
505 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018

Intelligent Replication for Distributed Active Real-

Time Databases Systems

Rashed Salem
1
, Safa'a Saleh

2
, and Hattem Abdul-Kader

1

1
Information Systems Department, Menoufia University, Egypt

2
Information Systems Department, Taibah University, KSA

Abstract: Recently, the demand for real-time database is increasing. Most real-time systems are inherently distributed in

nature and need to handle data in a timely fashion. Obtaining data from remote sites may take long time making the temporal

data invalid. This results in a large number of tardy transactions with their catastrophic effect. Replication is one solution of

this problem, as it allows transactions to access temporal data locally. This helps transactions to meet their time requirements

which require predictable resource usage. To improve predictability, Distributed Active Real-time Database System (DeeDS)

prototype is introduced to avoid the delay which results from disk access, network communications and distributed commit

processing. DeeDS advises to use In-memory database, fully replication and local transaction committing, but full replication

consumes the system resources causing a scalability problem. In this work, we introduce Intelligent Replication In DeeDS

(IReIDe) as a new replication protocol that supports the replication for DeeDS and faces the scalability problem using

intelligent clustering technique. The results show the ability of IReIDe to reduce the consumed system resources and maintain

scalability.

Keyword: Replication, real-time, DRTDBS, DeeDS, clustering.

Received February 17, 2015; accepted October 7, 2015

1. Introduction

A Real-Time Database System (RTDBS) is defined in

[3] as a database system that includes all features on

traditional database system, in addition to enforcing

time-constraints in a form of data validation duration

or transaction deadlines or both. According to [19, 20],

the result value from missing deadline is used to

categorize the real-time transactions into three types,

soft, firm and hard. Missing a hard deadline results in

an infinite penalty that has a fatal effect on the system,

but missing a firm deadline gives no value, while

missing soft deadline, may leave some value from the

computation for some time.

Recently, the demand for real-time database is

increasing. Many applications such as e-commerce,

mobile communication, accounting, information

services, medical monitoring, nuclear reactor control,

traffic control systems and telecommunications are

some examples of application that require real-time

data support [2].

Most real-time systems are inherently distributed in

nature, as they need to share distributed data among

different sites. The data in such critical systems need to

be obtained and updated in a timely fashion [16].

Sometimes, obtaining data from remote sites may take

long time, which makes temporal data invalid. This

leads to a large number of tardy transactions (i.e.,

transactions that miss their deadline).

Replication is one solution of this problem.

Replicating temporal data items allows the transactions

to access these data locally instead of asking for these

data remotely. This helps transactions to meet their

time requirements [2, 9].

Predictability is the most important real-time feature

of RTDBS. It is often more important than consistency,

which can be relaxed to improve predictability of data

accesses [3]. That is due to the fatal effect of missing

deadline in a hard real-time systems and the reduced

service of soft real-time systems [21]. For hard real-

time systems, predictable resource usage is the most

essential design concern to enable timeliness for such

systems. Detailed prior knowledge about the resource

requirements of transactions is necessary. Such

knowledge includes the worst-case execution order of

concurrent transactions, where the highest resource

usage occurs [21].

To improve predictability of RTDBS, Distributed

Active Real-time Database System (DeeDS) prototype

is introduced [2] to provide Distributed Real-Time

Database Systems (DRTDBS) with strict requirements

on predictable efficient execution. However, DeeDs

still needs replication features to cope with the

scalability problem.

DeeDS prototype highlights how to avoid

unpredictability sources from the delay that result from

disk access, network communications and distributed

commit processing. DeeDS also suggest some

strategies to remove the unpredictability sources using

in-memory database, fully replication and committing

transaction locally [15]. Figure 1 summarizes DeeDS

vision and strategies to improve the predictability.

 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018 506

Figure 1. DeeDS vision and strategies.

However full replication has a scalability problem

as it consumes the system resources because the

system must replicate all updates to all the nodes,

regardless whether the data will be used there or not.

Also, updates in fully replicated databases must be

integrated at all nodes [6, 22].

In fact, scalability is increasingly very important

target for distributed real-time databases, because the

number of users, the number of nodes, the involved

workload, and the size of database in distributed

applications are in increasing [11]. Full replication

strategy of DeeDS to avoid network access delay

makes systems scale badly as they replicate all updates

to all nodes, using excess resources whether they are

needed there or not. In real systems, not all nodes use

all data objects. It is assumed that only a fraction of the

replicated data is used at the local node [4].

The core design of DeeDS is extended in DeeDS

Next Generation (DeeDS NG) [6] to meet the demands

of modern real-time applications such as sensor

networks, and information fusion-based applications.

The new DeeDS design is introduced by adding the

concept of virtual full replication to manage the

resources for scalability [16]. It reduces the resource

usage by avoiding un-needed replica by replicating

selected data items to selected nodes depending on the

fact that not all nodes need all data items, i.e., replicate

each item where it needed only.

Under the assumption by DeeDS NG that the

replicas of data objects will only be used at a limited

subset of the nodes (as in partial replication), the

degree of replication can be lowered. The usage of

bandwidth, storage and processing time depends on the

degree of replication, so these resources are wasted in a

fully replicated database compared to in a lower degree

of replication. With replication of only those data

objects that are actually used, resources can be saved

and thereby scalability can be improved [2].

Virtual full replication is based on the idea of

lowering the replication degree. Clustering distributed

database nodes into number of clusters with lower

number of nodes can be considered as an approach to

limit the degree of replication and can achieve the

virtually fully replicated database [5]. The degree of

replication is a result of allocating node to the clusters

where its data objects are accessed. This is typically

much fewer nodes than used in a fully replicated

database. The clustering method must be based on the

accessed data and the network properties [6, 22].

The main contribution of this work is introducing

Intelligent Replication In DeeDS (IReIDe) as a new

replication protocol based on virtual full replication

using intelligent clustering technique to support DeeDS

in maintaining scalability problem. The idea of this

work is that the concept of virtual full replication can

be achieved by using clustering technique which

segments large number of nodes based on a priori

known data needs and network properties into many

clusters with smaller number of nodes. This lowers the

replication degree, reduces the amount of replicated

data to be transferred among less number of nodes and

increases the transaction processing performance.

Moreover, this improves scalability by controlling the

usage of the key resources [22].

Determining associated nodes based on the timing

properties of the used data in addition to the timing

properties of the network (communication cost) will

reduces the system resource consuming, and allowing

parallel replication that improves the consistency and

gives more chance to increase the scalability without

the headache of performance. This work tries to make

the DeeDS more scalable in an intelligent way by

managing resources for scalability using clustering

technique to replicate updates only for those data

objects that are used at a node.

Although IReIDe is introduced to keep the

properties of DeeDS, it is designed mainly to avoid

unpredictability, so it can be adapted to other database

models.

The remainder of this paper is organized as the

follows: section 2 discusses the previous work that

related to the present work. Section 3 presents IReIDe

approach for intelligent replication in DeeDS. Section

4 covers the experimental study to evaluate the

introduced algorithm. Finally, the conclusion is

provided in section 5.

2. Related Work

Although there are many researches that worked in the

field of RTDB replication [3, 6, 7 , 12, 14, 17, 19] few

of them addressed the replication in DeeDS or even the

concept of virtual full replication [14, 15].

Using term of scalability, there are many works in

different areas act to minimize the communication cost

as the work by Lin and Veeravalli [12]. They used

prior knowledge of accesses for minimizing service

cost for allocating objects in a distributed system. They

introduced a Central Control Unit (CCU) to serialize

allocation and deallocation decisions. But, this control

unit becomes a single point of failure and a bottleneck

for scalability.

The work by Mathiason et al. [14] is the main work

that supported the virtual full replication in DeeDS by

grouping data objects into segments. The data in each

segment are similar in some combination of properties.

Their scalable algorithm (ViFuR-S) handles the

problem of segmenting a database based on multiple

507 Intelligent Replication for Distributed Active Real-Time Databases Systems

properties, where multiple and overlapping

segmentations of the database are allowed. Another

work by Mathiason et al. [15] extends the previous

algorithm to maintain scalability at execution time, to

improve the access time to data object at any node and

to ensure scalable propagation of updates over the

network. Their algorithm is called ViFuR-A as it was

to adapt replication over time to actual data needs of

database clients. Their results showed the ability of

virtual full replication by adaptive segmentation to

maintain scalability and preserves transaction

timeliness.

The last two works [14, 15] are the most related

work to our proposed protocol as they are based on

DeeDS prototype. However, we noticed the following

shortcomings that will be avoided in the present work:

1. Their algorithm depends on the properties such as

access location, consistency and storage medium.

But timeliness which is the main property of RTDB

ignored in their work.

2. Their work missed the usage of network properties.

3. They ignored the usage of pattern detection in their

work.

4. They determined and fixed the replication degree of

each segment, although it is difficult to occur.

We see that the replication degree is a dynamic

concept that based on the requirement of each node.

By thinking of clustering the database nodes, we

find that many clustering techniques have been

introduced in a wide variety of applications such as

image processing [17], network segmentation [23],

marketing [13], pattern recognition [25], and network

sites clustering [6, 10]. But in case of clustering the

database nodes, the work by Hababeh [6] must come to

front. He introduces an intelligent clustering technique

that segmented the distributed database network sites

into disjoint clusters according to the least average

communication cost between network sites. This work

has succeeded to reduce the communication cost. We

believe that, this reduction can improve the

predictability of DRTDB. However, we need to extend

their clustering algorithm to include the timing features

of RTDB in clustering criteria in addition to the

network properties to obtain better predictability of

DeeDS. This can reduce the communication traffic and

improve the performance of DRTDB. Bearing in mind,

the nature of time-constraint database to achieve the

virtual full replication in DeeDS, we still need to

develop a novel clustering method to outperform the

current clustering techniques. This novel clustering

method creates disjoint clusters according to the

properties of data and the properties of network

together to generate an optimal number of clusters.

This lowers the replication degree and helps RTDBS to

meet the timing requirements and to avoid the fatal

effect of missing the deadline in case of hard

transactions [18].

3. IReIDe Approach

In virtual full replication, every node has an image of

full replicated database, and the updates will be

replicated where they are needed. To achieve virtual

full replication, we introduce a novel clustering

method, which uses the timing properties of data and

the timing properties of the network to segment the

database nodes. It aims mainly at reducing the

replication degree to preserve the system resources and

enables DRTDBS to meet their time requirements.

Such requirements of prior knowledge about the needs

of each node must be used in the intelligent clustering

approach. Each cluster has its own replication degree

that is lower than in case of full replication. This acts

to reduce the usage of system resource and make the

database more scalable. A cluster is represented as a

pair {O, N} where N is a set of nodes that host a

replication set which list the associated nodes for each

object in data objects O.

The clustering algorithm is presented in the

following subsections. The produced clusters are

allowed to be overlapped but they are prevented from

intercommunication between each other.

Each database node holds a specific data store

called “replication set (Rep_set)” which is a Boolean

two-dimension data structure to define the shared

nodes (subscribers) of each data object which are

together in same cluster. It is used by propagation

process to distribute the updates of an object to all

listed nodes for the individual object. The replica or

updates are stored in another data structure to be used

by the integration process.

The database system in each node uses its

replication set to replicate any update on data object to

the subscribers that are defined in replication set for

the individual data object. The replication operation

will execute in O(n) where n is the number of

subscribers for each data object cluster.

3.1. The Clustering Method

The decision of clustering is based mainly on the rule

that the communication cost between two sites will

never affect the validity of replicated data, i.e., any

data object must be replicated within its validation

period. The allowed data are those that have timing

properties values is less than the network time

communication cost. To maintain and simplify the

work, the following assumptions are considered:

1. The communication cost between each two sites is

symmetric.

2. The transaction type is hard, i.e., it is important to

avoid the missing its deadline.

3. The transaction deadline is derived from the used

data validation duration property.

4. The database is virtually fully replicated, so any

transaction that initiated on any node will access a

 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018 508

needed data object locally.

5. The communication is real-time reliable, i.e., all

messages are sent to the destination within limited

time and they are reaching in save time.

6. The network is fully connected, i.e., it is possible to

communicate in a point-to-point fashion between

any two nodes in the system.

The outline of these methods is depicted as the

following:

 Inputs: Log matrix Objects by Transactions (OT),

Communication cost matrix CC[N][N], Total

Number of Nodes (N), Total Number of data

Objects (O).

 Processing: {Module 1: Obtaining Minimum

Deadline Matrix of shared data}.
 {Module 2: Obtaining replication set/each

object/each site}.

 Output: Matrix of generated clusters (replication

set) for each site (RepSet[][][]).

3.1.1. The Definition of Clustering Parameters

The following list defines and describes the parameters

of our proposed algorithm:

 Communication Cost matrix CC (Si, Sj): holds the

cost of transmitting data object in ms/byte between

any two nodes Si and Sj in the distributed system.

 Log matrix (OT): is the working set (the objects

used by transaction) for all transactions at each S(i).

 Deadline[O][N]: a source of minimum deadline or

validity duration of the transaction on each node.

 Replication set (RepSet[Nc][O][Ni]): a place to

identify the node cluster of each object of the

current node (Nc) on each node (Ni).

3.1.2. Module 1: Obtaining Min Deadline Matrix

This module checks the transaction DeadLine (DL)

and Validity Duration (VD) for each transaction in the

log matrix OT to produce Minimum Deadline matrix

of each data object.

3.1.3. Module 2: Obtaining the Replication Set/ Site

This module which is presented in Algorithm 1,

identifies the sites that match the time cost, which is

less than the minimum deadline of shared data object

between them in order to group them initially in one

cluster.

Algorithm 1: Obtaining Replication set/ site

Inputs  Deadline[O][N], Total number of Nodes (N),

Total number of Objects (O), communication cost matrix

CC[N][N]

Set Boolean matrix:Rep_set [nodes][objects][nodes]← false;

For each row deadline[O][N] using iterator (i) do:

Set ObjectID ← i

Set counter C ← 0

For each col deadline[o][N] using iterator j

IF (deadline[i][j] ≠ Φ) then

 set VD= deadline[i][j]; set NodeID =j;

 set temp[C++] ← NodeID; // temporary structure

End if

Loop

For x from 0 to C-2

For iterator y from x+1 to C-1

IF CC[temp[x]][temp[y]]<VD then

Rep_set[temp[x]][ObjectID][temp[y]]←T; // true

Rep_set[temp[y]][ObjectID][temp[x]]←T; //true

End if

loop

loop

loop

Outputs  Replication set (RepSet[N][O][N])

3.2. The Propagation Method

The propagation method consists of two phases:

distribution phase, and receiving phase. When a

transaction that accesses an object for write operation

has committed, the “distribution module” or the

distributor will be called. It starts with checking the

Rep_Set to extract the subscribers of updated object.

Then it distributes the update to the specified

subscribers.If the current node is not listed in

replication set as a subscriber for the current data

object, the distributor will send a broadcast message

with a request to update the replication set. The

message contains the current object identifier, the

updated value and current node identifier in addition to

the timestamp value. All will be used by the receiving

nodes to add the received node_id to its replication set

for object_id. Also, the receiving node uses the

received value to update the object value in replication

directory. The replication directory (Rep_DIR) is a

data structure that holds information about replica of

data objects. The distribution module is outlined as in

(Algorithm 2). Each node contains a data store which is

called “Active_list” to hold the most recent node

identifiers that access each data objects, sorted

according to the timestamp of activity. The most active

node is the node that has the most recent access to the

object. Receiving the update message results in calling

of active_list update module (Algorithm 3) to update the

local active_list data store. "Active_list" is used to

make a decision of removing the least active node

when the number of subscribers increases to a

specified threshold (70% in our case) of the total

number of nodes. The node that receives the

propagated message will call the receiver module

which executes B_receiving module (Algorithm 4) in

case of broadcast message or executes R_receiving

module (Algorithm 5) in case of regular update message

according to the message type. B_receiving module

calls “Add” module after checking whether the current

node is a subscriber for the received data object to add

received Node_ID as a new subscriber. Then,

active_list update module is called to refresh

active_list data structure. B_receiving module also use

509 Intelligent Replication for Distributed Active Real-Time Databases Systems

the received information to update the Rep_DIR. In

case of regular received message, R_receiving module

(Algorithm 5) is called to update Rep_DIR using the

received data. Then call active_list update module.

Algorithm 2: The process of distributor (distribution module)

Inputs current node, current object, Rep_set[O][N]

//Check Rep_set for current object’s subscribes in TempList[]

Set Value← current object value

Initialize temp vector: Osubscribers[]

For each node Nodes do:

If Rep_set[current ObjectID][node] = true then

Add node to Osubscribers []

End if

Loop

IF Osubscribers.size() ≠ 0 then

/* Regular propagation to all subscribers: Multicast*/

For each OsubscriberOsubscribers[]using iterator(i) do:

Msg.Head← “Regular updates”

Msg.IP← { Osubscribers [].get_IP_address }

Msg.data←{current node_ID, current Obj_id, value, TS}

Network.send(Msg)

Loop

Else

/* Broadcast request to add new subscriber */

Msg.Head← { "New subscriber” & current Obj_id }

Msg.Address← IPAddress.getAny()

Msg.data← {Current_node_id,current_Obj_id, value, TS}

Network.send(Msg)

End if

Algorithm 3: Active_List_update module

Inputs current objectID , active_list

For each row  Rep_Dir using iterator(i) do:

 Set j to 0;

 IF Rep_Dir[j][object] = objectID then

 temp[j][node]= Rep_Dir [i][node]

 temp[j][TS]= Rep_Dir [i][TS]

 increase j with 1 //j++

 End if

Loop

For each row  temp using iterator(i) to temp.size-1 do:

 For each row  temp using iterator(j) to temp.size-1 do:

 If temp[i]>temp[j] then swap

 Loop

Loop

 //Extract highest 7 nodes to active_list[current object]

For each row  temp using iterator(i) to7 do:

Active_List[objectID][i]=temp[i]

Loop

 Outputs Updated active list

Algorithm 4: The process of B_receiver

Inputs current node, current object, Rep_set[O][N]

Set size ←Rep_dir.size()

// Check Rep_set for ObjectID in TempList[]

For each col Rep_set [ObjectID][col]

IF Rep_set [ObjectID][i] ≠  then add it to TempList[]

Loop

IF TempList.size> 0 then // So, current node is a subscriber of

object

Call ADD method to add the received NodeID in Rep_set

//Update Rep_dir[][] to add new record for new update

replica

IFRep_dir[size][Node] = NodeID then

Rep_dir[size][object]← ObjectID // same with

Active_list

Rep_dir[size][TS] ← Timestamp // same with Active_list

Rep_dir[size][value] ← value // same with Active_list

End If

//Acknowledge sender to update its subscribers for object ID

Msg.Head← “add me”

Msg.Ip← { NodeID. get_IP_address }

Msg.data← { ObjectID, current NodeID}

Network.send()

//Call Active_list updatemodule

Call Active_list_update(ObjectID)

End if

Algorithm 5: The process of R_receiver process

Inputs NodeID, ObjectID, Rep_set[O][N]

//Update Rep_dir[][] to add new new update replica

Rep_dir[size][object]← ObjectID

Rep_dir[size][Node] ← NodeID

Rep_dir[size][TS] ← Timestamp

Rep_dir[size][value] ← value

Call to update Active_list[] for sent objectID

4. Experiments and Results

The experimental analysis to evaluate the proposed

replication protocol is conducted over the DRTDBS

sites. The results obtained from the experimental tests

confirm that the proposed approach is abstracted from

database model and independent on network topology.

So it can be implemented in different DDBS

environments even for the network with larger number

of sites. For simplicity, we use a complete connected

network consists of 10 nodes supported by a full-

distributed database over different areas. The database

consists of 100 data objects with time constraint

properties on data level (validity duration) between (1-

2.8 sec). For simplicity again, each data object contain

only one time-constraint attribute.

All nodes are used as servers that execute and

develop the database transactions; also they are used as

terminals which produce administrational and

functional information. The communication costs

between sites, which are measured in ms/byte is

presented in Table 1.

Table 1. Communications cost matrix: CC[N][N].

Node

(1)

Node

(2)

Node

(3)

Node

(4)

Node

(5)

Node

(6)

Node

(7)

Node

(8)

Node

(9)

Node

(10)

Node 1 0 0.1 1.1 0.6 0.4 0.8 1.5 1.6 0.4 0.5
Node 2 0.1 0 1 1 0.2 0.3 0.4 0.2 0.7 0.6
Node 3 1.1 1 0 0.6 0.6 0.7 0.8 0.7 0.8 0.2
Node 4 0.6 1 0.6 0 0.8 0.7 0.6 0.7 0.1 0.1
Node 5 0.4 0.2 0.6 0.8 0 0.1 0.2 0.2 0.7 0.9
Node 6 0.8 0.3 0.7 0.7 0.1 0 0.1 0.2 0.6 0.8
Node 7 1.5 0.4 0.8 0.6 0.2 0.1 0 0.4 0.7 0.6
Node 8 1.6 0.2 0.7 0.7 0.2 0.2 0.4 0 0.8 0.7
Node 9 0.4 0.7 0.8 0.1 0.7 0.6 0.7 0.8 0 0.1
Node

10

0.5 0.6 0.2 0.1 0.9 0.8 0.6 0.7 0.1 0

A customized transaction log file is generated with

information about each executed transaction in each

node. This log contains information about the

identification of used Object, and the time properties of

used data of writing transactions. These log files are

 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018 510

collected from all nodes into one matrix called OT that

is needed by module 1. Processing the module #1

results in the deadline matrix. This matrix determines

the nodes, which accesses each real-time data object

and defines the minimum deadline of each.

The module #2 uses the previous matrix to

determine the nodes which are subscribers of each data

object and store them in a temporary list. These lists

are used later by the same module to compare the

communication time cost versus the deadline property

of the real-time objects to make the decision of

identifying the nodes that can transmit the data object

within its validation period. The Rep_set matrix or

subscribers reflects the result of decision from this

module. Table 2 shows a sample of

Rep_set/subscribers of node #1.

Table 2. Replication set for node 1.

OID N2 N3 N4 N5 N6 N7 N8 N9 N10

43 FAL

SE

FALS

E

True FALS

E

True FALS

E

FALS

E

True FALS

E 30 FAL
SE

FALS
E

FALS
E

True True FALS
E

True FALS
E

FALS
E 48 FAL

SE
FALS

E
FALS

E
FALS

E
True FALS

E
FALS

E
FALS

E
True

37 FAL

SE

FALS

E

True True True FALS

E

True FALS

E

FALS

E 92 FAL

SE

FALS

E

FALS

E

FALS

E
True FALS

E

FALS

E

FALS

E

FALS

E 65 FAL

SE

FALS

E

FALS

E

FALS

E
True FALS

E

FALS

E

FALS

E

FALS

E 4 True True FALS

E

FALS

E

True FALS

E

FALS

E

True FALS

E 64 True FALS
E

FALS
E

True FALS
E

FALS
E

FALS
E

FALS
E

FALS
E 47 FAL

SE
FALS

E
True FALS

E
FALS

E
FALS

E
FALS

E
FALS

E
FALS

E 86 FAL

SE

FALS

E

FALS

E

FALS

E

FALS

E

FALS

E

FALS

E

True FALS

E 34 True FALS

E
True True FALS

E

FALS

E

FALS

E

FALS

E

FALS

E 7 FAL

SE

FALS

E

FALS

E

True FALS

E

FALS

E

FALS

E

FALS

E

FALS

E

To evaluate the performance of IReIDe, we measure

the consumed system resources (i.e., bandwidth and

storage) by IReIDe compared with full replication.

In case of storage requirements evaluation, Table 3

presents the quantified storages that are used by some

clusters in case of using IReIDe and without it, i.e., full

replication where the storage media is consumed on all

nodes for all objects. Notice that a configuration of 10

nodes and 100 database objects on each node, each

with a size of 64 bytes, and a replication degree of 10

in case of full replication.

Table 3. Storage requirements evaluation Of IReIDe.

of Nodes/ Cluster Storage cost / bytes

2 128

3 192

4 256

5 320

6 384

Full replication 640

While the full replication consumes a fixed large

storage spaces, IReIDe success to keep the storage at

low level. It can be noticed that IReIDe can reduce the

total storage requirements by around 80% in case of

smallest cluster or 40% in case of largest cluster.

Figure 2 depicts this evaluation in two cases.

In context of the number of replica, each node has its

specific number of replica depending on the replication

degree of its shared objects. The maximum number of

replicas that can be carried is 123 replica of 42 objects

as in case of node 8. Full replication needs to store

1000 replicas per node. For comparison, we consider

one case that is used by Mathieson et al. [15], where

the accesses within a fixed number of replicas are 300.

This case was not the worst-case as they reported.

Comparing with 123 replica (worst case in the present

approach) results in that IReIDe uses less storage cost

for the number of replica.

Figure 2. Storage requirements evaluation of IReIDe.

Comparing the impact of the present work to the

most related work by Mathieson et al. [15], we find

that they measure the storage need for increasing

number of nodes compared to full replication, and they

discover that their approach in some cases consume

12-15% more storage. In contrast to our results which

achieved very high reduction to storage (around 80%),

although we use the same number of nodes and the

same number of data objects with same size.

Other factor to evaluate IReIDe is the consumed

bandwidth. We assume that every update of data object

uses one network message, so update messages are

equal in size. Table 4 presents the used communication

cost between each two nodes using IReIDe according

to the total number of shared data objects between each

two sites. The total communication cost that consumed

if all replica updates occur is (290 ms/byte) in case

with IReIDe while the corresponding value in case

without IReIDe is (1479 ms/byte). In other words,

IReIDe has succeeded to reduce used bandwidth with

around 80%.

Table 4. Communication cost for replication With IReIDe.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 Total

N1 0 0.5 2.2 3 2.4 6.4 1.5 3.2 1.6 0.5 21.3

N2 0.5 0 6 5 0.8 2.1 2.4 0.8 1.4 1.2 24.2

N3 2.2 6 0 4.2 4.8 4.2 5.6 3.5 5.6 0.8 36.9

N4 3 5 4.2 0 4.8 4.9 3.6 4.9 0.6 0.3 31.3

N5 2.4 0.8 4.8 4.8 0 0.9 2 2.8 2.1 2.7 23.3

N6 6.4 2.1 4.2 4.9 0.9 0 1 3.2 6.6 5.6 35.7

N7 1.5 2.4 5.6 3.6 2 1 0 6.4 6.3 3 63.3

N8 3.2 0.8 3.5 4.9 2.8 3.2 6.4 0 8 4.2 34

N9 1.6 1.4 5.6 0.6 2.1 6.6 6.3 8 0 1.6 35.2

N10 0.5 1.2 0.8 0.3 2.7 5.6 3 4.2 1.6 0 19.9

To make a comparative evaluation against

511 Intelligent Replication for Distributed Active Real-Time Databases Systems

DYFRAM approach [8] which is similar to the present

work, we use histograms to record some statistics

about running of IReIDe approach. Although, they use

four workloads to evaluate their work with, we are

only considered with the first two workloads to

compare with our results because their settings are

closed to the settings of the present experiment. To

measure the transmission reduction, the histogram

records about the access rate by IReIDe and without it

(full Replication case) is used. With access rate 3190

by IReIDe compared to 4000 by DYFRAM, the

transmission reduction by DYFRAM reaches to ≅ 41%

in general case and 52% in optimal situation. While,

the transmission is reduced by IReIDe varies from 40%

within the largest cluster to 80% within the smallest

cluster by an average of 60%.

Freshness/Tardiness (FIT) approach [24] is similar

to the present work as it tries to keep the scalability in

massive distributed data by reduction of

communication cost. The authors evaluate the

scalability of this mechanism in compared with ODH

[1] in term of the average of tardy transactions to the

throughput (operations/sec). To make a comparative

evaluation against FIT mechanism and its related

works, we initiate a number of randomly updates

(write transaction) on selected data objects in all nodes

and using the performance monitor to record the total

number of tardy transactions with total number of

operations is 200, 400, 600, 800, and 1000. Figure 3

shows the penalty (tardy transactions) versus the

number of initiated operations. The figure shows that

IReIDe outperforms all other approaches. This is due

to that IReIDe concerns from the beginning with

preventing the tardy transaction and this small ratio

occurred locally by the effect of highly throughput.

Finally, to make a comparative evaluation against

JB-ML protocol [22] which uses communication cost

to modify More-Less approach to maintain the

consistency and scalability, we evaluate the

performance of IReIDe in term of CPU utilization

which is measured under different update workloads

(number of update tasks).

Indeed, 2840 update tasks are generated according

to normal distribution (11-93) of the worst case

execution of update tasks in Table 3 which is depended

on number of shared data object in each node.

Figure 3. Comparative evaluation from IReIDe and others.

Figure 4 shows the CPU utilization from all nodes

in the worst case of each by applying the IReIDe

compared with the results of JB-ML protocol in [22]

that already outperforms its related works. The results

show outperformance of the IReIDe especially in case

of larger tasks. IReIDe can reduce the CPU utilization

by 17%. The reduction of CPU utilization reaches 20%

when the number of queries tasks is more than 270.

This reduction may be occurred due to the absence of

distributed queries, the lower time which is needed to

update only the necessary objects, and the separation

between the actual database and replicated data.

Figure 4. CPU utilization of IReIDe.

5. Conclusions

This work introduces IReIDe as a novel protocol to

support the replication for DeeDS and to help in

solving the scalability problem using a new clustering

technique. The introduced protocol for distributed real-

time database acts mainly to map between the network

communication time cost and the timing properties of

the distributed data. The results show that the IReIDe

is able to generate a number of clusters from the

distributed database system network sites and reduce

the communication overhead between database sites.

As consequence, this reduction enhances the

performance and increases the chance that DRTDBS

can meet critical time-requirements. Also, reducing the

 The International Arab Journal of Information Technology, Vol. 15, No. 3, May 2018 512

large number of network sites into many clusters with

smaller number of sites will effectively decrease the

replication degree, reduce the consumed system

resources and maintain the scalability. These result in

better meeting of time constraints. This work tried to

maintain the scalability problem of DeeDS which

results from full replication strategy to avoid the

network delay effect. IReIDe make DeeDS more

scalable by managing resources using clustering

technique.

Another problem in DeeDS is temporal

inconsistency problem which resulted from local

commit strategy without coordinating with other

nodes. We plan to extend IReIDe by adding a new

mechanism to ensure that replicated database

continuously converges towards a globally consistent

state, where conflicts omitted as possibly at update

level.

References

[1] Adelberg B., Molina H., and Kao B., “Applying

Update Streams in a Soft Real-Time Database

System,” in Proceedings of the ACM SIGMOD

International Conference on Management of

Data, San Jose, pp. 245-256, 1995.

[2] Andler S., Hansson J., Eriksson J., Mellin J.,

Berndtsson M., and Eftring B., “DeeDS Towards

A Distributed and Active Real-Time Database

System,” SIGMOD Record, vol. 25, no. 1, pp.

38-51, 1996.

[3] Aslinger A. and Son S., “ Efficient Replication

Control in Distributed Real-Time Databases,” in

Proceedings of the 3
rd

 ACS/IEEE International

Conference on Computer Systems and

Applications, Cairo, pp. 34, 2005.

[4] Chen T., Bahsoon R., and Tawil A., “Scalable

Service-Oriented Replication with Flexible

Consistency Guarantee in the Cloud,”

Information Sciences, vol. 264, pp. 349-370,

2014.

[5] Galeana D., Pacheco H., and Magadan A.,

“Analysis of Clustering Algorithms for Image

Segmentation and Numerical Databases,” in

Proceedings of the Electronics, Robotics and

Automotive Mechanics Conference, Morelos, pp.

288-292, 2008.

[6] Hababeh I., “Improving Network Systems

Performance by Clustering Distributed Database

Sites,” The Journal of Supercomputing, vol. 59,

no. 1, pp. 249-267, 2012.

[7] Hamdi S., Salem M., Bouazizi R., and Bouazizi

E., “Management of Real-Time Data in

Distributed Real Time DBMS Using Semi-Total

Replication Data,” in Proceedings of the

International Conference on Computer Systems

and Applications, Ifrane, pp. 1-4, 2013.

[8] Hauglid H., Ryeng N., and Norvag K.,

“DYFRAM: Dynamic Fragmentation and

Replica Management in Distributed Database

Systems,” Distrib Parallel Databases, vol. 28,

no. 2-3, pp. 157-185, 2010.

[9] Jaing X., Li J., Xi H., and Hongsheng X.,

“Distributed Algorithms for a Replication

Problem of Popular Network Data,” Journal of

Network and Systems Management, vol. 24, no.

1, pp. 34-56, 2014.

[10] Jannu S. and Jana P., “Energy Efficient Grid

Based Clustering and Routing Algorithms for

Wireless Sensor Networks,” in Proceeding of the

4
th
 International Conference on Communication

Systems and Network Technologies, Bhopal, pp.

63-68, 2014.

[11] Laarabi M., Boulmakoul A., Sacile R., and

Garbolino E., “A Scalable Communication

Middleware for Real-Time Data Collection of

Dangerous Goods Vehicle Activities,”

Transportation Research Part C: Emerging

Technologies, vol. 48, pp. 404-417, 2014.

[12] Lin W. and Veeravalli B., “A Dynamic Object

Allocation and Replication Algorithm for

Distributed Systems with Centralized Control,”

International Journal of Computers and

Applications, vol. 28, no. 1, pp. 26-34, 2006.

[13] Malliaros F. and Vazirgiannis M., “Clustering

and Community Detection in Directed Networks:

A Survey,” Physics Reports, vol. 533, no. 4, pp.

95-142, 2013.

[14] Mathiason G., Andler S., and Jagszent D.,

“Virtual Full Replication by Static Segmentation

for Multiple Properties of Data Objects,” in

Proceedings of the 13
th
 IEEE International

Conference on Embedded and Real-Time

Computing Systems and Replication by Static

Segmentation for Multiple Properties of Data

Objects, Sweden, pp. 1-8, 2005.

[15] Mathiason G., Andler S., and Son S., “Virtual

Full Replication by Adaptive Segmentation,” in

Proceedings of the 13
th
 International Conference

on Embedded and Real-Time Computing Systems

and Applications, Daegu, pp. 327-336, 2007.

[16] Rajaretnam K., Rajkumar M., and Venkatesan R.,

“RPLB: A Replica Placement Algorithm in Data

Grid with Load Balancing,” The International

Arab Journal of Information Technology, vol. 13,

no. 6, pp. 635-643, 2016.

[17] Said A., Sadeg B., Ayeb B., and Amanton L.,

“The DLR-ORECOP Real-Time Replication

Control Protocol,” in Proceedings of the IEEE

Conference on Emerging Technologies and

Factory Automation, Mallorca, pp. 1-8, 2009.

[18] Santos R., Bernardino J., and Vieira M.,

“Leveraging Availability and Performance for

Distributed Real Time Data Warehouse,” in

Proceedings of the IEEE 36
th
 Annual Computer

513 Intelligent Replication for Distributed Active Real-Time Databases Systems

Software and Applications Conference, Izmir, pp.

654-659, 2012.

[19] Sultan T., El-Bakry H., and Hameed H., “Design

of Efficient Dynamic Replica Control Algorithm

for Periodic/Aperiodic Transactions in

Distributed Real-Time Databases,” International

Journal of Computer Science Issues, vol. 9, no. 2,

pp. 72-80, 2012.

[20] Sun Q., Qiu Y., Shao Y., and Yan W.,

“Implementation of Massive Real-Time Database

System Using Network Sensors and Sector

Operation,” Sensors and Transducers, vol. 174,

no. 7, pp. 123-128, 2014.

[21] Tiwari S., Sharma A., and Swaroop V.,

“Distributed Real Time Replicated Database:

Concept And Design,” International Journal of

Engineering Science and Technology, vol. 3, no.

6, pp. 4839-4848, 2011.

[22] Wang J., Han S., Lam K., and Mok A.,

“Maintaining Data Temporal Consistency in

Distributed Real-Time Systems,” Real-Time

System, vol. 48, no. 4, pp. 387-429, 2012.

[23] Wang W. and Fan S., “Application of Data

Mining Technique in Customer Segmentation of

Shipping Enterprises,” in Proceedings of the 2
nd

International Workshop on Database Technology

and Applications, Wuhan, pp.1-4, 2010.

[24] Xu Ch., Sharaf M., Zhou X., and Zhou A.,

“Quality-Aware Schedulers for Weak

Consistency Key-Value Data Stores,” Distrib

Parallel Databases, vol. 32, no. 4, pp. 535-581,

2014.

[25] Zaki M. and Meira W., Data Mining and

Analysis: Fundamental Concepts and

Algorithms, Cambridge University Press, 2014.

Rashed Salem He received his PhD

degree in computer science from the

University of Lyon 2, France in

2012. He has been a member of

Complex Data Warehousing and

On-Line Analysis research group

within the ERIC laboratory. He is a

lecturer at Faculty of Computers and Information,

Menoufia University, Egypt. His current research

interests mainly relate to database, business

intelligence (BI), data warehousing and Big Data.

Safa’a Saleh Currently, she is a

Lecturer in Information systems

department, Taibah University. She

received B.Sc. from Alexandria

University. She awarded High

Diploma, M.Sc. (by research) in

information systems -College of

Computing and Information Technology, Arab

Academy for Science, Alexandria, 2005 and 2008

respectively. Ph.D. degree in Information System,

Menoufia University, Egypt. She has contributed

papers in the areas of Data mining, Distributed DB

applications and bioinformatics.

Hattem Abdul-Kader He obtained

his B.S. and M.SC. (by research) in

Electrical Engineering from the

Alexandria University, Faculty of

Engineering, Egypt in 1990 and

1995 respectively. He obtained his

Ph.D. degree in Electrical

Engineering also from Alexandria University, Faculty

of Engineering, and Egypt in 2001 specializing in

neural networks and applications. He is currently a

Lecturer in Information systems department, Faculty of

Computers and Information, Menoufia University,

Egypt since 2004. He has contributed more than 30+

technical papers in areas of Neural networks, DB

applications,Information security and Internet

applications.

