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Abstract: Recently, the demand for real-time database is increasing. Most real-time systems are inherently distributed in 

nature and need to handle data in a timely fashion. Obtaining data from remote sites may take long time making the temporal 

data invalid. This results in a large number of tardy transactions with their catastrophic effect. Replication is one solution of 

this problem, as it allows transactions to access temporal data locally. This helps transactions to meet their time requirements 

which require predictable resource usage. To improve predictability, Distributed Active Real-time Database System (DeeDS) 

prototype is introduced to avoid the delay which results from disk access, network communications and distributed commit 

processing. DeeDS advises to use In-memory database, fully replication and local transaction committing, but full replication 

consumes the system resources causing a scalability problem. In this work, we introduce Intelligent Replication In DeeDS 

(IReIDe) as a new replication protocol that supports the replication for DeeDS and faces the scalability problem using 

intelligent clustering technique. The results show the ability of IReIDe to reduce the consumed system resources and maintain 

scalability. 
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1. Introduction 

A Real-Time Database System (RTDBS) is defined in 

[3] as a database system that includes all features on 

traditional database system, in addition to enforcing 

time-constraints in a form of data validation duration 

or transaction deadlines or both. According to [19, 20], 

the result value from missing deadline is used to 

categorize the real-time transactions into three types, 

soft, firm and hard. Missing a hard deadline results in 

an infinite penalty that has a fatal effect on the system, 

but missing a firm deadline gives no value, while 

missing soft deadline, may leave some value from the 

computation for some time.  

Recently, the demand for real-time database is 

increasing. Many applications such as e-commerce, 

mobile communication, accounting, information 

services, medical monitoring, nuclear reactor control, 

traffic control systems and telecommunications are 

some examples of application that require real-time 

data support [2]. 

Most real-time systems are inherently distributed in 

nature, as they need to share distributed data among 

different sites. The data in such critical systems need to 

be obtained and updated in a timely fashion [16]. 

Sometimes, obtaining data from remote sites may take 

long time, which makes temporal data invalid. This 

leads to a large number of tardy transactions (i.e., 

transactions that miss their deadline). 

Replication is one solution of this problem. 

Replicating temporal data items allows the transactions  

 
to access these data locally instead of asking for these 

data remotely. This helps transactions to meet their 

time requirements [2, 9]. 

Predictability is the most important real-time feature 

of RTDBS. It is often more important than consistency, 

which can be relaxed to improve predictability of data 

accesses [3]. That is due to the fatal effect of missing 

deadline in a hard real-time systems and the reduced 

service of soft real-time systems [21]. For hard real-

time systems, predictable resource usage is the most 

essential design concern to enable timeliness for such 

systems. Detailed prior knowledge about the resource 

requirements of transactions is necessary. Such 

knowledge includes the worst-case execution order of 

concurrent transactions, where the highest resource 

usage occurs [21].  

To improve predictability of RTDBS, Distributed 

Active Real-time Database System (DeeDS) prototype 

is introduced [2] to provide Distributed Real-Time 

Database Systems (DRTDBS) with strict requirements 

on predictable efficient execution. However, DeeDs 

still needs replication features to cope with the 

scalability problem. 

DeeDS prototype highlights how to avoid 

unpredictability sources from the delay that result from 

disk access, network communications and distributed 

commit processing. DeeDS also suggest some 

strategies to remove the unpredictability sources using 

in-memory database, fully replication and committing 

transaction locally [15]. Figure 1 summarizes DeeDS 

vision and strategies to improve the predictability.  
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Figure 1. DeeDS vision and strategies. 

However full replication has a scalability problem 

as it consumes the system resources because the 

system must replicate all updates to all the nodes, 

regardless whether the data will be used there or not. 

Also, updates in fully replicated databases must be 

integrated at all nodes [6, 22].  

In fact, scalability is increasingly very important 

target for distributed real-time databases, because the 

number of users, the number of nodes, the involved 

workload, and the size of database in distributed 

applications are in increasing [11]. Full replication 

strategy of DeeDS to avoid network access delay 

makes systems scale badly as they replicate all updates 

to all nodes, using excess resources whether they are 

needed there or not. In real systems, not all nodes use 

all data objects. It is assumed that only a fraction of the 

replicated data is used at the local node [4]. 

The core design of DeeDS is extended in DeeDS 

Next Generation (DeeDS NG) [6] to meet the demands 

of modern real-time applications such as sensor 

networks, and information fusion-based applications. 

The new DeeDS design is introduced by adding the 

concept of virtual full replication to manage the 

resources for scalability [16]. It reduces the resource 

usage by avoiding un-needed replica by replicating 

selected data items to selected nodes depending on the 

fact that not all nodes need all data items, i.e., replicate 

each item where it needed only.  

Under the assumption by DeeDS NG that the 

replicas of data objects will only be used at a limited 

subset of the nodes (as in partial replication), the 

degree of replication can be lowered. The usage of 

bandwidth, storage and processing time depends on the 

degree of replication, so these resources are wasted in a 

fully replicated database compared to in a lower degree 

of replication. With replication of only those data 

objects that are actually used, resources can be saved 

and thereby scalability can be improved [2]. 

Virtual full replication is based on the idea of 

lowering the replication degree. Clustering distributed 

database nodes into number of clusters with lower 

number of nodes can be considered as an approach to 

limit the degree of replication and can achieve the 

virtually fully replicated database [5]. The degree of 

replication is a result of allocating node to the clusters 

where its data objects are accessed. This is typically 

much fewer nodes than used in a fully replicated 

database. The clustering method must be based on the 

accessed data and the network properties [6, 22]. 

The main contribution of this work is introducing 

Intelligent Replication In DeeDS (IReIDe) as a new 

replication protocol based on virtual full replication 

using intelligent clustering technique to support DeeDS 

in maintaining scalability problem. The idea of this 

work is that the concept of virtual full replication can 

be achieved by using clustering technique which 

segments large number of nodes based on a priori 

known data needs and network properties into many 

clusters with smaller number of nodes. This lowers the 

replication degree, reduces the amount of replicated 

data to be transferred among less number of nodes and 

increases the transaction processing performance. 

Moreover, this improves scalability by controlling the 

usage of the key resources [22]. 

Determining associated nodes based on the timing 

properties of the used data in addition to the timing 

properties of the network (communication cost) will 

reduces the system resource consuming, and allowing 

parallel replication that improves the consistency and 

gives more chance to increase the scalability without 

the headache of performance. This work tries to make 

the DeeDS more scalable in an intelligent way by 

managing resources for scalability using clustering 

technique to replicate updates only for those data 

objects that are used at a node.  

Although IReIDe is introduced to keep the 

properties of DeeDS, it is designed mainly to avoid 

unpredictability, so it can be adapted to other database 

models. 

The remainder of this paper is organized as the 

follows: section 2 discusses the previous work that 

related to the present work. Section 3 presents IReIDe 

approach for intelligent replication in DeeDS. Section 

4 covers the experimental study to evaluate the 

introduced algorithm. Finally, the conclusion is 

provided in section 5.  

2. Related Work 

Although there are many researches that worked in the 

field of RTDB replication [3, 6, 7 , 12, 14, 17, 19] few 

of them addressed the replication in DeeDS or even the 

concept of virtual full replication [14, 15].  

Using term of scalability, there are many works in 

different areas act to minimize the communication cost 

as the work by Lin and Veeravalli [12]. They used 

prior knowledge of accesses for minimizing service 

cost for allocating objects in a distributed system. They 

introduced a Central Control Unit (CCU) to serialize 

allocation and deallocation decisions. But, this control 

unit becomes a single point of failure and a bottleneck 

for scalability. 

The work by Mathiason et al. [14] is the main work 

that supported the virtual full replication in DeeDS by 

grouping data objects into segments. The data in each 

segment are similar in some combination of properties. 

Their scalable algorithm (ViFuR-S) handles the 

problem of segmenting a database based on multiple 
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properties, where multiple and overlapping 

segmentations of the database are allowed. Another 

work by Mathiason et al. [15] extends the previous 

algorithm to maintain scalability at execution time, to 

improve the access time to data object at any node and 

to ensure scalable propagation of updates over the 

network. Their algorithm is called ViFuR-A as it was 

to adapt replication over time to actual data needs of 

database clients. Their results showed the ability of 

virtual full replication by adaptive segmentation to 

maintain scalability and preserves transaction 

timeliness. 

The last two works [14, 15] are the most related 

work to our proposed protocol as they are based on 

DeeDS prototype. However, we noticed the following 

shortcomings that will be avoided in the present work:  

1. Their algorithm depends on the properties such as 

access location, consistency and storage medium. 

But timeliness which is the main property of RTDB 

ignored in their work.  

2. Their work missed the usage of network properties.  

3. They ignored the usage of pattern detection in their 

work.  

4. They determined and fixed the replication degree of 

each segment, although it is difficult to occur.  

We see that the replication degree is a dynamic 

concept that based on the requirement of each node.  

By thinking of clustering the database nodes, we 

find that many clustering techniques have been 

introduced in a wide variety of applications such as 

image processing [17], network segmentation [23], 

marketing [13], pattern recognition [25], and network 

sites clustering [6, 10]. But in case of clustering the 

database nodes, the work by Hababeh [6] must come to 

front. He introduces an intelligent clustering technique 

that segmented the distributed database network sites 

into disjoint clusters according to the least average 

communication cost between network sites. This work 

has succeeded to reduce the communication cost. We 

believe that, this reduction can improve the 

predictability of DRTDB. However, we need to extend 

their clustering algorithm to include the timing features 

of RTDB in clustering criteria in addition to the 

network properties to obtain better predictability of 

DeeDS. This can reduce the communication traffic and 

improve the performance of DRTDB. Bearing in mind, 

the nature of time-constraint database to achieve the 

virtual full replication in DeeDS, we still need to 

develop a novel clustering method to outperform the 

current clustering techniques. This novel clustering 

method creates disjoint clusters according to the 

properties of data and the properties of network 

together to generate an optimal number of clusters. 

This lowers the replication degree and helps RTDBS to 

meet the timing requirements and to avoid the fatal 

effect of missing the deadline in case of hard 

transactions [18]. 

3. IReIDe Approach  

In virtual full replication, every node has an image of 

full replicated database, and the updates will be 

replicated where they are needed. To achieve virtual 

full replication, we introduce a novel clustering 

method, which uses the timing properties of data and 

the timing properties of the network to segment the 

database nodes. It aims mainly at reducing the 

replication degree to preserve the system resources and 

enables DRTDBS to meet their time requirements. 

Such requirements of prior knowledge about the needs 

of each node must be used in the intelligent clustering 

approach. Each cluster has its own replication degree 

that is lower than in case of full replication. This acts 

to reduce the usage of system resource and make the 

database more scalable. A cluster is represented as a 

pair {O, N} where N is a set of nodes that host a 

replication set which list the associated nodes for each 

object in data objects O.  

The clustering algorithm is presented in the 

following subsections. The produced clusters are 

allowed to be overlapped but they are prevented from 

intercommunication between each other. 

Each database node holds a specific data store 

called “replication set (Rep_set)” which is a Boolean 

two-dimension data structure to define the shared 

nodes (subscribers) of each data object which are 

together in same cluster. It is used by propagation 

process to distribute the updates of an object to all 

listed nodes for the individual object. The replica or 

updates are stored in another data structure to be used 

by the integration process. 

The database system in each node uses its 

replication set to replicate any update on data object to 

the subscribers that are defined in replication set for 

the individual data object. The replication operation 

will execute in O(n) where n is the number of 

subscribers for each data object cluster.  

3.1. The Clustering Method 

The decision of clustering is based mainly on the rule 

that the communication cost between two sites will 

never affect the validity of replicated data, i.e., any 

data object must be replicated within its validation 

period. The allowed data are those that have timing 

properties values is less than the network time 

communication cost. To maintain and simplify the 

work, the following assumptions are considered: 

1. The communication cost between each two sites is 

symmetric. 

2. The transaction type is hard, i.e., it is important to 

avoid the missing its deadline. 

3. The transaction deadline is derived from the used 

data validation duration property.  

4. The database is virtually fully replicated, so any 

transaction that initiated on any node will access a 
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needed data object locally. 

5. The communication is real-time reliable, i.e., all 

messages are sent to the destination within limited 

time and they are reaching in save time.  

6. The network is fully connected, i.e., it is possible to 

communicate in a point-to-point fashion between 

any two nodes in the system. 

The outline of these methods is depicted as the 

following: 

 Inputs: Log matrix Objects by Transactions (OT), 

Communication cost matrix CC[N][N], Total 

Number of Nodes (N), Total Number of data 

Objects (O). 

 Processing: {Module 1: Obtaining Minimum 

Deadline Matrix of shared data}. 
    {Module 2: Obtaining replication set/each 

object/each site}. 

 Output: Matrix of generated clusters (replication 

set) for each site (RepSet[][][]). 

3.1.1. The Definition of Clustering Parameters  

The following list defines and describes the parameters 

of our proposed algorithm: 

 Communication Cost matrix CC (Si, Sj): holds the 

cost of transmitting data object in ms/byte between 

any two nodes Si and Sj in the distributed system. 

 Log matrix (OT): is the working set (the objects 

used by transaction) for all transactions at each S(i). 

 Deadline[O][N]: a source of minimum deadline or 

validity duration of the transaction on each node. 

 Replication set (RepSet[Nc][O][Ni]): a place to 

identify the node cluster of each object of the 

current node (Nc) on each node (Ni). 

3.1.2. Module 1: Obtaining Min Deadline Matrix  

This module checks the transaction DeadLine (DL) 

and Validity Duration (VD) for each transaction in the 

log matrix OT to produce Minimum Deadline matrix 

of each data object. 

3.1.3. Module 2: Obtaining the Replication Set/ Site 

This module which is presented in Algorithm 1, 

identifies the sites that match the time cost, which is 

less than the minimum deadline of shared data object 

between them in order to group them initially in one 

cluster. 
 

Algorithm 1: Obtaining Replication set/ site 

Inputs  Deadline[O][N], Total number of Nodes (N),  

Total number of Objects (O), communication cost matrix 

CC[N][N] 

Set Boolean matrix:Rep_set [nodes][objects][nodes]← false; 

For each row deadline[O][N] using iterator (i) do: 

Set ObjectID ← i  

Set counter C ← 0 

For each col deadline[o][N] using iterator j 

IF (deadline[i][j] ≠ Φ) then  

        set VD= deadline[i][j]; set NodeID =j;  

       set temp[C++] ←    NodeID; // temporary structure 

End if  

Loop 

For  x from 0 to C-2 

For  iterator y from x+1 to C-1 

IF CC[temp[x]][temp[y]]<VD then   

Rep_set[temp[x]][ObjectID][temp[y]]←T; // true 

Rep_set[temp[y]][ObjectID][temp[x]]←T; //true 

End if    

loop 

loop 

loop 

Outputs  Replication set (RepSet[N][O][N]) 

3.2. The Propagation Method 

The propagation method consists of two phases: 

distribution phase, and receiving phase. When a 

transaction that accesses an object for write operation 

has committed, the “distribution module” or the 

distributor will be called. It starts with checking the 

Rep_Set to extract the subscribers of updated object. 

Then it distributes the update to the specified 

subscribers.If the current node is not listed in 

replication set as a subscriber for the current data 

object, the distributor will send a broadcast message 

with a request to update the replication set. The 

message contains the current object identifier, the 

updated value and current node identifier in addition to 

the timestamp value. All will be used by the receiving 

nodes to add the received node_id to its replication set 

for object_id. Also, the receiving node uses the 

received value to update the object value in replication 

directory. The replication directory (Rep_DIR) is a 

data structure that holds information about replica of 

data objects. The distribution module is outlined as in 

(Algorithm 2). Each node contains a data store which is 

called “Active_list” to hold the most recent node 

identifiers that access each data objects, sorted 

according to the timestamp of activity. The most active 

node is the node that has the most recent access to the 

object. Receiving the update message results in calling 

of active_list update module (Algorithm 3) to update the 

local active_list data store. "Active_list" is used to 

make a decision of removing the least active node 

when the number of subscribers increases to a 

specified threshold (70% in our case) of the total 

number of nodes. The node that receives the 

propagated message will call the receiver module 

which executes B_receiving module (Algorithm 4) in 

case of broadcast message or executes R_receiving 

module (Algorithm 5) in case of regular update message 

according to the message type. B_receiving module 

calls “Add” module after checking whether the current 

node is a subscriber for the received data object to add 

received Node_ID as a new subscriber. Then, 

active_list update module is called to refresh 

active_list data structure. B_receiving module also use 
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the received information to update the Rep_DIR. In 

case of regular received message, R_receiving module 

(Algorithm 5) is called to update Rep_DIR using the 

received data. Then call active_list update module. 

Algorithm 2: The process of distributor (distribution module) 

Inputs current node, current object, Rep_set[O][N] 

//Check Rep_set for current object’s subscribes in TempList[] 

Set Value← current object value  

Initialize temp vector: Osubscribers[] 

For each node Nodes do:  

If Rep_set[current ObjectID][ node] = true then 

Add node to Osubscribers []  

End if  

Loop  

IF Osubscribers.size() ≠ 0 then  

/* Regular propagation to all subscribers: Multicast*/ 

For  each OsubscriberOsubscribers[]using iterator( i ) do: 

Msg.Head← “Regular updates” 

Msg.IP←  { Osubscribers [].get_IP_address } 

Msg.data←{current node_ID, current Obj_id, value, TS} 

Network.send(Msg) 

Loop 

Else  

/* Broadcast request to add new subscriber */ 

Msg.Head← { "New subscriber” & current Obj_id } 

Msg.Address← IPAddress.getAny()  

Msg.data← {Current_node_id,current_Obj_id, value, TS} 

Network.send(Msg) 

End if  

Algorithm 3: Active_List_update module 

Inputs current objectID , active_list  

For each row  Rep_Dir using iterator(i) do: 

  Set j to 0; 

  IF Rep_Dir[j][object] = objectID then  

    temp[j][node]= Rep_Dir [i][node] 

    temp[j][TS]= Rep_Dir [i][TS] 

    increase j with 1 //j++ 

  End if 

Loop 

For each row  temp using iterator(i) to temp.size-1 do: 

  For each row  temp using iterator(j) to temp.size-1 do: 

    If temp[i]>temp[j] then swap 

   Loop 

Loop 

    //Extract highest 7 nodes to active_list[current object] 

For each row  temp using iterator(i) to7 do: 

Active_List[objectID][i]=temp[i] 

Loop 

 Outputs  Updated active list 

Algorithm 4: The process of B_receiver 

Inputs current node, current object, Rep_set[O][N] 

Set size ←Rep_dir.size() 

// Check  Rep_set  for ObjectID in TempList[] 

For each col Rep_set [ObjectID][ col]  

IF Rep_set [ObjectID][i] ≠  then add it to TempList[] 

Loop 

IF TempList.size> 0 then  // So, current node is a subscriber of 

object 

Call ADD method to add the received NodeID in Rep_set 

//Update Rep_dir[][] to add new record for new update 

replica 

IFRep_dir[size][ Node]  =  NodeID  then  

Rep_dir[size][ object]←    ObjectID // same with 

Active_list 

Rep_dir[size][ TS] ←  Timestamp // same with Active_list 

Rep_dir[size][ value]  ←   value // same with Active_list 

End If 

//Acknowledge sender to update its subscribers for object ID 

Msg.Head←   “add me” 

Msg.Ip←  { NodeID. get_IP_address } 

Msg.data←   { ObjectID, current NodeID} 

Network.send() 

//Call Active_list updatemodule 

Call Active_list_update(ObjectID) 

End if  

Algorithm 5: The process of R_receiver process 

Inputs NodeID, ObjectID, Rep_set[O][N] 

//Update Rep_dir[][] to add new new update replica 

Rep_dir[size][ object]← ObjectID 

Rep_dir[size][ Node] ← NodeID 

Rep_dir[size][ TS] ← Timestamp 

Rep_dir[size][ value] ← value  

Call to update Active_list[] for sent objectID 

4. Experiments and Results 

The experimental analysis to evaluate the proposed 

replication protocol is conducted over the DRTDBS 

sites. The results obtained from the experimental tests 

confirm that the proposed approach is abstracted from 

database model and independent on network topology. 

So it can be implemented in different DDBS 

environments even for the network with larger number 

of sites. For simplicity, we use a complete connected 

network consists of 10 nodes supported by a full-

distributed database over different areas. The database 

consists of 100 data objects with time constraint 

properties on data level (validity duration) between (1-

2.8 sec). For simplicity again, each data object contain 

only one time-constraint attribute. 

All nodes are used as servers that execute and 

develop the database transactions; also they are used as 

terminals which produce administrational and 

functional information. The communication costs 

between sites, which are measured in ms/byte is 

presented in Table 1. 

Table 1. Communications cost matrix: CC[N][N]. 

 
Node 

(1) 

Node 

(2) 

Node 

(3) 

Node 

(4) 

Node 

(5) 

Node 

(6) 

Node 

(7) 

Node 

(8) 

Node 

(9) 

Node 

(10) 

Node 1 0 0.1 1.1 0.6 0.4 0.8 1.5 1.6 0.4 0.5 
Node 2 0.1 0 1 1 0.2 0.3 0.4 0.2 0.7 0.6 
Node 3 1.1 1 0 0.6 0.6 0.7 0.8 0.7 0.8 0.2 
Node 4 0.6 1 0.6 0 0.8 0.7 0.6 0.7 0.1 0.1 
Node 5 0.4 0.2 0.6 0.8 0 0.1 0.2 0.2 0.7 0.9 
Node 6 0.8 0.3 0.7 0.7 0.1 0 0.1 0.2 0.6 0.8 
Node 7 1.5 0.4 0.8 0.6 0.2 0.1 0 0.4 0.7 0.6 
Node 8 1.6 0.2 0.7 0.7 0.2 0.2 0.4 0 0.8 0.7 
Node 9 0.4 0.7 0.8 0.1 0.7 0.6 0.7 0.8 0 0.1 
Node 

10 

0.5 0.6 0.2 0.1 0.9 0.8 0.6 0.7 0.1 0 

A customized transaction log file is generated with 

information about each executed transaction in each 

node. This log contains information about the 

identification of used Object, and the time properties of 

used data of writing transactions. These log files are 
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collected from all nodes into one matrix called OT that 

is needed by module 1. Processing the module #1 

results in the deadline matrix. This matrix determines 

the nodes, which accesses each real-time data object 

and defines the minimum deadline of each.  

The module #2 uses the previous matrix to 

determine the nodes which are subscribers of each data 

object and store them in a temporary list. These lists 

are used later by the same module to compare the 

communication time cost versus the deadline property 

of the real-time objects to make the decision of 

identifying the nodes that can transmit the data object 

within its validation period. The Rep_set matrix or 

subscribers reflects the result of decision from this 

module. Table 2 shows a sample of 

Rep_set/subscribers of node #1. 

Table 2. Replication set for node 1. 

OID N2 N3 N4 N5 N6 N7 N8 N9 N10 

43 FAL

SE 

FALS

E 

True FALS

E 

True FALS

E 

FALS

E 

True FALS

E 30 FAL
SE 

FALS
E 

FALS
E 

True True FALS
E 

True FALS
E 

FALS
E 48 FAL

SE 
FALS

E 
FALS

E 
FALS

E 
True FALS

E 
FALS

E 
FALS

E 
True 

37 FAL

SE 

FALS

E 

True True True FALS

E 

True FALS

E 

FALS

E 92 FAL

SE 

FALS

E 

FALS

E 

FALS

E 
True FALS

E 

FALS

E 

FALS

E 

FALS

E 65 FAL

SE 

FALS

E 

FALS

E 

FALS

E 
True FALS

E 

FALS

E 

FALS

E 

FALS

E 4 True True FALS

E 

FALS

E 

True FALS

E 

FALS

E 

True FALS

E 64 True FALS
E 

FALS
E 

True FALS
E 

FALS
E 

FALS
E 

FALS
E 

FALS
E 47 FAL

SE 
FALS

E 
True FALS

E 
FALS

E 
FALS

E 
FALS

E 
FALS

E 
FALS

E 86 FAL

SE 

FALS

E 

FALS

E 

FALS

E 

FALS

E 

FALS

E 

FALS

E 

True FALS

E 34 True FALS

E 
True True FALS

E 

FALS

E 

FALS

E 

FALS

E 

FALS

E 7 FAL

SE 

FALS

E 

FALS

E 

True FALS

E 

FALS

E 

FALS

E 

FALS

E 

FALS

E  

To evaluate the performance of IReIDe, we measure 

the consumed system resources (i.e., bandwidth and 

storage) by IReIDe compared with full replication.  

In case of storage requirements evaluation, Table 3 

presents the quantified storages that are used by some 

clusters in case of using IReIDe and without it, i.e., full 

replication where the storage media is consumed on all 

nodes for all objects. Notice that a configuration of 10 

nodes and 100 database objects on each node, each 

with a size of 64 bytes, and a replication degree of 10 

in case of full replication.  

Table 3. Storage requirements evaluation Of IReIDe. 

# of Nodes/ Cluster Storage cost / bytes 

2 128 

3 192 

4 256 

5 320 

6 384 

Full replication 640 

While the full replication consumes a fixed large 

storage spaces, IReIDe success to keep the storage at 

low level. It can be noticed that IReIDe can reduce the 

total storage requirements by around 80% in case of 

smallest cluster or 40% in case of largest cluster. 

Figure 2 depicts this evaluation in two cases. 

In context of the number of replica, each node has its 

specific number of replica depending on the replication 

degree of its shared objects. The maximum number of 

replicas that can be carried is 123 replica of 42 objects 

as in case of node 8. Full replication needs to store 

1000 replicas per node. For comparison, we consider 

one case that is used by Mathieson et al. [15], where 

the accesses within a fixed number of replicas are 300. 

This case was not the worst-case as they reported. 

Comparing with 123 replica (worst case in the present 

approach) results in that IReIDe uses less storage cost 

for the number of replica. 

 

Figure 2. Storage requirements evaluation of IReIDe. 

Comparing the impact of the present work to the 

most related work by Mathieson et al. [15], we find 

that they measure the storage need for increasing 

number of nodes compared to full replication, and they 

discover that their approach in some cases consume 

12-15% more storage. In contrast to our results which 

achieved very high reduction to storage (around 80%), 

although we use the same number of nodes and the 

same number of data objects with same size. 

Other factor to evaluate IReIDe is the consumed 

bandwidth. We assume that every update of data object 

uses one network message, so update messages are 

equal in size. Table 4 presents the used communication 

cost between each two nodes using IReIDe according 

to the total number of shared data objects between each 

two sites. The total communication cost that consumed 

if all replica updates occur is (290 ms/byte) in case 

with IReIDe while the corresponding value in case 

without IReIDe is (1479 ms/byte). In other words, 

IReIDe has succeeded to reduce used bandwidth with 

around 80%. 

Table 4. Communication cost for replication With IReIDe. 

 
N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 Total 

N1 0 0.5 2.2 3 2.4 6.4 1.5 3.2 1.6 0.5 21.3 

N2 0.5 0 6 5 0.8 2.1 2.4 0.8 1.4 1.2 24.2 

N3 2.2 6 0 4.2 4.8 4.2 5.6 3.5 5.6 0.8 36.9 

N4 3 5 4.2 0 4.8 4.9 3.6 4.9 0.6 0.3 31.3 

N5 2.4 0.8 4.8 4.8 0 0.9 2 2.8 2.1 2.7 23.3 

N6 6.4 2.1 4.2 4.9 0.9 0 1 3.2 6.6 5.6 35.7 

N7 1.5 2.4 5.6 3.6 2 1 0 6.4 6.3 3 63.3 

N8 3.2 0.8 3.5 4.9 2.8 3.2 6.4 0 8 4.2 34 

N9 1.6 1.4 5.6 0.6 2.1 6.6 6.3 8 0 1.6 35.2 

N10 0.5 1.2 0.8 0.3 2.7 5.6 3 4.2 1.6 0 19.9 
 

To make a comparative evaluation against 
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DYFRAM approach [8] which is similar to the present 

work, we use histograms to record some statistics 

about running of IReIDe approach. Although, they use 

four workloads to evaluate their work with, we are 

only considered with the first two workloads to 

compare with our results because their settings are 

closed to the settings of the present experiment. To 

measure the transmission reduction, the histogram 

records about the access rate by IReIDe and without it 

(full Replication case) is used. With access rate 3190 

by IReIDe compared to 4000 by DYFRAM, the 

transmission reduction by DYFRAM reaches to ≅ 41% 

in general case and 52% in optimal situation. While, 

the transmission is reduced by IReIDe varies from 40% 

within the largest cluster to 80% within the smallest 

cluster by an average of 60%. 

Freshness/Tardiness (FIT) approach [24] is similar 

to the present work as it tries to keep the scalability in 

massive distributed data by reduction of 

communication cost. The authors evaluate the 

scalability of this mechanism in compared with ODH 

[1] in term of the average of tardy transactions to the 

throughput (operations/sec). To make a comparative 

evaluation against FIT mechanism and its related 

works, we initiate a number of randomly updates 

(write transaction) on selected data objects in all nodes 

and using the performance monitor to record the total 

number of tardy transactions with total number of 

operations is 200, 400, 600, 800, and 1000. Figure 3 

shows the penalty (tardy transactions) versus the 

number of initiated operations. The figure shows that 

IReIDe outperforms all other approaches. This is due 

to that IReIDe concerns from the beginning with 

preventing the tardy transaction and this small ratio 

occurred locally by the effect of highly throughput. 

Finally, to make a comparative evaluation against 

JB-ML protocol [22] which uses communication cost 

to modify More-Less approach to maintain the 

consistency and scalability, we evaluate the 

performance of IReIDe in term of CPU utilization 

which is measured under different update workloads 

(number of update tasks). 

Indeed, 2840 update tasks are generated according 

to normal distribution (11-93) of the worst case 

execution of update tasks in Table 3 which is depended 

on number of shared data object in each node.  

 

Figure 3. Comparative evaluation from IReIDe and others. 

Figure 4 shows the CPU utilization from all nodes 

in the worst case of each by applying the IReIDe 

compared with the results of JB-ML protocol in [22] 

that already outperforms its related works. The results 

show outperformance of the IReIDe especially in case 

of larger tasks. IReIDe can reduce the CPU utilization 

by 17%. The reduction of CPU utilization reaches 20% 

when the number of queries tasks is more than 270. 

This reduction may be occurred due to the absence of 

distributed queries, the lower time which is needed to 

update only the necessary objects, and the separation 

between the actual database and replicated data. 

 

Figure 4. CPU utilization of IReIDe. 

5. Conclusions  

This work introduces IReIDe as a novel protocol to 

support the replication for DeeDS and to help in 

solving the scalability problem using a new clustering 

technique. The introduced protocol for distributed real-

time database acts mainly to map between the network 

communication time cost and the timing properties of 

the distributed data. The results show that the IReIDe 

is able to generate a number of clusters from the 

distributed database system network sites and reduce 

the communication overhead between database sites. 

As consequence, this reduction enhances the 

performance and increases the chance that DRTDBS 

can meet critical time-requirements. Also, reducing the 
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large number of network sites into many clusters with 

smaller number of sites will effectively decrease the 

replication degree, reduce the consumed system 

resources and maintain the scalability. These result in 

better meeting of time constraints. This work tried to 

maintain the scalability problem of DeeDS which 

results from full replication strategy to avoid the 

network delay effect. IReIDe make DeeDS more 

scalable by managing resources using clustering 

technique.  

Another problem in DeeDS is temporal 

inconsistency problem which resulted from local 

commit strategy without coordinating with other 

nodes. We plan to extend IReIDe by adding a new 

mechanism to ensure that replicated database 

continuously converges towards a globally consistent 

state, where conflicts omitted as possibly at update 

level. 
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