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Abstract: The interpretation of brain images is a crucial task in the practitioners’ diagnosis process. Segmentation is one of 

key operations to provide a decision support to physicians. There are several methods to perform segmentation. We use 

Hidden Markov Random Fields (HMRF) for modelling the segmentation problem. This elegant model leads to an optimization 

problem. Particles Swarm Optimization (PSO) method is used to achieve brain magnetic resonance image segmentation. 

Setting the parameters of the HMRF-PSO method is a task in itself. We conduct a study for the choice of parameters that give 

a good segmentation. The segmentation quality is evaluated on ground-truth images, using the Dice coefficient also called 

Kappa index. The results show a superiority of the HMRF-PSO method, compared to methods such as Classical Markov 

Random Fields (MRF) and MRF using variants of Ant Colony Optimization (ACO). 
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1. Introduction 

With the overwhelming number of medical images, the 

manual analysis and interpretation of images from 

different imaging modalities (Radiography, Magnetic 

Resonance Imaging (MRI), Computed Tomography 

(CT), etc.,) became a tedious task. This fact underlines 

the necessity of automatic image analysis, through 

several operations including segmentation.  

Hidden Markov Random Field (HMRF) provides an 

elegant way to model the segmentation problem. Since 

the seminal paper of Geman and Geman [12], Markov 

Random Fields (MRF) models for image segmentation 

have been extensively investigated [3, 15, 32, 34]. The 

segmentation process consists in finding the hidden 

information namely the segmented image by observing 

the data from the original image. We seek the 

segmented image, according to the (Maximum A 

Posteriori) MAP criterion [30]. MAP estimation leads 

to the minimization of energy function [8]. This 

problem is computationally intractable. Therefore, 

optimization techniques are used to compute a solution.  

Particle Swarm Optimization (PSO) has emerged as 

one of the best optimization techniques. This new class 

of metaheuristics was proposed in 1995 by Eberhart 

and Kennedy [10]. This technique was extensively 

studied by many researches [18, 28]. The selection of 

PSO parameters, in the algorithm simulation, is a 

problem in itself [6, 10, 11, 15]. A bad choice of 

parameters can lead to a chaotic behaviour of the 

optimization algorithm. 

In this paper we investigate parameters setting and 

performance of HMRF and PSO combination named 

HMRF-PSO [2, 15] in brain Magnetic Resonance (MR)  

 
images segmentation. In this specific case, 

segmentation consists in partitioning the brain image 

into different characteristic parts that are gray matter, 

white matter and cerebrospinal fluid. The 

segmentation evaluation is conducted on ground-truth 

images from Brainweb
1
 and IBSR

2
 databases. The 

Dice coefficient is used to assess the quality of the 

segmentation. The HMRF-PSO method is compared 

to methods using Markov Random Field and variants 

of Ant Colony Optimization (ACO) [32]. The 

achieved results are promising and show a clear 

superiority of the HMRF-PSO method. 

This paper is organized as follows. An overview of 

previous work is given in section 2. In section 3, we 

give The Hidden Markov Random Field model 

principles in the context of image segmentation. The 

PSO and HMRF combination is explained in section 

4. Experimental results on medical samples are given 

in section 5. Section 6 concludes the paper. 

2. Previous Work 

Brain MRI images segmentation has attracted a 

particular focus in medical imaging. The importance 

of this modality has favoured the abundance of 

research on automatic extraction of image 

characteristics resulting from medical examinations. 

The segmentation techniques can be classified in 

four broad categories: Threshold-based techniques, 

Region-based techniques, Classification techniques 

and Model-based techniques [13]. 

                                                           
1
http://www.bic.mni.mcgill.ca/brainweb/ 

2
http://www.nitrc.org/projects/ibsr/ 

http://www.bic.mni.mcgill.ca/brainweb/
http://www.nitrc.org/projects/ibsr/
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Threshold-based techniques [23, 27] use image 

histogram and find one or more intensity thresholds to 

identify the different classes of the image. In the case of 

foreground/background separation, one threshold is 

identified. If the image contains n distinctive classes (n-

1) thresholds are necessary. The threshold-based 

techniques are very noise sensitive. 

Region based techniques explore the pixels of the 

image and assemble them in non overlapping regions 

according to a criterion of homogeneity. In this context, 

several authors used region growing [25] or watersheds 

to perform segmentation [14, 26]. 

In classification techniques, pixels are grouped based 

on the some properties of these pixels (grey levels, 

texture or colour. The groups formed are called 

clusters. C-means based techniques [1, 33] and Markov 

Random Fields are part of the classification-based 

methods and are widely used for brain segmentation. 

In model-based segmentation, as in deformable 

models and level sets, a model is built for a specific 

anatomic structure by incorporating a priori information 

concerning this structure (shape, location, and 

orientation) [17, 22]. 

The presence of noise in the acquired images can 

severely degrade the segmentation results and thus 

makes the process of segmentation useless. Denoising 

is generally performed prior to the effective 

segmentation [4, 5, 16, 21, 24, 29, 31]. 

3. Hidden Markov Random Field  

An image is formed of a finite set S of sites 

corresponding to the pixels, S={s1,s2,...,sM}of M=n*m 

sites. The sites in S are related by neighbourhood 

system V(S). 

The image to segment into K classes or the observed 

image, y= (y1,...,ys,...,yM ) is seen by the Hidden Markov 

Random Field model as a realization of a family of 

random variables defined on S, Y= (Y1,...,Ys,...,YM ). 

Each random variables {Ys}sS takes its values in the 

space obs={0,..,255}. The configuration set is  obs. 

The segmented image, x=(x1,...,xs,...,xM) is seen as 

the realization of another Markov Random Field, 

X=(X1,...,Xs,...,XM ), defined on the same lattice S, takes 

its values in the discrete space ={1,…,K}. K 

represents the number of classes or homogeneous 

regions in the image. The configuration set is . 

The Hidden Markov Random Filed provides an 

elegant way to model the segmentation problem by 

using the MAP estimator. This latter consists in finding 

a realization x of X by observing the data of the 

realization y, representing the image to segment (The 

Figure 1 shows an example for K=4). 

     
              y. Observed image.                            x. Hidden image. 

Figure 1. Observed and hidden image. 

The aim of the MAP estimator is to maximize the 

probability P(X=x|Y=y) which is equivalent in this 

context to minimize the function (x,y) [2, 15]. 
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Where   is a constant, T is a control parameter called 

temperature,   is a Kronecker’s delta, 

 1, , , ,j K     and  1, , , ,j K     are 

respectively the means and the standards deviation of 

the K classes in the segmented image x .  

Computing the exact segmentation 

 * argmin (x,y)
x

x


  of the image y
 
is impossible but we 

can seek an approximation    
1( ,..., ,..., )s Mx x x x

 
of the 

exact segmentation * * * *
1( ,..., ,..., )s Mx x x x using 

optimization techniques.  

Our way to look for an approximation x  is to seek 

an approximation    
1( ,..., ,..., )j K     of * * * *

1( ,..., ,..., )j K     

where *
j is the mean of the class j in *x and 


j is the 

mean of the class j in x .  

The segmented image x is calculated after 

computation of   by classifying ys into the nearest 

mean j  of  (i.e., xs=j if the nearest mean of ys 
is j

).  

Our goal becomes looking for * instead *x  such 
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Sj contains all the sites s such that the nearest mean to 

ys 
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4. HMRF and Particle Swarm Optimization 

Combination (HMRF-PSO) 

Formally, each particle i has a position (a solution) 

mi(t)=(mi1(t),...,mij(t),...,miK(t)) and a velocity 

vi(t)=(vi1(t),...,vij(t),...,viK(t)) at the time t.  

Each particle i at the time t compute its own 

segmented image xi(t)=xi1(t),...,xis(t),...,xiM(t)) using its 

position mi(t) where xis(t)=j if the nearest mean to ys 
is 

mij(t).  

Each particle i at the time t measure its position mi(t) 

which equal to   ,im t y . 

Let         ' ' ' '
1 , , , ,i i ij iKm t m t m t m t   the best 

position visited by the particle i till the time t (we called 

it the local best), so: 
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the best position 

visited by all the particles till the time t (we called it the 

global best), so: 
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The velocity vi(t+1) of the particle i at the time t+1 is 

influenced by its local best  '
im t and the global best

 t , as follow: 
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Where w is called the inertia weight, c1 and c2 are the 

acceleration constants; r1j(t) and r2j(t) are random 

variables between 0 and 1. The velocity vij is limited by 

Vmax to ensure convergence. 

The position mi(t) of the particle i is changed at time 

t+1 by the velocity vi(t+1) using the following formula: 

                   
     1 1i i im t m t v t                            

When the maximal number of iterations is reached, we 

take the global best as the solution
 
 :   

5. Experimental Results 

5.1. Parameters Setting 

Evaluating the quality of the segmentation using the 

Dice Coefficient [9] can only be made where the a 

priori segmentation is known. The matching between 

the class iC


in the segmentation image and its ground 

truth *
iC is given by the following formula: 
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TP is the true positive; FP is the false positive and FN 

is the false negative (see Figure 2). 

 

Figure 2. TP, FP and FN. 

5.1.1. HMRF Parameters 

Choosing the appropriate parameters for HMRF-PSO 

combination method is a delicate task. A bad choice 

can lead to poor results. We will focus in this section 

on setting the parameters of HMRF process.  

Figure 3 shows an Magnetic Resonance Imaging 

(IRM) scan and its corresponding segmentations in 

four classes with =1, T0=4 and varying the parameter 

. 

 

 

              =0,98.                  =0,95.                =0,1. 

Figure 3. Segmentation varying . 

Figure 4 shows an image and its corresponding 

segmentations in two classes with =1, =0.98 and 

varying the parameter T0. 

 

 

 

(5) 

(6) 

(7) 

(8) 

(9) 
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T0 = 10 

 

 

T0 = 4 

 

 

T0 = 1 
 

 

Figure 4. Segmentation varying T0. 

Figure 5 shows an image and its corresponding 

segmentations in two classes with =0.98, T0=4 varying 

the parameter . 

  
β=0. 

 
β=1. 

 
β=2. 

Figure 5. Segmentation varying . 

5.1.2. PSO Parameters  

To select the correct settings for PSO algorithm, we 

have performed a statistical analysis on brain images 

segmentation differentiating between Grey Matter 

(GM), White Matter (WM) and Cerebro-Spinal Fluid 

(CSF) classes. An overview of the results is given 

below. 

The number of iterations is a parameter that has a 

very important role in convergence and terminates the 

optimization process. Figure 6 shows the influence of 

the change in the number of iterations on the 

segmentation quality. Other process parameters have 

been set at: c1=0.7, c2=0.9, w=0.7, vmax=5, 

swarm_size =30 and =1. 

 
Figure 6. Iteration number variation. 

Figure 7 shows the swarm velocity influence on the 

quality of the segmentation. Other process parameters 

have been set at: c1=0.4, c2=0.4, w=0.4, 

iteration_number=100, swarm_size=40 and =1. 

Vmax speed must be limited to avoid the algorithm 

performance degradation. Beyond a certain speed, the 

segmentation quality deteriorates. 

 

Figure 7. Maximum velocity variation. 

The size of the swarm plays a very important role 

in the optimization process. This parameter affects 

robustness and quality of the result. Figure 8 shows 

the influence of the change of the swarm size on the 

quality segmentation. Other process parameters have 

been set at: c1=0.6, c2=0.7, w=0.6, vmax=5, 

iteration_number=100 and =1. 

 
Figure 8. Particle number variation. 
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5.2. Comparative Study 

To assess the HMRF-PSO combination method, we 

made a comparative study with four segmentation 

algorithms operating on brain images that are Classical 

MRF, MRF-ACO, MRF-ACO-Gossiping [32] and 

Local Gaussian Mixture Model (LGMM) [19]. 

To perform a meaningful comparison, we use the 

brain medical images with their ground truth from 

IBSR database and Brainweb database with 

Modality=T1 and Slice thickness=1mm. The 

comparison will be based on the Dice coefficient. 

Brainweb [7] images are simulated MRI volumes for 

normal brain from McGill University. These 

simulations are based on an anatomical model of 

normal brain. In this database, an image can be selected 

by setting modality, slice thickness, noise and intensity 

non-uniformity. 

The Internet Brain Segmentation Repository (IBSR) 

provides manually-guided expert segmented brain data. 

This repository is made available to the scientific 

community by the Neuroimaging Informatics Tools and 

Resources Clearinghouse (NITRC) [20]. Its aim is to 

encourage the evaluation and development of 

segmentation methods.  

The parameters setting for the four methods used in 

the study are summarizes in Table 1. 

Table 1. Parameters of methods used. 

Method N° Parameters 

Classical MRF 1 T: Temperature=4 

MRF-ACO 2 

T: Temperature=4 , a: Pheromone info. 

Influence=1, b: Heuristic info. Influence=1, 

q: Evaporation rate=0.1, w: Pheromone 
decay coefficient=0.1 

MRF-ACO-Gossiping 3 

T: Temperature=4 , a: Pheromone info. 

Influence=1, b: Heuristic info. Influence=1, 
q: Evaporation rate=0.1, w: Pheromone 

decay coefficient=0.1, c1: Pheromone 

reinforcing coefficient=10, c2: Pheromone 
reinforcing coefficient=100 

HMRF-PSO 4 

T: Temperature=4 , =0.98, c1=0.6, c2=0.7, 

w=0.6, vmax=5, swarm_size =70, 

iteration_number=100, =1 

Table 2 shows the mean values of Dice coefficient 

for Brainweb database. The slices, used form Brainweb 

database are: 85, 88, 90, 95, 97, 100, 104, 106, 110, 

121, and 130. 

Table 2. The mean values of DC. 

The method GM WM CSF Mean 

Classical-MRF 0.75 0.72 0.78 0.75 

MRF-ACO 0.72 0.76 0.78 0.75 

MRF-ACO-Gossiping 0.72 0.76 0.78 0.75 

HMRF-PSO 0.95 0.98 0.93 0.95 

The Table 3 shows the mean values of Dice 

coefficient for IBSR database. The slices, used from 1-

24 (IBSR database), are: 18, 20, 24, 26, 30, 32, and 34. 

Table 3. The mean values of DC. 

The method GM WM CSF Mean 

Classical-MRF 0.76 0.82 0.24 0.61 

MRF-ACO 0.77 0.82 0.25 0.61 

MRF-ACO-Gossiping 0.77 0.82 0.25 0.61 

HMRF-PSO 0.83 0.85 0.31 0.66 

The results clearly show the prevalence of the 

HMRF-PSO method compared with other methods. 

Table 4 shows the comparison between HMRF-

PSO with The parameters: c1=0.45, c2=0.8, w=0.45 

and LGMM method [19]. We have used the Brainweb 

databases with different noise levels. The slices used 

are 85, 88, 90, 95, 97, 100, 104, 106 and 110. The first 

column (N,I) gives the noise and the intensity non-

uniformity. 

Table 4. The mean values of DC. 

 LGMM HMRF-PSO 

(N,I) GM WM CSF Mean GM WM CSF Mean 

(0%,0%) 0.69 0.66 0.75 0.70 0.95 0.98 0.95 0.96 

(3%,20%) 0.90 0.94 0.891 0.91 0.94 0.96 0.94 0.95 

(5%,20%) 0.91 0.95 0.88 0.91 0.91 0.95 0.92 0.93 

(7%,20%) 0.90 0.95 0.87 0.91 0.88 0.93 0.89 0.90 

(9%,20%) 0.19 0.74 0.73 0.56 0.81 0.90 0.78 0.83 

The HMRF-PSO combination globally outperforms 

LGMM method [19]. 

6. Conclusions 

In this paper, we have presented a method referred to 

as HMRF-PSO that combines Hidden Markov 

Random Fields and Particle Swarm Optimization to 

perform segmentation. A statistical study was also 

carried out to set the parameters of the method. The 

tests conducted have focused on the brain images from 

the largely used databases, Brainweb and IBSR. 

The HMRF-PSO combination outperforms other 

combination methods tested that are: Classical MRF, 

MRF-ACO-Gossiping and MRF-ACO methods. 

Therefore, the proposed method has the potential to be 

used in computer aided medical diagnosis Systems. 

Nonetheless, the proposed method has to be tested 

on images coming from other modalities. A 

comparative study with other segmentation methods 

must also be conducted to confirm the method 

supremacy. 

On the other hand, direct search techniques, 

specifically Nelder-Mead and Torczon methods, are 

currently under investigation to solve the optimisation 

problem.  
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