
The International Arab Journal of Information Technology, Vol. 15, No. 3A, Special Issue 2018 515

Using the MQTT Protocol in Real Time for

Synchronizing IoT Device State

Adnan Shaout and Brennan Crispin

Electrical and Computer Engineering Department, University of Michigan, Dearborn

Abstract: This paper will present a design and implementation for an embedded system to connect to a Machine to Machine

(M2M) broker. The proposed system will use the cloud server to communicate with other embedded systems. The system will

be configurable from a cloud-based web service. The paper also will explore previous research on M2M protocols such as

Message Queueing Telemetry Transport (MQTT) and Advanced Messaging Queuing Protocol (AMQP). The paper will present

and demonstrate an MQTT based system for synchronizing IoT device state across multiple client nodes. The objective of the

system is for state changes to be registered and distributed throughout the system in under 1 second; and initial registration of

a new node should occur in under 30 seconds.

Keywords: MQTT, synchronizing, machine to machine, real time systems, IoT, cloud computing.

Received February 16, 2018; accepted April 11, 2018

1. Introduction

With the growing number of IoT devices, there is an

increasing need for the ability to synchronize state and

data across multiple IoT devices. As many IoT devices

will be operating in constrained environments with

unstable network connections, understanding the

tradeoffs of various protocols is critical. Standards to

develop specific protocols for IoT are needed [13].

The Internet of Things (IoT) increasingly covers a

wide array of applications and use cases, and is a large

current field of study and innovation. For example, in

smart cities IoT is the key features and the driver

technologies and the physical digital integration within

city systems [31].

One of the major issues for IoT devices is how to

efficiently communicate and synchronize between each

other, a process referred as Machine to Machine

(M2M) communication. The IoT emerging network

topologies and communication technologies is another

area of IoT research [5]. The connectivity technologies

and tools and their contributions for setting up and

sustaining smarter environments is another major issue

for IoT devices [26]. Since operating remotely and in

low-power devices is critical to the success of IoT

devices, nodes must often be able to operate in

constrained environments with unreliable network

access. Several protocols have been explored for

Machine to Machine communication of IoT devices,

including Message Queueing Telemetry Transport

(MQTT) [23], the Advanced Messaging Queuing

Protocol (AMQP) [1], Constrained Application

Protocol (CoAP) [7], Data Distribution Service (DDS)

[10], Web sockets [17], the Extensible Messaging and

Presence Protocol (XMPP) [34], and HTTP based

protocols [16]. Synchronization abstractions have been

suggested to be used to tie

together the interactions between ‘things’ in an IoT

environment [21, 28]. The IBM Bluemix was also used

to connect an IOT device to a cloud server [30]. An

IoT protocol stack, which is an extension of the

TCP/IP layered protocol model was also proposed by

Rayes and Salam [27].

The paper will present a design and implementation

of an IoT system that can detect local state changes and

synchronize those state changes with other remote

nodes as shown in Figure 1.

Figure 1. Overview of system flow-sending node sends an update

which is received by all nodes registered as listeners.

The primary objective of this system will be for an

embedded system to connect to a M2M broker, use the

cloud server to communicate with other embedded

systems, and be configurable from a cloud-based web

service. The system will register state changes then

distributed them throughout in under 1 second, and

initial registration of a new node should occur in under

30 seconds.

Additionally, no state change data should be lost.

For the purposes of this research in this paper the

MQTT protocol was chosen for appearing to best meet

the requirements set forward.

Cloud

Server

Sending

Node

Listening

Node A

Listening

Node B

Listening

Node C

516 The International Arab Journal of Information Technology, Vol. 15, No. 3A, Special Issue 2018

MQTT is an open-source TCP based protocol based

on publish-subscription architecture. In publish-

subscribe (“pub-sub”), clients connect to a central

broker, and can “subscribe” to interested topics. When

a client “publishes” to that topic, any client nodes that

have subscribed will receive the published message.

Being a TCP based protocol, MQTT has relatively

high overhead, but also a high guaranteed Quality of

Service (QoS), and also supports one-to-one and one-

to-many messages. MQTT has numerous open source

libraries and a robust support community, making it

relatively easy to use for applications. A sample

MQTT network is shown in Figure 2 [20].

Figure 2. Sample MQTT system, several clients subscribe for

updates from a temperature sensor.

This paper is further organized as follows: section 2,

Prior research on common M2M protocols is

summarized and used to provide a basis for using

MQTT in this paper. In section 3, the implementation

of the proposed design is discussed, both in terms of

design and requirements testing. In section 4, testing

results and how the system did meet the requirements

set forward will be discussed; and section 5,

conclusions and future work will be presented.

2. Related Work

In order to determine the best protocol for this project,

research on the relative performance of several M2M

communication protocols was examined and the results

compared to the requirements for the project. A

number of studies, [3, 4, 22, 29] have examined M2M

protocols for networked devices in the qualitative

sense, however, quantitative studies were required to

determine which protocol would best meet the

requirements for this project.

Yokotani and Sasaki [35] compared HTTP and

MQTT protocol network requirements in a variety of

network conditions, finding that MQTT is a more

efficient protocol for connecting IOT devices than

HTTP. This is largely due to the additional data

overhead involved in HTTP compared to the MQTT

protocol. In [9], Daud and Suhaili compared

performance for Constrained Application Protocol

(CoAP) and Hypertext Transfer Protocol (HTPP)

protocols, finding that CoAP has a substantially lighter

memory and processing footprint, but that HTTP has

substantial security improvements due to build in TLS

support. The authors recommended that CoAP be

implemented with DTLS to improve communication

security. In [14] HTTP and AMQP are compared in the

case of RESTful web services; running several tests

over a variety of client applications. After comparing

the average number of messages sent and received, the

authors conclude that AMQP allows a greater number

of messages to be supported.

Since many IoT devices will be required to perform

in unstable network environments, Luzuriaga et al.

[19] compared the performance of AMQP and MQTT

protocols in poor quality and unstable network

environments. They found that AMQP is more reliable

and stable, but that MQTT, being the lighter-weight

service, is more appropriate for constrained edge

nodes. Thangavel et al. [33] compared CoAP and

MQTT bandwidth usage and delay time for varying

packet loss constraints. They found that MQTT, being

TCP based, had high delivery percentages at high

packet loss, but longer delays, while CoAP, being UDP

based, lost substantial numbers of packets at a lower

delay time. Similarly, Sutaria and Govindachari [32]

ran further comparisons of MQTT and CoAP, finding

similar results in data loss and latency.

Due to the frequency of constrained networks in IoT

applications, Chen and Kunz [8] compared several

protocols under constrained wireless environments:

MQTT, CoAP, DDS, and XMPP. Using the example

of a medical device transmitting data to a care

provider, they examined a number of factors such as

latency and packet loss under progressively

constrained environments. They found that both

MQTT and DDS have zero packet loss in high latency

environments, but that DDS is superior in terms of

latency-but substantially higher bandwidth

requirements. CoAP and XMPP both experienced

substantial packet losses and higher bandwidth

consumption.

From the research that has already been conducted,

it was determined that the MQTT protocol would best

meet the requirements set out previously for latency,

memory and power, publish/subscribe architecture.

MQTT has successfully been used to implement a wide

variety of data collection services [6, 11, 12, 15, 18],

although it has not yet been used to synchronize device

state across multiple IoT nodes.

3. Implementation

This section discusses the hardware setup and software

design and implementation of the system.

Subscribe “sensors/temperature/#”

Publish

“sensor/<type>/…

Subscribe
“sensors/temperature/

<address> …

MQTT Broker

Subscribe “#”

Storage

Using the MQTT Protocol in Real Time for Synchronizing IoT Device State 517

3.1. Hardware Setup

The hardware configuration is shown in Figure 3.

The MQTT client node consists of:

 Arduino duo revision 3.

 Arduino ethernet shield.

 LED and button input for Arduino.

The MQTT broker and server was hosted on a:

 MacBook Pro 2014.

 Linksys network router used for connection between

client node and server.

Figure 3. Arduino uno and ethernet controller.

The LED and button input and output are directly

attached to the Arduino’s Pin 12 and Pin 2,

respectably.

3.2. Software Implementation

For the complete system, three separate subsystems

were required to be designed and coded: the embedded

client node, the MQTT broker, and the control server.

For the MQTT broker, we took advantage of a

widely used MQTT library, Mosquitto MQTT [29],

provided by the Eclipse foundation. The broker is run

on the MacBook server and was run with TCP and SSL

ports open. The client node was implemented using

Arduino C, and an open source library, mqtt

PubSubClient [25], was used to implement connecting

the device to the MQTT broker. Finally, the control

server was implemented in Angular [2], a Javascript

framework, using the built-in Javascript MQTT library

to connect to the broker.

3.3. ClientDesign and Implementation

The client node was implemented using foreground-

background architecture. During the background loop,

the Software checks the Ethernet module for any newly

received packets. The system parses the packet and

takes one of three possible actions depending on the

message topic should any packets be available from the

MQTT broker. Figure 4 shows the main background

loop. The following are the message possible topics:

1. State: The client node reads the state data and

synchronizes its state to that state provided. The

client will maintain this state until an interrupt

overrides the state with new state information or a

new, updated state arrives from the posting node.

2. Subscribe/Unsubscribe: The client node reads the

subscription address from the message and

subscribes to state updates for the given posting

node.

3. Query: The query message comes from the server

on initialization, and asks that all nodes update their

register information on the server and their state

information. The node, upon receiving a query, will

re-register with the server and post its current state.

Figure 4. Overview of main background loop.

On button press, the controller receives an interrupt

to read from the button pin. The client reads the button

state, updates its internal and LED state to match, and

then publishes its state for any subscribed nodes to

synchronize with as shown in Figure 5. However,

because the interrupt and the main loop both

potentially need to use the Ethernet controller, access

to the controller is protected by a semaphore to control

sharing the resource (the Ethernet controller). If the

background loop is current, then publishing the

foreground interrupt will hold until that process has

been completed.

518 The International Arab Journal of Information Technology, Vol. 15, No. 3A, Special Issue 2018

Figure 5. Button interrupt program flow.

3.4. Server Implementation

The server was implemented as a simple front-end

interface to the overarching client nodes and message

broker. State and data do not persist from instance to

instance, so the server client first collects information

on all active nodes by publishing a ‘query’ request and

then collecting the ‘register’ posts from each client.

When a new client node becomes active, it registers

with the server and is added to the control list as shown

in Figure 6.

Figure 6. Server controller flow diagram.

From the registered client nodes, the server creates a

list of available nodes, with the option to change any

given node’s state as well as to open a node’s control

page and select which other nodes that node is paired

with. Paired nodes will listen for that other nodes state

and update their internal state to match on change.

When a user selects an action for a given node, an

MQTT publish action occurs that sends a message with

the topic <ACTION>/<NODE ID> and the message

for the node to follow to the MQTT broker, which then

routes the message to the listening node.

Additionally, when the server receives a register

message from a node, it subscribes to any state

notifications from that node. When a state update is

received, the server updates its display to reflect the

new state of each node (Figure 6).

3.5. Experimental Setup

An important part of this project was ensuring that the

system met certain time bounds. In order to test that

these bounds were met, additional tests of the system

were implemented.

Since many such IoT devices would need to operate

in a constrained environment, NetEM [24] was used to

test the system in varying levels of packet loss and

latency.

In order to measure latency time from sending to

receiving, the client node was modified to subscribe to

its own updates, time them from publish to reception,

and output the results to an attached serial port. In this

manner, a total roundtrip time could be measured from

interrupt detection to reception of the state packet. By

measuring the response time across varying network

and system conditions, a map of system performance

in constrained environments would be created.

During latency tests, packet losses were additionally

measured. Any state change that featured a posted time

of greater than 5 seconds was qualified as a ‘lost

message’ and counted in the data. Finally, the Arduino

IDE provides a useful tracking of CPU utilization

during operation. During the above tests, average CPU

utilization was tracked. Additionally, a Python script

was written to spam the system with state updates,

simulating a ‘high use’ operation and CPU utilization

was further measured.

4. Result

Three metrics were used to determine whether the

design and system meet the requirements established

for the project: latency time under various network

constraints, lost messages under packet loss, and CPU

utilization under expected and extreme loads.

4.1. Message Latency

Using the NetEM package to vary the loss of different

percentages of packets on the network, the resultant

latency of packets was measured and is shown in

Figure 7. The Figure shows the number of packets

verses the latency. Since MQTT is a TCP protocol,

additional packets are expected to be sent as packet

loss increases, leading to an increased latency time.

With a requirement that the total routing time for any

message be less than 1 second, we can reasonably

expect MQTT to be appropriate for network conditions

Using the MQTT Protocol in Real Time for Synchronizing IoT Device State 519

in which less than 15% of the packets are lost.

However, at higher loss rates the response time will be

greater than 1 second, which is unacceptable for the

project requirements in this paper.

Figure 7. Experienced latency vs. packet loss in network.

4.2. Lost Messages

Again, using the NetEM package, the loss of messages

during varying packet loss scenarios was measured.

The results are summarized in Figure 8. MQTT, being

a TCP based library, experienced zero losses in total

messages.

Figure 8. Total lost messages vs. packet loss in network.

Note that zero losses has been experienced because

MQTT is a TCP based algorithm.

4.3. CPU Utilization

CPU utilization under various load conditions is shown

in Table 1. In general, the CPU utilization of the

Arduino board remained under 50%, even for high

load conditions, indicating that MQTT is a suitably

lightweight protocol for low power IoT applications

and even lower power devices will support its

implementation.

Table 1. CPU utilization under varying load conditions.

CPU Utilization for Various Use Cases

Use Case CPU Utilization

0% Data Loss, normal press 26%

25% Data Loss, normal press 28%

0% Data Loss, Spam Press 35%

25% Data Loss, Spam Press 41%

Spammed Notifications 39%

5. Conclusions

The requirements imposed on the design of the system

in this paper have shown that MQTT is an appropriate

protocol for connecting low power devices in

constrained environments. MQTT provides a simple,

flexible architecture that allows for the easy

synchronization of device states with minimum

overhead, and a selection of open source libraries make

its implementation comparatively simple.

Analysis of our design has shown that MQTT meets

system response time requirements for mildly unstable

networks, but will begin to fail as greater packet losses

occur. MQTT also successfully delivered all packets in

constrained environments, which may be more

important depending on the exact requirements of a

system. MQTT was relatively efficient, utilizing less

than 40% of the CPU during any operations, indicating

that it would be appropriate for even lower power

devices. These tradeoffs will need to be considered for

anyone attempting to design a practical IoT system

with synchronized device states.

References

[1] AMQP protocol specification, (http://amqp.org),

Last Visited, 2017.

[2] AngularJS Framework, (https://angularjs.org),

Last Visited, 2017.

[3] Asensio A., Marco A., Blasco R., and Casas R.,

“Protocol and Architecture to Bring Things into

Internet of Things,” International Journal of

Distributed Sensor Networks, vol. 2014, pp.1-18,

2014.

[4] Atzori L., Iera A., and Morabito G., “The Internet

of Things: A Survey,” Computer Networks, vol.

54, no. 15, pp. 2787-2805, 2010.

[5] Soundarabai P. and Chelliah P., Connected

Environments for the Internet of Things.

Computer Communications and Networks,

Springer, 2017.

[6] Caro N., Colitti W., Steenhaut K., Mangino G.,

and Reali G., “Comparison of Two Lightweight

Protocols for Smartphone-Based Sensing,” in

Proceedings of IEEE 20th Symposium on

Communications and Vehicular Technology in

Benelux, Namur, pp. 1-6, 2013.

[7] CoAP protocol specification,

(http://coap.technology), Last Visited, 2017.

[8] Chen Y. and Kunz T., “Performance Evaluation

of Iot Protocols Under A Constrained Wireless

Access Network,” in Proceedings of

International Conference on Selected Topics in

Mobile and Wireless Networking, Cairo, pp. 1-7,

2016.

[9] Daud M. and Suhaili W., “Internet of Things

(IoT) with CoAP and HTTP Protocol: A Study

on Which Protocol Suits IoT in Terms of

Performance,” in Proceedings of the

Computational Intelligence in Information

Systems Conference, pp. 165-174, Cham, 2017.

[10] DDS protocol specification,

0

500

1000

1500

0% 5% 10% 15% 20% 25%

Latency vs. Packet Loss

Latency (ms)

Lost Messages

520 The International Arab Journal of Information Technology, Vol. 15, No. 3A, Special Issue 2018

(http://www.omg.org/spec/DDS), Last Visited,

2017.

[11] Dhar P. and Gupta P.,“Intelligent Parking Cloud

Services Based on IoT using MQTT Protocol,” in

Proceedings of International Conference on

Automatic Control and Dynamic Optimization

Techniques, Pune, pp. 30-34, 2016.

[12] Ding Y., Binwen F., Xiaoming K., and Qianqian

M.,“ Design and Implementation of Mobile

Health Monitoring System Based on MQTT

Protocol,” in Proceedings of IEEE Advanced

Information Management, Communicates,

Electronic and Automation Control Conference,

Xi'an, pp. 1679-1682, 2016.

[13] Diogo, P., Lopes N., and Reis L., Cluster

Computing 20: 2193,

https://doi.org/10.1007/s10586-017-0861-0, Last

Visited, 2017.

[14] Fernandes J., Lopes I., Rodrigues J., and Ullah

S., “Performance Evaluation Of Restful Web

Services And AMQP Protocol,” in Proceedings

of the 5th International Conference on Ubiquitous

and Future Networks, Da Nang, pp. 810-815,

2013.

[15] Hantrakul K., PramokchonP., KhoenkawP.,

Tantitharanukul N., and Osathanunkul K.,

“Automatic Faucet with Changeable Flow Based

on MQTT Protocol,” in Proceedings of

International Computer Science and Engineering

Conference, Chiang Mai, pp. 1-5, 2016.

[16] HTTP protocol specification,

(https://www.w3.org/Protocols/rfc2616/rfc2616.h

tml), Last Visited, 2017.

[17] Ian F. and Melnikov A., The WebSocket

Protocol, Internet Engineering Task Force, 2011.

[18] Kang D., Park M., Kim H., Kim D., Kim S., Son

H., and Lee S.,“ Room Temperature Control and

Fire Alarm/Suppression IoT Service Using

MQTT on AWS,” in Proceedings of

International Conference on Platform

Technology and Service (PlatCon), Busan, pp. 1-

5, 2017.

[19] Luzuriaga J., Perez M., Boronat P., Cano J.,

Calafate C., and Manzoni P.,“ A Comparative

Evaluation of AMQP and MQTT Protocols over

Unstable and Mobile Networks,” in Proceedings

of the 12th Annual IEEE Consumer

Communications and Networking Conference,

Las Vegas, pp. 931-936, 2015.

[20] Monitoring Your Devices with MQTT - Packt

Publishing,

https://www.packtpub.com/sites/default/files/dow

nloads/1942OS_Chapter_9.pdf, Last Visited,

2018.

[21] Moreno M., Cerqueira R., and Colcher S.,

“Synchronization Abstractions and Separation of

Concerns as Key Aspects to the Interoperability

in IoT,” in Proceedings of Second International

Conference, Inter IoT 2016 and Third

International Conference SaSe IoT, Paris, pp. 26-

32, 2017.

[22] Mosquitto Project, (http://mosquitto.org), Last

Visited, 2017.

[23] MQTT protocol specification, (http://mqtt.org),

Last Visited, 2017.

[24] NetEM: Software Suite Provides Network

Emulation Functionality,

(https://wiki.linuxfoundation.org/start?do=search

&id=NetEM), Last Visited, 2018.

[25] O’Leary N., Arduino Client for MQTT,

(http://pubsubclient.knolleary.net/), Last Visited,

2017.

[26] Rajaraajeswari S., Selvarani R., and Raj P.,

Connectivity Frameworks for Smart Devices,

Springer, 2016.

[27] Rayes A. and Salam S., Internet of Things from

Hype to Reality, Springer, 2017.

[28] Sarwat A., Sundararajan A., Parvez I.,

Moghaddami M., and Moghadasi A., Sustainable

Interdependent Networks, Springer, 2018.

[29] Sheng Z., Yang S., Yu Y., Vasilakos A., McCann

J., and Leung K., “A Survey on the IETF

Protocol Suite for the Internet of Things:

Standards, Challenges, and Opportunities,” The

IEEE Wireless Communications, vol. 20, no. 6,

pp. 91-98, 2013.

[30] Shovic J., Raspberry Pi IoT Projects, Springer,

2016.

[31] Suzuki L., Smart City Networks, Springer, 2017.

[32] Sutaria R. and Govindachari R., “Making Sense

of Interoperability: Protocols and Standardization

Initiatives in IOT,” in Proceedings of the2nd

International Workshop on Computing and

Networking for Internet of Things, Hyderabad,

2013.

[33] Thangavel D., Ma X., Valera A., Tan H., and Tan

C., “Performance Evaluation of MQTT and

CoAP Via a Common Middleware,” in

Proceedings of IEEE 9th International

Conference on Intelligent Sensors, Sensor

Networks and Information Processing,

Singapore, pp.1-6, 2014.

[34] XMPP protocol specification. (http://xmpp.org),

https://www.packtpub.com/sites/default/files/dow

nloads/1942OS_Chapter_9.pdf -, Last Visited,

2017.

[35] Yokotani T. and Sasaki Y., “Comparison with

HTTP and MQTT on Required Network

Resources for IoT,” in Proceedings of

International Conference on Control,

Electronics, Renewable Energy and

Communications), Bandung, pp. 1-6, 2016.

Using the MQTT Protocol in Real Time for Synchronizing IoT Device State 521

Adnan Shaout is a full professor

and a Fulbright Scholar in the

Computer Science Department at

the Electrical and Computer

Engineering Department at the

University of Michigan-Dearborn.

Dr. Shaout has more than 35 years

of experience in teaching and conducting research in

the Computer Science, Electrical and Computer

Engineering fields at Syracuse University and the

University of Michigan - Dearborn. Dr. Shaout has

published over 230 papers in topics related to

Computer Science, Electrical and Computer

Engineering fields. Dr. Shaout has obtained his B.S.c,

M.S. and Ph.D. in Computer Engineering from

Syracuse University, Syracuse, NY, in 1982, 1983,

1987, respectively.

Brennan Crispin is currently, a

graduate student at the University of

Michigan-Dearborn and a Software

Engineer at Ford Smart Mobility,

Ford Motor Company.

