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Abstract: The assignments of real time tasks to heterogeneous multiprocessors in real time applications are very difficult in 

scenarios that require high performance. The main problem in the heterogeneous multiprocessor system is task assignment to 

the processors because the execution time for each task varies from one processor to another. Hence, the problem of finding a 

solution for task assignment to heterogeneous processor without exceeding the processors capacity in general is an NP hard 

problem. In order to meet the constraints in real time systems, a Hybrid Max-Min Ant colony optimization algorithm (H-

MMAS) is proposed in this paper. Max-Min Ant System (MMAS) is extended with a local search heuristic to improve task 

assignment solution. The Local Search has resulted in maximizing the number of tasks assigned as well as minimizing the 

energy consumption. The performance of the proposed algorithm H-MMAS is compared with the Modified Binary Particle 

Swarm Optimization algorithm (BPSO), Ant Colony Optimization (ACO), MMAS algorithms in terms of the average number of 

task assigned, normalized energy consumption, quality of solution and average Central Processing Unit (CPU) time. From the 

experimental results, the proposed algorithm has outperformed MMAS, Modified BPSO and ACO for consistency matrix. In 

case of inconsistency matrix H-MMAS performed better than Modified BPSO, similar to ACO and MMAS, but there is an 

improvement in the normalized energy consumption. 
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1. Introduction 

Embedded Systems are frequently implemented up on 

hardware a platform that includes different types of 

processors such as a general-purpose processor, a 

special-purpose processor, and a coprocessor. In 

general, a heterogeneous multiprocessor platform is 

based on different Instruction Set Architectures (ISAs) 

with configurable and extensible features [10]. This 

multiprocessor platform meets the computational 

demands for various applications. Real-time embedded 

systems are more complex as it includes many 

heterogeneous components. It is very difficult to 

implement the real time applications up on the 

heterogeneous multiprocessor system. Therefore, 

implementation of real-time application on the 

heterogeneous platform needs additional effort than the 

homogeneous platform [4]. The processors are 

identical in a homogeneous platform, task assignment 

can be done by solving Bin Packing Problem (BPP) 

[8]. The complexity increases in such a way that every 

real time application is in need of different execution 

times on heterogeneous processors [4]. Hence, Task 

assignment in a heterogeneous multiprocessor is a 

combinatorial problem which is an NP hard problem 

[6, 9]. It can be solved by applying approximate or 

meta-heuristic algorithms to obtain sub-optimal results 

within a reasonable time [9]. In this paper, a Hybrid 

Max-Min Ant Colony Optimization algorithm (H- 

 
MMAS) is proposed. It is based on Max-Min Ant 

System (MMAS) along with the local search 

algorithms which act as a daemon action to enhance 

the proposed algorithm further for finding a solution 

for real-time task assignment to the heterogeneous 

processors without exceeding the processors 

computing capacity and fulfilling the deadline 

constraints. This paper considers the two objectives for 

the task assignment algorithm. The foremost one is 

resource objective and the objective is to achieve 

maximum task assignment in the heterogeneous 

multiprocessors. The second one is energy objective 

and the aim is to minimize the cumulative energy 

consumption for all assigned tasks in a solution.  

2. System Model and Problem Statement  

In this paper, the heterogeneous multiprocessor 

environment with m preemptive processors {P1, 

P2……Pm} based on CMOS technology is considered 

[4, 10]. The processors in the heterogeneous 

environment are operated at different speeds and one 

instruction per cycle is limited to execute in each 

processor at variable speed. The energy consumption 

(Ei,j) of the task Ti on processor Pj per period is 

calculated using Equation (1). 



446                                                            The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018 

 

 

3
, 2

, , , ,2 2
( ) . . . .

i j ef
i j i j i j ef i j i ij

s C
Energy E Power C e c s

k K

   
     
    

 

Where, Cef is the effective switching capacitance 

related to tasks, k is the constant. ei,j is the execution 

time for task Ti on processor Pj , si,j is the speed of Pj 

for Ti and ci is the number of clock cycles to execute a 

task Ti. Equation (1) shows that the energy 

consumption is directly proportional to the ci. sij
2
. This 

equation is significant, because the processors operate 

at different speeds [2]. 

A set of N periodic tasks T= {T1,T2, … ………TN} is 

considered. The tasks are assumed to be mutually 

independent and there is no inter task communication 

[4, 12]. Ti is defined as Ti ={ ei,j, pi,j} where ei,j is the 

estimated worst-case execution time for task Ti on 

processor Pj and pi,j is the period of Ti on processor Pj. 

The task assignment problem considered here is the 

off-line version, under the condition that the utilization 

of each processor is less than or equal to 1. In this 

paper, the partitioned scheme for task assignment and 

Earliest Deadline First algorithm (EDF) for scheduling 

the tasks on each processor is considered. The 

proposed task assignment algorithm has two 

objectives. 

 The first objective aims at maximizing the number 

of tasks assigned (resource objective) in the 

heterogeneous multiprocessor under the condition 

that the cumulative utilization of any processor does 

not exceed the utilization bound of the EDF 

algorithm [8], which is considered to be NP-hard 

problem [2, 4].  

 The second objective is to minimize the cumulative 

energy consumption for all assigned tasks in a 

solution (energy objective). The resource objective 

is given precedence over the energy consumption 

objective. 

3. Related Work 

Chen et al. [4] proposed a new algorithm based on Ant 

Colony Optimization (ACO) meta-heuristic with 1-Opt 

and 2-Exchange local search techniques for assigning 

real-time tasks to heterogeneous processors with the 

resource and energy objectives. The results are 

compared with Genetic Algorithm and Linear 

Programming based approaches and it is shown that 

the ACO algorithm outperforms the major existing 

algorithms. Prescilla and Selvakumar [12] proposed 

Modified Binary Particle Swarm Optimization 

algorithm (Modified BPSO) and Novel Binary Particle 

Swarm Optimization to solve the real-time task 

assignment in a heterogeneous multiprocessor. The 

results of Modified BPSO, Novel BPSO are compared 

with ACO and proved that Modified BPSO performs 

better than Novel BPSO and ACO for consistent 

utilization matrix and ACO performs better than 

Modified BPSO and Novel BPSO for inconsistent 

utilization matrix. From the results, it is observed that 

these algorithms need more number of iterations to 

converge and ACO trained input. Braun et al. [3] 

proposed eleven static heuristic algorithms for 

mapping a class of independent tasks into the 

heterogeneous distributed computing system to solve 

the heterogeneous multiprocessor task partitioning 

problem with the objective of minimizing the 

makespan. Srikanth et al. [13] proposed a task 

scheduling algorithm using Ant Colony Optimization 

for scheduling a task set on heterogeneous processors 

by considering load balancing across the processors. 

The authors have modeled the heterogeneity of the 

processors by assuming different utilization times for 

the same task in different processors. The results are 

compared and it is observed that the ACO algorithm 

performs better than the First Come First Serve (FCFS) 

in terms of waiting time. Although the processor 

utilization is more for some processors using FCFS 

algorithm, it is shown that the load is better balanced 

among the processors using ACO. Jin et al. [7] 

proposed a new feasible algorithm based on Ant 

Colony Optimization meta-heuristic to solve the 

multiprocessor control system problem for task 

assignment and scheduling by taking into account the 

scheduling performance index and the control 

performance index as fitness functions of optimization. 

Wu et al. [15] proposed the independent task 

assignment algorithm for space weapons based on 

Multi-agent System and Ant Colony Optimization and 

proved that the proposed model is feasible and 

effective.  

The difference between the MMAS and the 

proposed Hybrid MMAS (H-MMAS) is that, the 

former one includes heuristic information to construct 

solution, whereas the later one excludes heuristic 

information which is compensated by two local search 

procedures. To the best of our knowledge, this is the 

first paper that applies H-MMAS to optimize 

assignment solution in terms of resource utilization of 

tasks and energy consumption. 

4. MAX–MIN Ant System [MMAS] 

Dorigo and Stützle [5] and Stützle and Hoos [14] 

proposed the Max-Min Ant System. The key feature of 

MMAS is that the pheromone trails are updated with 

only one ant, and this ant could be the iteration-best ant 

or global-best ant which finds the best solution. 

Moreover, the maximum and minimum values of the 

pheromones are limited to certain values to escape 

getting stuck at local solutions. Additionally, 

pheromone trails initialize to the upper bound τmax to 

have uniform exploration in the whole search space [1, 

5]. It differs from Ant System (AS) mainly in the 

following three aspects:  

1. Only one single ant adds pheromone after each 

iteration. 

(1) 

http://link.springer.com/search?facet-author=%22Hong+Jin%22
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2. The range of possible pheromone trails on each 

solution component is limited to an interval [τmin 

,τmax ] . 

3. The initial pheromone trails are set to τ max. 

MMAS uses either the global or iteration best solution 

for the pheromone trail update. In order to avoid 

stagnation, the amount of pheromone is restricted to a 

range [τmin, τmax] [1, 5]. The ants are situated at random 

places initially. At each construction step, ant k applies 

a probabilistic action choice rule to choose a next node 

to visit next, until a complete solution has been built. 

After all ants have constructed a tour, pheromones 

are updated by applying evaporation as in ant system 

as given in the Equation (2).  

          ( , ) (1 ) ( , ) ( , ) ( )i j i j i j N s                 

Where 0 < ρ < 1 is the pheromone evaporation rate 

and τ (i, j) is the pheromone trail. This is followed by 

the deposit of the new pheromone given by 

                   ( , ) ( , ) ( , )besti j i j i j                    

Where Δτ(i, j)
best

 = 1/f(s )
best 

; f(s)
best

 denotes the 

solution cost of the iteration-best (s
best

 = sib). 

 The pheromone limits are calculated by: 

max ( ) /bestf s    

min max / ( ( 1))In      

Where ϴ is the sequential number of the current 

iteration starting with 1, ω is a constant and ω ≥1. s
best 

denotes the iteration best solution. 

Initially, all pheromone values are set to τ max and 

after each iteration pheromone limits are updated. 

Pheromone trails are evaporated by Equation (2). The 

pheromones associated with the best solution are 

increased by Equation (3). Then the validity of limits is 

checked by the algorithm shown in Algorithm 1.  

Algorithm 1: Pheromone update operator 

Procedure Update_Pheromone( ) 

{ 

if τ(i,j) <τmin 

{ set τ(i,j) = τmin.  } 

if τ(i,j) >τmax 

{ set τ(i,j) = τmax.  } 

}//End Procedure 

If the current best solution has not improved for a 

certain number of iterations reinitialize the pheromone 

table by τ(i,j) = τmax setting for all i, j. Because of 

pheromone limits, convergence condition is easily 

formulated: when only one pheromone trail reaches 

τmax and all other trails become τmin, convergence 

occurs. 

 

 

 

 

5. Proposed Hybrid Max–Min Ant System 

for Task Assignment Problem 

5.1. Construction Graph and Constraints  

For a given set of heterogeneous multiprocessor and 

task set, each task assigned to one processor by the 

artificial ant stochastically until each of the tasks is 

assigned to specific processor without exceeding its 

computing capacity. The construction graph is shown 

in the Table1 [4]. 

Table 1 . Utilization Matrix with 'n' Tasks 'm' Processors. 

Task _id P1 P2 P3 P4 ……. Pm 

T1 U1,1 U1,2 U1,3 U1,4 ……. U1,m 

T2 U2,1 U2,2 U2,3 U2,4 ……. U2,m 

T3 U3,1 U3,2 U3,3 U3,4 ……. U3,m 

T4 U4,1 U4,2 U4,3 U4,4 ……. U4,m 

……. ……. ……. ……. ……. ……. ……. 

Tn Un,1 Un,2 Un,3 Un,4 ……. Un,m 

In Table 1, Ti (1≤i≤n) represents the task Ti, Pj 

(1≤j≤m) represents the j 
th
 processor, and ui,j represents 

the utilization of the i
th
 task on the j

th
 processor. The 

utilization matrix ui,j is an nxm matrix in which m is the 

number of heterogeneous processors and n is the 

number of tasks. The row of utilization matrix 

represents the estimated amount of computation of 

a given task on each heterogeneous processor. 
Similarly, the column of utilization matrix represents 

the estimated amount of computation for a given 

processor for each task in the task set. The utilization 

matrix Un*m holds the real numbers in (0, 1) and 

infinity. If Uij = ∞ means, the particular task is not 

suitable to execute on a specified processor Pj.[4, 11, 

12]. An artificial ant finds to travel across the 

construction graph based on the constraints given by 

Equations (5) and (6). 

 Constraint (1): A task needs to be allocated to only 

one processor 

       ,
1

1
m

s
i j

j 

     i=1,2,……..n ; j=1,2…….m    

 Constraint (2): The total utilization of each 

processor does not exceed unity 

                                , ,
1

. 1
n

s
i j i j

i

u


                              

where, 

 
   

,

s

i j =  1     if square (Ti,Pj) is used in solution s   

                   0     otherwise   

5.2. Solution Construction 

An artificial ant increases the pheromone value τ(i,j) at 

the edge between Ti and Pj which represents the 

possibility of assigning the task Ti to the processor Pj. 

(5) 

(6) 

(2) 

(4) 

(3) 
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The pheromone values of the ant are initialized as 

same for solution construction. Each ant builds a tour 

from a starting pair of task and processor [5]. The 

probability of selecting the next pair of task and 

processor is given by Equation (7). 

 

   p(s,i,j) =   
( ', ') ( )

( , )( )

( ', ')( )n
i j N s

i j t

i j t





 

if(i,j)   N(s   

0                                

otherwise 

where, N(s) denotes the set of eligible pairs of task and 

processor is obtained; τ(i,j) denotes the pheromone trial 

of (Ti, Pj). 

5.2.1. Exclusion of Heuristic Information 

From the literature survey, it can be understood that the 

existing ACO algorithms for the heterogeneous 

environment have included heuristic information 

(η(i,j)) for deriving the best solution [4, 12, 13]. The 

heuristic information calculation degrades the 

performance of the ant system when the values of 

utilization matrix become very small, thereby heuristic 

calculation approaches close to the worst case scenario 

making it difficult for choosing the particular cell for 

including it in the ant’s solution [4]. In order to avoid 

this, the heuristic information has been excluded in the 

proposed algorithm. The heuristic information 

excluded formula is given in the Equation (7). 

5.2.2. Inclusion of Two Local Searches 

The proposed H-MMAS algorithm includes two local 

search procedures such as1-Optimal (1-OPT) and 1-

Difference (1-DIFF) for compensating the exclusion of 

heuristic information to improve the task assignment 

solution after the construction procedure is completed. 

The local search algorithm starts with an initial task 

assignment solution, and then search for better 

solutions using the following neighborhood structures 

using following the local search procedures 

5.2.2.1. Local Search 1: Reducing Average    

Utilization (1-OPT) 

A task is removed from the assigned processor and 

then assigned to a different processor, only if the 

overall utilization is reduced (1-OPT). If the total 

utilization exceeds unity; it is replaced in the initial 

position. 

Algorithm 2: Local Search 1(1-opt) 

1. Procedure 1-OPT ( ) 

2. { 

3. for each ant k 

4. { 

5.    Uavg = (Σ
m

j=1Uj)/m 

6.        for  each task i 

7.         { 

8.          Remove a task from one processor and assign  

 it to  the neighborhood  processor; 

9.          Unew = (Σ
m

j=1Uj)/m 

10.         If Unew<Uavg; new  task assignment is updated; 

11.        Elseif Unew>Uavg; old task assignment is  

           retained; 

12.          }//  end for 

13. }//end for 

14. }//end procedure 

5.2.2.2. Local Search 2: Reducing Difference in 

Utilization (1-Diff) 

A task is removed from the assigned processor and 

then assigned to a different processor, only if the sum 

of the differences between individual utilization and 

overall utilization is reduced (1-Difference). If the total 

utilization exceeds unity; it is replaced in the initial 

position. 

Algorithm 3: Local Search 2(1-Diff) 

1. Procedure 1-DIFF ( ) 

2. { 

3. for each ant k 

4. { 

5.      Dorg= Σ
m

j=1(abs(Unew-Uj)) 

6.           for each task i 

7.          { 

8.             Remove a task from one processor and  

            assign it to the  neighborhood processor; 

9.           Compute Dnew = Σ
m

j=1(abs(Unew-Uj)) 

10.           Unew = (Σ
m

j=1Uj)/m 

11.           if Dnew< Dorg; new task assignment is   

       updated; 

12.           Elseif Dnew> Dorg ; old task assignment is  

             retained; 

13.               }//end for 

14.}//end for 

15.}//end Procedure  

 
Figure 1. Flow chart of local search algorithm. 

Figure 1 shows the flowchart of local search 

algorithm for each ant. Initially, a solution is 

constructed randomly and then the local search is 

(7) 
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applied onto this solution to improve the quality of the 

solution. The initial solution is given as input to the 1-

OPT and local search is performed [4]. The fitness of 

the resulting solution is calculated and compared with 

the previous fitness. To further improve the quality of 

the solution, another local search (1-DIFF) is proposed. 

The local search is repeated until no further improving 

solution is found. 

When a solution is constructed, the artificial ants 

continue to update the pheromone trials by H-MMAS 

according to the Equation (8) [4]. The pheromone is 

updated as follows: 

        τ (i, j) =     (1-) τ(i, j) + f(s best)     if(i,j) ϵ s best                  
 
                      (1-τ (i, j)                   otherwise 

f(s) is a quality function which measures the quality of 

the solution and is given 

( )
( ) ( ) 1

max

EC s
f s TA s

EC

 
   

 
 

where, 

              1 , ,
1

( ) ( )
n sm

j i j i j
i

EC s E


             

          
2

,
1

( ) max( )
n

i i j
i

MaxEC s c s

 

               

TA(s) is equal to the number of assigned tasks in the 

solution s. Ei,j is the energy utilized by task Ti on 

processor Pj; ci is the execution cycle of task Ti ; si,,j is 

the speed at which task Ti is executed on processor Pj. 

EC(s) represents the energy consumed by the schedule 

(s). MaxEC represents the maximum energy consumed 

by the schedule. TA(s) reflects the distance between the 

solution s and a feasible solution. EC(s) is normalized 

by the maximum possible energy consumption 

MaxEC. 

The energy consumption of each task is proportional 

to the square of processor speed (Ei,j = ci   s
2

i,j), 

whereas its computing capacity consumption is 

inversely proportional to the processor speed (ui,j = 

ci/(si,j pi)), which means that the energy objective 

conflicts with the resource objective, and no single 

solution can optimize both of them simultaneously. To 

achieve a better compromise between both objectives, 

the energy local search algorithm and resource local 

search algorithm are applied at different stages of the 

proposed algorithm. Both the resource and energy local 

search procedures follow the same neighborhood 

structures such as 1-Opt and 1-Diff as shown in 

Algorithm 4. In energy local search, the quality of the 

solution s is inversely proportional to the energy 

consumed by all tasks in it. The proposed H-MMAS 

algorithm performs energy local search algorithm for 

every feasible solutions and resource local search 

algorithm for every infeasible solutions until no 

improvement can be made to any of them [4]. The 

pseudo code of proposed H-MMAS algorithm is 

shown in Algorithm 4.  

5.3. Pseudo code of Proposed H-MMAS 

Algorithm 

The algorithm is terminated when a pre-specified 

number of iterations are completed or the maximum 

number of iterations is met, and then the present 

solutions are the task assignment solutions. 

Algorithm 4: Proposed H-MMAS 

Input: Problem instances 

Output: Set of tasks mapped to processor j 

1. Procedure: H-MMAS 

2. { 

3.  Set parameters, Initialize pheromone trail to τmax  , i =  

1,2… number of ants 

4.     While (termination condition not met) 

5.      { 

6.         do 

7.         { 

8.         for  each ant i; 

9.         { 

10.            Construct Solution Si under  the condition U<=1; 

11.          if (S is a partial solution) 

12.            { 

13.              move ant i one step further; 

14.             }            

15.       else if  (S is a feasible solution) 

16.         { 

17.               Apply  energy local search algorithm to improve  

 the  solution S; 

18.          Calculate quality for each solution   

19.            }  

20.         else if (S is an infeasible solution) 

21.               { 

22.                Apply resource search algorithm; 

23.                Find unassigned task and assign it randomly 

 with EDF bound; 

24.                Calculate quality for each solution  

25.                } 

26.            }// end else if          

27.          Calculate objective function f(s)  

28.     1: ( ) max ( ( ) ;ants

ib j j i jS S f S f S             

29.          Choose the Ant with the best fitness value of all ants        

 as the  gbest 

30.            if f (sib ) > f (sgb ) then f (sgb ) = f (sib ); 

31.           Update pheromone trails of only the gbest solution  

32.           Procedure Update_Pheromone ( ) 

33.  }// end for 

34.            } // end do 

35.     }//end- while 

36.  }//end – procedure       

6. Results and Discussion  

To test the proposed H-MMAS algorithm, experiments 

are performed on an Intel core i3 Central Processing 

Unit (CPU) processor running at 2.27 Gigahertz speed 

with 1.87 GB RAM. The operating system is MS 

(8) 

(9) 

(10) 

(11) 
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Windows 7, 64 bit running the MATLAB R2011b 

environment. 

6.1. Data Set Description 

The utilization matrix Un*m holds the real numbers in 

(0, 1). In the experiments, the utilization matrix is 

generated for considering real-time heterogeneous 

environment situations based on task heterogeneity, 

processor heterogeneity, and consistency for evaluating 

the performance of the proposed and existing 

algorithms. The utilization matrix is generated as in [4, 

10]. The steps are given below: 

1. A nx1 clock cycle matrix C is generated, the number 

of cycles to execute task Ti is a random number 

between [100, 1000]. 

2. A nx1 task frequency matrix TB is generated, the 

task frequency of Ti is a random number between 

[1,ΦT], here ΦT is task heterogeneity. It is either 

High Task heterogeneity (HT; [ΦT=100]) or Low 

Task heterogeneity (LT; [ΦT=5]).  

3. A 1xm speed vector is generated for each TB(i), the 

speed to execute task Ti on Pj that is Si(j) to a 

random number between [ΦT, ΦT.Φp], here Φp is 

processor heterogeneity; it is either High Processor 

heterogeneity (HP) or Low Processor heterogeneity 

(LP). For High processor heterogeneity, Φp=20 and 

for Low Processor heterogeneity, Φp =5.  

4. A nxm utilization matrix Ui,j is generated by TB(i)/ 

Si(j) and Ui,j ϵ  [1/ (ΦT.Φp),1] 

5. The utilization matrix is said to be consistent(C) if 

each speed vector values are sorted by descending 

with processor P0 which is always the fastest and 

processor P(m-1) as the slowest. This implies that a 

particular processor always runs at same speed for 

the entire task (i.e., Processor speed doesn’t depend 

on task characteristics). But the inconsistent matrix 

(IC) holds unsorted speed vector values that are 

random state athey were generated. This implies 

that a particular processor runs at different speed for 

different the task (i.e., Processor speed depends on 

task characteristics). 

6.2. Performance Comparison of the Proposed 

H-MMAS Algorithm with Existing 

Algorithms Based on Task Heterogeneity, 

Processor Heterogeneity and Consistency. 

In this section, the performance of proposed H-MMAS 

algorithm is compared with MMAS, Modified BPSO 

and ACO algorithms [12]. 135 problem instances are 

generated with each utilization matrix having 15 

problem instances for the side by side comparison of 

the four algorithms. 

The four algorithms are run 100 times for each 

problem instance and the mean and standard deviation 

of the task assigned are reported. The parameter setting 

for the H-MMAS algorithm is shown in Table 2. 

Table 2. The parameter setting for the proposed H-MMAS 

algorithm. 

Parameters Value 

Number of Ants 10 

Number of iterations 250 

Initial population 100 

 (pheromone evaporation rate) 0.02 

Table 3 shows the comparison of the results 

obtained by the H-MMAS, MMAS, and Modified 

BPSO and ACO algorithms. It is observed that the 

proposed H-MMAS algorithm outperforms the 

MMAS, Modified BPSO and ACO algorithms in terms 

of total number of the task assigned. 

From Figure 2 and Figure 3, it can be inferred that 

the number of the tasks assigned by H-MMAS is more 

compared to MMAS, Modified BPSO and ACO 

algorithms for consistency and inconsistency 

utilization matrix. The proposed H-MMAS assigned 

more number of the tasks than all other algorithms.

Table 3. Comparison of the results obtained by the different algorithms considered for consistency matrix and inconsistency matrix. 

  Proposed H-MMAS MMAS Modified BPSO ACO 

Problem set Size Best 
Mean 

(μ) 

Std deviation 

(σ) 
Best 

Mean 

(μ) 

Std 

deviation 

(σ) 

Best 
Mean 

(μ) 

Std deviation 

(σ) 
Best 

Mean 

(μ) 

Std deviation 

(σ) 

C_HT_HP U4*100 88 87.36 1.66 82 80.59 1.72 80 77.16 1.90 76 72.38 1.92 

C_HT_LP U8*60 53 51.17 1.49 51 48.39 1.68 49 46.90 1.72 49 46.57 1.70 

C_LT_HP U4*80 74 72.45 1.08 73 69.39 1.61 71 67.45 1.82 68 66.33 1.84 

C_LT_LP U8*50 43 42.03 1.38 41 39.99 1.42 41 38.21 1.48 40 37.90 1.44 

IC_HT_HP U5*150 150 148.11 1.37 150 147.69 1.64 149 146.87 2.11 150 146.4 
2.33 

 

IC_HT_LP U8*60 60 58.21 1.38 60 57.43 1.62 59 57.5 1.71 59 55.92 
1.89 

 

IC_LT_HP U4*100 99 96.97 1.41 100 97.64 1.68 98 97.11 1.94 100 96.72 
2.42 

 

IC_LT_LP U8*60 58 56.39 1.14 58 56.48 1.26 58 55.98 1.34 58 55.67 
1.72 

 

IC_LT_LP U5*20 20 18.95 0.82 20 18.7 1.12 20 17.93 1.53 20 17.64 1.62 
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This is because, H-MMAS exploits more strongly the 

best solutions found during the search and to direct the 

ants’ search towards very high quality solutions and 

avoids the premature convergence of the ants’ search 

by limiting the pheromone trail strengths between τmax 

and τmin. The existing Modified BPSO algorithm [12] 

requires a trained input and more number of iterations 

for convergence. The proposed H-MMAS algorithm 

does not need any trained input and proficient of 

training on itself. So it has a fast convergence rate 

since it requires less number of iterations. 

 

Figure 2. Comparison of average number of the task assigned for 

four algorithms of consistency matrix. 

 

Figure 3. Comparison of average number of the task assigned for 

four algorithms of inconsistency matrix. 

 

Figure 4. Comparison of average number of the task assigned for 

varying number iterations of C_100T_4P_HT_HP utilization 

matrix. 

Figure 4 gives a comparative analysis of the total 

number of tasks assigned for varying number of 

iterations for four algorithms and the initial population 

size is set to 100. Figure 5 gives a comparative analysis 

of the total number of tasks assigned for varying 

number of populations for four algorithms and the 

maximum number iteration is set to 250. From Figure 

5 it can be inferred that the H-MMAS outperforms all 

other existing algorithms because of the balance in the 

exploitation and exploration of the search space. Thus 

the task assigned of 87 is achieved for H-MMAS 

which is comparatively better than the other existing 

algorithms.  

 

Figure 5. Comparison of average number of the task assigned for 

varying population sizes of C_100T_4P_HT_HP utilization matrix. 

Table 4. Average normalized energy consumption for four 
algorithms considering the consistency and inconsistency matrix. 

Problem set Size 
Proposed H-

MMAS 
MMAS 

Modified 

BPSO 
ACO 

C_HT_HP U4*100 0.3488 0.4145 0.4324 0.4818 

C_HT_LP U8*60 0.454 0.47 0.5289 0.5437 

C_LT_HP U4*80 0.3284 0.3684 0.394 0.4297 

C_LT_LP U8*50 0.4538 0.471 0.5125 0.5164 

IC_HT_HP U5*150 0.0218 0.0255 0.03144 0.0598 

IC_HT_LP U8*60 0.198 0.2413 0.4067 0.1845 

IC_LT_HP U4*100 0.0375 0.0452 0.0529 0.0427 

IC_LT_LP U8*60 0.1223 0.136 0.1484 0.1286 

IC_LT_LP U5*20 0.2842 0.4189 0.4390 0.4652 

The test results from the experiment for average 

normalized energy consumption for four algorithms 

considering the consistency and inconsistency matrix 

are shown in Table 4. From the Table 4, it can be 

observed that the proposed algorithm has reduced 

average normalized energy consumption than MMAS, 

Modified BPSO and ACO for both consistent and 

inconsistent matrix. The local search yields a better 

result since it tries to achieve minimized utilization by 

removing the task from one processor and assigning 

into the other processor and thereby helping to add 

more number of tasks. The result obtained is further 

enhanced by the presence of 1-DIFF local search, and 

results in minimized average normalized energy 

consumption.  

The execution time of the proposed H-MMAS 

algorithm takes slightly more time to solve each 

problem instance compared to ACO and MMAS 

algorithms. The reason is that the proposed algorithm 

includes the two local search techniques which 

enriched MMAS performance by improving the quality 

of task assignment solutions, but required more 

execution time to solve each problem instance. H-

MMAS takes more time than MMAS algorithm 

because the heuristic information in MMAS is replaced 
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by the two exhaustive local search which takes more 

time. 

Table 5. Comparison of Average CPU time (secs) by four algoithm 

considering the consistency and inconsistency utilization matrix. 

Problem set Size 
Proposed H-

MMAS 
MMAS 

Modified 

BPSO 
ACO 

C_HT_HP U4*100 2.2368 1.945 2.886 1.346 

C_HT_LP U8*60 1.99113 1.872 7.781 1.965 

C_LT_HP U4*80 1.8205 1.39 18.146 0.9 

C_LT_LP U8*50 1.639 1.537 10.596 1.379 

IC_HT_HP U5*150 3.535 3.244 21 3.19 

IC_HT_LP U8*60 2.137 1.925 0.429 1.705 

IC_LT_HP U4*100 1.894 1.659 1.962 1.105 

IC_LT_LP U8*60 2.063 1.73 14.609 1.482 

IC_LT_LP U5*20 0.472 0.442 0.187 0.44 

H-MMAS requires less execution time compared to 

Modified BPSO because the H-MMAS requires less 

number of iterations than Modified BPSO to get the 

best solution. The results of the comparison are shown 

in Table 5.  

Table 6 shows the Best Quality of the solution for 

H-MMAS, MMAS, Modified BPSO and ACO 

algorithms and their ranks. As it can be seen that the 

quality of the solution of H-MMAS is higher than 

MMAS, Modified BPSO and ACO algorithms. H-

MMAS outperforms Modified BPSO and ACO 

algorithms due to the searching behavior of the ants 

enriched with local search algorithm. In case of 

inconsistency matrix a maximum number of task are 

assigned similar to Modified BPSO, MMAS and ACO 

algorithms. The inclusion of local search has its 

influence in energy part of the solution. From Table 6, 

it can be observed that the proposed H-MMAS has 

proved to be the best algorithm for the task assignment 

optimization problem in the heterogeneous 

multiprocessor system. 

 

 
Table 6. Best quality of solution for H-MMAS, MMAS, modified BPSO and ACO and their ranks. 

Problem set Size Proposed H-MMAS MMAS Modified BPSO ACO 

Rank of the solution 

H-MMAS MMAS 
Modified 

BPSO 
ACO 

C_HT_HP U4*100 88.3948 82.4233 80.4541 75.5418 1 2 3 4 

C_HT_LP U8*60 53.4937 51.5124 49.5371 48.561 1 2 3 4 

C_LT_HP U4*80 74.3561 73.3872 72.4197 68.4553 1 2 3 4 

C_LT_LP U8*50 43.471 41.482 41.53 40.53 1 2 3 4 

IC_HT_HP U5*150 150.0248 150.0298 149.0343 150.0749 1 2 3 4 

IC_HT_LP U8*60 60.2413 60.2815 59.4796 60.1955 1 2 4 3 

IC_LT_HP U4*100 99.0478 100.0491 98.0576 98.0493 1 2 4 3 

IC_LT_LP U8*60 58.1291 58.1308 58.1572 57.1311 1 2 4 3 

IC_LT_LP U5*20 20.397 20.4375 20.4567 20.4841 1 2 3 4 

7. Conclusions 

In this paper, a Hybrid Metaheuristic algorithm (H-

MMAS) is proposed for solving real-time task 

assignment problem in the heterogeneous 

multiprocessors. The task assignment solution in 

heterogeneous multiprocessors is improved using Max- 

Min Ant System extended with local search algorithms 

and its performance is compared with MMAS, 

Modified BPSO and ACO algorithms in terms of 

number of the task assigned, normalized energy 

consumption and average CPU time. In consistency 

matrix, the proposed H-MMAS algorithm has 

outperformed MMAS, Modified BPSO and ACO 

algorithms in terms of number of the tasks assigned, 

normalized energy consumption and average CPU 

time. The performance in consistency matrix is due to 

the fact that H-MMAS inherits the property of ACO 

and MMAS which makes it to run quickly and arrive at 

an optimal solution. The added feature of two local 

search ability in H-MMAS makes it to assign more 

tasks than Modified BPSO, ACO and MMAS 

algorithms. In case of inconsistency matrix, H-MMAS 

performs better than Modified BPSO in terms of task  

 

assigned, normalized energy consumption, and CPU 

time. But H-MMAS performs similar to ACO and 

MMAS in terms of number of the tasks assigned, since 

variation in speed matrix for each task influences the 

local search to behave like a normal MMAS, a variant 

of ACO. Also there is a reduction in normalized energy 

consumption than MMAS and ACO because of two 

local search techniques. The average CPU time of the 

proposed algorithm for inconsistency matrix is slightly 

more than ACO and MMAS algorithm because H-

MMAS algorithm includes local search techniques and 

less than Modified BPSO algorithm because the 

proposed algorithm requires less number of iterations 

to get the best quality of solution.  

In our future work, we will work on reducing total 

execution time and we will investigate the possibility 

of our algorithm to assign tasks from a task set in 

which the tasks have precedence constraints and inter-

task communication. 
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