different the task (i.e., Processor speed depends on

task characteristics).

6.2. Performance Comparison of the Proposed

H-MMAS Algorithm with Existing

Algorithms Based on Task Heterogeneity,

Processor Heterogeneity and Consistency.

In this section, the performance of proposed H-MMAS

algorithm is compared with MMAS, Modified BPSO

and ACO algorithms [12]. 135 problem instances are

generated with each utilization matrix having 15

problem instances for the side by side comparison of

the four algorithms.

The four algorithms are run 100 times for each

problem instance and the mean and standard deviation

of the task assigned are reported. The parameter setting

for the H-MMAS algorithm is shown in Table 2.

Table 2. The parameter setting for the proposed H-MMAS

algorithm.

Parameters Value

Number of Ants 10

Number of iterations 250

Initial population 100

 (pheromone evaporation rate) 0.02

Table 3 shows the comparison of the results

obtained by the H-MMAS, MMAS, and Modified

BPSO and ACO algorithms. It is observed that the

proposed H-MMAS algorithm outperforms the

MMAS, Modified BPSO and ACO algorithms in terms

of total number of the task assigned.

From Figure 2 and Figure 3, it can be inferred that

the number of the tasks assigned by H-MMAS is more

compared to MMAS, Modified BPSO and ACO

algorithms for consistency and inconsistency

utilization matrix. The proposed H-MMAS assigned

more number of the tasks than all other algorithms.

Table 3. Comparison of the results obtained by the different algorithms considered for consistency matrix and inconsistency matrix.

 Proposed H-MMAS MMAS Modified BPSO ACO

Problem set Size Best
Mean

(μ)

Std deviation

(σ)
Best

Mean

(μ)

Std

deviation

(σ)

Best
Mean

(μ)

Std deviation

(σ)
Best

Mean

(μ)

Std deviation

(σ)

C_HT_HP U4*100 88 87.36 1.66 82 80.59 1.72 80 77.16 1.90 76 72.38 1.92

C_HT_LP U8*60 53 51.17 1.49 51 48.39 1.68 49 46.90 1.72 49 46.57 1.70

C_LT_HP U4*80 74 72.45 1.08 73 69.39 1.61 71 67.45 1.82 68 66.33 1.84

C_LT_LP U8*50 43 42.03 1.38 41 39.99 1.42 41 38.21 1.48 40 37.90 1.44

IC_HT_HP U5*150 150 148.11 1.37 150 147.69 1.64 149 146.87 2.11 150 146.4
2.33

IC_HT_LP U8*60 60 58.21 1.38 60 57.43 1.62 59 57.5 1.71 59 55.92
1.89

IC_LT_HP U4*100 99 96.97 1.41 100 97.64 1.68 98 97.11 1.94 100 96.72
2.42

IC_LT_LP U8*60 58 56.39 1.14 58 56.48 1.26 58 55.98 1.34 58 55.67
1.72

IC_LT_LP U5*20 20 18.95 0.82 20 18.7 1.12 20 17.93 1.53 20 17.64 1.62

Hybrid Metaheuristic Algorithm for Real Time Task Assignment ... 451

This is because, H-MMAS exploits more strongly the

best solutions found during the search and to direct the

ants’ search towards very high quality solutions and

avoids the premature convergence of the ants’ search

by limiting the pheromone trail strengths between τmax

and τmin. The existing Modified BPSO algorithm [12]

requires a trained input and more number of iterations

for convergence. The proposed H-MMAS algorithm

does not need any trained input and proficient of

training on itself. So it has a fast convergence rate

since it requires less number of iterations.

Figure 2. Comparison of average number of the task assigned for

four algorithms of consistency matrix.

Figure 3. Comparison of average number of the task assigned for

four algorithms of inconsistency matrix.

Figure 4. Comparison of average number of the task assigned for

varying number iterations of C_100T_4P_HT_HP utilization

matrix.

Figure 4 gives a comparative analysis of the total

number of tasks assigned for varying number of

iterations for four algorithms and the initial population

size is set to 100. Figure 5 gives a comparative analysis

of the total number of tasks assigned for varying

number of populations for four algorithms and the

maximum number iteration is set to 250. From Figure

5 it can be inferred that the H-MMAS outperforms all

other existing algorithms because of the balance in the

exploitation and exploration of the search space. Thus

the task assigned of 87 is achieved for H-MMAS

which is comparatively better than the other existing

algorithms.

Figure 5. Comparison of average number of the task assigned for

varying population sizes of C_100T_4P_HT_HP utilization matrix.

Table 4. Average normalized energy consumption for four
algorithms considering the consistency and inconsistency matrix.

Problem set Size
Proposed H-

MMAS
MMAS

Modified

BPSO
ACO

C_HT_HP U4*100 0.3488 0.4145 0.4324 0.4818

C_HT_LP U8*60 0.454 0.47 0.5289 0.5437

C_LT_HP U4*80 0.3284 0.3684 0.394 0.4297

C_LT_LP U8*50 0.4538 0.471 0.5125 0.5164

IC_HT_HP U5*150 0.0218 0.0255 0.03144 0.0598

IC_HT_LP U8*60 0.198 0.2413 0.4067 0.1845

IC_LT_HP U4*100 0.0375 0.0452 0.0529 0.0427

IC_LT_LP U8*60 0.1223 0.136 0.1484 0.1286

IC_LT_LP U5*20 0.2842 0.4189 0.4390 0.4652

The test results from the experiment for average

normalized energy consumption for four algorithms

considering the consistency and inconsistency matrix

are shown in Table 4. From the Table 4, it can be

observed that the proposed algorithm has reduced

average normalized energy consumption than MMAS,

Modified BPSO and ACO for both consistent and

inconsistent matrix. The local search yields a better

result since it tries to achieve minimized utilization by

removing the task from one processor and assigning

into the other processor and thereby helping to add

more number of tasks. The result obtained is further

enhanced by the presence of 1-DIFF local search, and

results in minimized average normalized energy

consumption.

The execution time of the proposed H-MMAS

algorithm takes slightly more time to solve each

problem instance compared to ACO and MMAS

algorithms. The reason is that the proposed algorithm

includes the two local search techniques which

enriched MMAS performance by improving the quality

of task assignment solutions, but required more

execution time to solve each problem instance. H-

MMAS takes more time than MMAS algorithm

because the heuristic information in MMAS is replaced

452 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018

by the two exhaustive local search which takes more

time.

Table 5. Comparison of Average CPU time (secs) by four algoithm

considering the consistency and inconsistency utilization matrix.

Problem set Size
Proposed H-

MMAS
MMAS

Modified

BPSO
ACO

C_HT_HP U4*100 2.2368 1.945 2.886 1.346

C_HT_LP U8*60 1.99113 1.872 7.781 1.965

C_LT_HP U4*80 1.8205 1.39 18.146 0.9

C_LT_LP U8*50 1.639 1.537 10.596 1.379

IC_HT_HP U5*150 3.535 3.244 21 3.19

IC_HT_LP U8*60 2.137 1.925 0.429 1.705

IC_LT_HP U4*100 1.894 1.659 1.962 1.105

IC_LT_LP U8*60 2.063 1.73 14.609 1.482

IC_LT_LP U5*20 0.472 0.442 0.187 0.44

H-MMAS requires less execution time compared to

Modified BPSO because the H-MMAS requires less

number of iterations than Modified BPSO to get the

best solution. The results of the comparison are shown

in Table 5.

Table 6 shows the Best Quality of the solution for

H-MMAS, MMAS, Modified BPSO and ACO

algorithms and their ranks. As it can be seen that the

quality of the solution of H-MMAS is higher than

MMAS, Modified BPSO and ACO algorithms. H-

MMAS outperforms Modified BPSO and ACO

algorithms due to the searching behavior of the ants

enriched with local search algorithm. In case of

inconsistency matrix a maximum number of task are

assigned similar to Modified BPSO, MMAS and ACO

algorithms. The inclusion of local search has its

influence in energy part of the solution. From Table 6,

it can be observed that the proposed H-MMAS has

proved to be the best algorithm for the task assignment

optimization problem in the heterogeneous

multiprocessor system.

Table 6. Best quality of solution for H-MMAS, MMAS, modified BPSO and ACO and their ranks.

Problem set Size Proposed H-MMAS MMAS Modified BPSO ACO

Rank of the solution

H-MMAS MMAS
Modified

BPSO
ACO

C_HT_HP U4*100 88.3948 82.4233 80.4541 75.5418 1 2 3 4

C_HT_LP U8*60 53.4937 51.5124 49.5371 48.561 1 2 3 4

C_LT_HP U4*80 74.3561 73.3872 72.4197 68.4553 1 2 3 4

C_LT_LP U8*50 43.471 41.482 41.53 40.53 1 2 3 4

IC_HT_HP U5*150 150.0248 150.0298 149.0343 150.0749 1 2 3 4

IC_HT_LP U8*60 60.2413 60.2815 59.4796 60.1955 1 2 4 3

IC_LT_HP U4*100 99.0478 100.0491 98.0576 98.0493 1 2 4 3

IC_LT_LP U8*60 58.1291 58.1308 58.1572 57.1311 1 2 4 3

IC_LT_LP U5*20 20.397 20.4375 20.4567 20.4841 1 2 3 4

7. Conclusions

In this paper, a Hybrid Metaheuristic algorithm (H-

MMAS) is proposed for solving real-time task

assignment problem in the heterogeneous

multiprocessors. The task assignment solution in

heterogeneous multiprocessors is improved using Max-

Min Ant System extended with local search algorithms

and its performance is compared with MMAS,

Modified BPSO and ACO algorithms in terms of

number of the task assigned, normalized energy

consumption and average CPU time. In consistency

matrix, the proposed H-MMAS algorithm has

outperformed MMAS, Modified BPSO and ACO

algorithms in terms of number of the tasks assigned,

normalized energy consumption and average CPU

time. The performance in consistency matrix is due to

the fact that H-MMAS inherits the property of ACO

and MMAS which makes it to run quickly and arrive at

an optimal solution. The added feature of two local

search ability in H-MMAS makes it to assign more

tasks than Modified BPSO, ACO and MMAS

algorithms. In case of inconsistency matrix, H-MMAS

performs better than Modified BPSO in terms of task

assigned, normalized energy consumption, and CPU

time. But H-MMAS performs similar to ACO and

MMAS in terms of number of the tasks assigned, since

variation in speed matrix for each task influences the

local search to behave like a normal MMAS, a variant

of ACO. Also there is a reduction in normalized energy

consumption than MMAS and ACO because of two

local search techniques. The average CPU time of the

proposed algorithm for inconsistency matrix is slightly

more than ACO and MMAS algorithm because H-

MMAS algorithm includes local search techniques and

less than Modified BPSO algorithm because the

proposed algorithm requires less number of iterations

to get the best quality of solution.

In our future work, we will work on reducing total

execution time and we will investigate the possibility

of our algorithm to assign tasks from a task set in

which the tasks have precedence constraints and inter-

task communication.

References

[1] Babaeizadeh S., Banitalebi A., Ahmad R., and

Aziz M., “Solving Optimal Control Problem

Hybrid Metaheuristic Algorithm for Real Time Task Assignment ... 453

Using Max-Min Ant System,” IOSR Journal of

Mathematics, vol. 1, no. 3, pp. 47-51, 2012.

[2] Baruah S., “Partitioning Real-Time Tasks

Among Heterogeneous Multiprocessors,” in

Proceedings of the IEEE International

Conference on Parallel Processing, Montreal,

pp. 467-474, 2004.

[3] Braun T., Siegel H., Beck N., Bölöni L.,

Maheswaran M., Reuther A., Robertsong J.,

Theys M., Yao B., Hensgen D., and Freund

R., “A Comparison of Eleven Static Heuristics

for Mapping a Class of Independent Tasks onto

Heterogeneous Distributed Computing System,”

Journal of Parallel and Distributed Computing,

vol. 61, no. 6, pp. 810-837, 2001.

[4] Chen H., Cheng A., and Kuo Y., “Assigning

Real-Time Tasks to Heterogeneous Processors by

Applying Ant Colony Optimization,” Journal of

Parallel and Distributed Computing, vol. 71, no.

1, pp.132-142, 2011.

[5] Dorigo M. and Stützle T., Ant Colony

Optimization, MIT Press, 2004.

[6] Garey M. and Johnson D., Computers and

Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman and Co, 1979.

[7] Jin H., Wang H., Wang H., and Dai G., “An

ACO-Based Approach for Task Assignment and

Scheduling of Multiprocessor Control Systems,”

in Proceedings of International Conference on

Theory and Applications of Models of

Computation, Beijing, pp. 138-147, 2006.

[8] Krishna C. and Shink K., Real-Time System,

McGraw-Hill, 1997.

[9] Narayan V. and Subbarayan G.,“ An Optimal

Feature Subset Selection Using GA for Leaf

Classification,” The International Arab Journal

of Information Technology, vol. 11, no. 5, pp.

447-451, 2014.

[10] Poongothai M., “ARM Embedded Web Server

Based on DAC System,” in Proceedings of the

International Conference on Process

Automation, Control and Computing,
Coimbatore, pp. 1-5, 2011.

[11] Poongothai M., Rajeswari A., and Kanishkan V.,

“A Heuristic Based Real Time Task Assignment

Algorithm for the Heterogeneous

Multiprocessors,” IEICE Electronic Express, vol.

11, no. 3, pp. 1-9, 2014.

[12] Prescilla K. and Selvakumar A., “Modified

Binary Particle Swarm Optimization Algorithm

Application to Real-Time Task Assignment in

Heterogeneous Multiprocessor,”

Microprocessors and Microsystems, vol. 37, no.

6-7, pp. 583-589, 2013.

[13] Srikanth G., Maheswari V., Shanthi P., and

Siromoney A., “Tasks Scheduling Using Ant

Colony Optimization,” Journal of Computer

Science, vol. 8 , no. 8, pp. 1314-1320, 2012.

[14] Stutzle T. and Hoos H., “MAX-MIN Ant System

and Local Search for the Traveling Salesman

Problem,” in Proceedings of the IEEE

International Conference on Evolutionary

Computation, Indianapolis, pp. 309-314,1997.

[15] Wu J., Liu X., Shu J., Li Y., and Liu K.,

“Independent Task Assignment of Space Warfare

Based on MAS and ACO,” Journal of

Information and Computational Science, vol. 10,

no. 12, pp. 3861-3867, 2013.

Poongothai Marimuthu is currently

an Assistant Professor (Senior

Grade) in the Department of

Electronics and Communication

Engineering, Coimbatore Institute of

Technology, Coimbatore 641014

India. Her research areas includes

Scheduling in Real-time systems, energy efficient

computing systems, low power design and power

management of energy harvesting real-time embedded

system.

 Rajeswari Arumugam is currently

a Professor and Head of Department

of Electronics and Communication

Engineering, Coimbatore Institute of

Technology, Coimbatore 641014

India. Her areas of interest include

wireless communication, signal

processing.

Jabar Ali is currently doing his M.E.

(Communication Engineering) in

Department of Electronics and

Communication Engineering,

Coimbatore Institute of Technology,

Coimbatore 641014, India. He

completed his B.E. in Electronics

and Communication Engineering in Mepco Schlenk

Engineering College, Sivakasi, India. His areas of

interest include Scheduling in real-time embedded

systems and computer networks.

http://link.springer.com/search?facet-author=%22Hong+Jin%22
http://link.springer.com/search?facet-author=%22Hui+Wang%22
http://link.springer.com/search?facet-author=%22Hongan+Wang%22
http://link.springer.com/search?facet-author=%22Guozhong+Dai%22

