
582                                                             The International Arab Journal of Information Technology, Vol. 19, No. 4, July 2022 

XAPP: An Implementation of SAX-Based Method 

for Mapping XML Document to and from a 

Relational Database 

Yetunde Akinwumi 

Department of Computer Science 

Redeemer’s University, Nigeria  

Akinyetty16@gmail.com 

Joshua Ayeni 

 Department of Computer 

Science, Redeemer’s University, 

Nigeria 

ayenij@run.edu.ng 

Samson Arekete 

Department of Computer 

Science, Redeemer’s 

University, Nigeria 

areketes@run.edu.ng 

Mba Odim 

Department of Computer 

Science, Redeemer’s 

University, Nigeria 

odimm@run.edu.ng 

 

Adewale Ogunde 

Department of Computer Science 

Redeemer’s University, Nigeria 

ogundea@run.edu.ng 

 

Bosede Oguntunde 

 Department of Computer 

Science, Redeemer’s University, 

Nigeria 

oguntunden@run.edu.ng 

 

Abstract: Extensible Markup Language (XML) is the standard medium for data exchange among businesses over the Internet, 

hence the need for effective management. However, since XML was not designed for storage and retrieval, its management has 

become an open research area in the database community. Existing mapping techniques for XML-to-relational database adopt 

either the structural mapping or the model mapping. Though numerous mapping approaches have been developed, mapping 

and reconstruction time had been problematic, especially when the document size is large and can hardly fit into main 

memory. In this research, an application codenamed XAPP, a new lightweight application that adopts a novel model mapping 

approach was developed using Simple API for XML (SAX) parser. XAPP accepts a document with or without Document Type 

Definition (DTD). It implements two algorithms: one maps XML data to a relational database and improves mapping time, 

and the other reconstructs an XML document from a relational database to improve reconstruction time and minimise memory 

usage. The performance of XAPP was analysed and compared with the Document Object Model (DOM) algorithm. XAPP 

proves to perform significantly better than the DOM-based algorithm in terms of mapping and reconstruction time, and 

memory efficiency. The correctness of XAPP was also verified. 

Keywords: Extensible markup language, XML document, relational database, reconstruction time, mapping time. 

Received July 16, 2020; accepted October 21, 2021 

https://doi.org/10.34028/iajit/19/4/2 
 

1. Introduction 

In this information era, the World Wide Web (WWW) 

has become an important medium used for a wide 

range of activities that include e-banking, e-learning, e-

mail, e-commerce, e-library, etc. These Internet-based 

activities lead to the generation of large amounts of 

data [4]. Researchers and database vendors have 

encountered difficulties in exchanging a large amount 

of data between organisations using Extensible Markup 

Language (XML) technology due to variations in data 

formats used to describe data [3, 5]. 

XML has largely become a de facto medium for 

data exchange and representation on the Internet due to 

its flexibility and self-describing nature [1, 9]. It 

provides a generalised structure for data interchange 

regardless of the platforms and data models of the 

applications. XML enables communications between 

different computing systems, and its openness allows 

data exchange between virtually any hardware, 

software and operating systems [9]. A multimodal  

 
architecture combining Voice XML and InkXML to 

develop a multimodal voice and ink mobile 

applications for man-machine communication has been 

proposed in [10]. Themulti modal interface 

architecture is designed to broaden the spectrum of 

general users. The integration of Voice XML and 

InkXML would provide a standard data format to 

facilitate Web-based development and content 

delivery, enabling diverse applications ranging from 

complex data entry and text editing applications to 

Web transactions to be implemented on the system. 

Most semi-structured data on the web are 

represented in XML, hence the need for effective 

storage and retrieval of XML data [3]. Mapping XML 

documents to Relational Databases (RDB) has been 

studied because it entails features such as data 

integrity, crash recovery and multi-user access, which 

are not directly available in XML technology. 

Researchers have used two broad models in 

mapping XML to a RBD, namely: model-based and 

mailto:Akinyetty16@gmail.com
mailto:ayenij@run.edu.ng
mailto:areketes@run.edu.ng
mailto:odimm@run.edu.ng
mailto:ogundea@run.edu.ng
mailto:oguntunden@run.edu.ng


XAPP: An Implementation of SAX-Based Method for Mapping XML Document ...                                                                   583 

 

 

structural-based mappings. In model-based mapping, 

an XML document with or without Document Type 

Definition (DTD) or XML schema can be stored in a 

relational schema since it requires a fixed RDB 

scheme. In structural-based mapping, the XML 

documents are stored in the RDB scheme based on the 

structure, that is, DTD or XML schema stated in the 

document. Considerable research efforts have been 

focused on model-based approach because it is 

considered most suitable for storing and querying 

XML documents [3]. 

Several model-based mapping approaches have 

been proposed to store and reconstruct XML data into 

and from the relational database, but these approaches 

have been carried out using Document Object Model 

(DOM) parser, which requires a lot of time, especially 

when the document size is large. This current study 

focuses on model mapping approach which accepts 

XML with or without DTD to map XML data to and 

from a relational database using SAX parser to reduce 

the processing time.  

1.1. Related Works 

An approach for the storage and retrieval of XML 

documents using relational databases was made by Seif 

et al. [8]. The approach enables XML documents to be 

stored using a fixed relational schema without any 

information of XML schema or DTD. It used two 

algorithms: XR and RX, with XR converting XML 

data to relational data, and RX extracting data from a 

database and insert them into an XML document. The 

relational schema consists of three tables-document 

table, element table and attribute table. The research 

used a DOM parser which produces large data for 

anything beyond a small size document, hence, 

memory inefficient for large documents. 

Qtaish and Ahmad [7] presented a mapping done on 

only distinct ancestor paths for all leaf nodes of the 

XML tree into its RDB with the inner nodes ignored to 

minimise the storage space. The mapping comprises of 

two algorithms: X to DB and X to Structured Query 

Language (SQL). X to DBmaps XML documents to a 

fixed RDB using a DOM parser to decompose the 

XML document into a predefined RDB scheme. X to 

Translates XPath queries into the corresponding SQL 

queries based on the Ancestor_Path and Leaf_Node 

tables to achieve a shorter response time. The 

reconstruction of an XML document from the 

relational database is imperfect because not all nodes 

are stored; the model was targeted at conserving 

storage space and query response time.  

Atay et al. [2] proposed a mapping for storing XML 

data into a relational database using schema mapping 

and data mapping. The schema mapping takes an XML 

DTD as input and generates a relational schema with 

the Open Document Text Document (ODTD) Map 

algorithm, which consists of three steps: simplifying 

XML DTD to reduce complexity, generation of DTD 

graphs for preparation of the mapping and using the 

DTD graphs for the creation of the relational schema. 

After the creation of relational schema, the next step is 

to insert data from XML document into the generated 

tables, a process known as data mapping. The 

relational schema consists of six tables. The limitation 

is that too many tables are generated, each element 

from the in-lined DTD graph has its own table, making 

reconstruction of XML documents difficult. 

Zhu et al. [12] presented a path-based model 

mapping approach, which identifies the path among the 

non-leaf nodes. The mapping generates two tables to 

store the nodes: Path Table and Leaf Table. To 

construct the tables, the position information is 

marked-up with labelling scheme of (Level, [P-path 

ID, S-order]), where Level represents the depth of the 

current leaf node in the XML tree, P-pathID stands for 

the path id of the direct parent node, and S-order 

depicts the position number of the current leaf node in 

the direct parent node. The information serves to 

identify the complex node relationship. The approach 

was reported to be experimentally better than the s-

XML with regards to storage space and storage time. 

The limitation is that reconstruction of an XML 

document from the relational database is difficult since 

not all nodes were stored. 

1.2. An Overview of XML Document 

XML documents contain a large amount of data 

structured hierarchically. They are composed of 

elements known as the main building blocks that are 

tagged. The elements are structured hierarchically from 

the outermost element called the root element, 

followed by the child element or nested element [11]. 

Each XML document is composed of two parts: the 

prologue and the document element (also known as the 

root element). The prologue always comes first, before 

the root element on top the document. The prologue 

consists of the XML declaration, DTD, comments, 

processing instructions and whitespace while the 

document element or root element comes immediately 

after the prologue containing the content of the 

document. The document element consists of one or 

more elements embedded in one root. It consists of 

opening tag root element, child element and content 

and closing tag root element [7]. Figure 1 depicts an 

example of an XML document. 

There are two types of XML documents, the well-

formed and valid documents. Well-formed XML 

documents are documents without DTD and XML 

schema which follow the rules of XML syntax, such 

rules are: 

a. The document must contain one root element. 

b. The document must contain one or more elements. 

c. Every element must have a start tag and end tag. 



584                                                             The International Arab Journal of Information Technology, Vol. 19, No. 4, July 2022 

d. Every element must be nested correctly without 

overlapping. 

e. Every attribute values must be quoted. 

Valid XML documents, on the other hand, are well-

formed documents that do not only conform to syntax 

rules but also conform to schema rules. Schema can be 

defined as the grammar defining the logical structure 

of XML document in either DTD or XML schema 

(XML Language Schema). 

<?xml version=  1.0  encoding=  UTF-8  standalone=  no ?>

<!DOCTYPE document system  person.dtd >

<!-- Here is a comment -->

<?xml-stylesheet type= text/css  href= Styles.css ?>

<person>

<person born= 26/12/1791  died= 18/10/1871 >

<name>

        <first_name>Charles</first_name>

        <last_name>Babbage</last_name>

</name>

<occupation>Philosopher</occupation>

<occupation>Mathematician</occupation>

<occupation>Inventor</occupation>

</person>

</person>

 

Figure 1. Example of XML document. 

2. Material and Method 

2.1. The XAPP SAX Based Approach 

XAPP uses simple API for XML (SAX) parser [8] for 

parsing XML document to store it in a relational 

database. SAX parser is used in place of DOM parser 

to deal with large XML documents. It parses XML 

document as a sequence of events (i.e., start Document, 

end Document, start Element, end Element, etc.,). This 

approach contrasts DOM parser, which constructs the 

whole document tree (in memory) first and then parses 

it. The advantage of DOM parser over SAX parser, 

however, is that it offers XML update while the latter 

provides XML as read-only.  

Input data were taken from the Digital Bibliography 

Library Project (DBLP) for University of Washington 

Repository [6] and results were generated based on 

different sizes. 

2.2. XAPP Architecture 

Figure 3 depicts the XAPP architecture. It provides 

amapping of an XML document into a relational 

database and reconstructing relational data back to an 

XML document. The XML document is passed into 

the SAX parser facility where a parsed XML document 

is generated. The resultant document is inserted into 

the RDB through SQL statement and Java™ Database 

Connectivity (JDBC) API connectivity. Reconstructing 

XML from RDB requires that an SQL result set is 

passed into the XML reconstruction algorithm. The 

system flowchart is depicted in Figure 2. 

 

2.3. Mapping Algorithm for XML Document to 

Relational Database 

The algorithm takes XML document file as input, 

maps and stores its contents in a relational database 

Algorithm (1). The process takes two basic steps. First, 

data is extracted from XML with SAX parser. To 

extract data, the XML file is fed as input into the SAX 

parser, which parses the file by taking one factory 

instance from SAX Parser Factory using the parse 

method to parse it. 

START

Database 
Verification

Database 
verified?

Yes

Click on Upload 
to DB

No

Insert an XML 
Document to be 
mapped to RDB; 
click on Button

Click on 
download from 

DB

Select location, 
give a name, 

click button to 
reconstruct XML

Stop
 

Figure 2. System flowchart of XApp. 

SAX parser provides better memory management 

and faster execution time. In addition, it does not keep 

any data in memory so it can be used for very large 

files. When SAX Parser initiate the parsing process, it 

scans the document and when it encounters the start or 

end tag it will invoke the corresponding event handling 

method in the public void startElement() and public 

void endElement() methods. Document Handler keeps 

track of callback events and notifies an application 

program of the data in XML document. The second 

step is inserting data into MySQL. This process 

involves using SQL statement to insert XML data into 

relational database through Java Database Connectivity 

Application Program Interface (JDBCAPI). 

 

 

 

 

 



XAPP: An Implementation of SAX-Based Method for Mapping XML Document ...                                                                   585 

 

 

  
 

SAX Parser Factory

Event

XML Document

Document Handler

XML Document SQL Resultset

SQL Resultset 
reconstructed to 

XML

SAX Parser

Parsed XML

RDB
SQL

J
D
B
C
 

A
P
I

Insert

 

Figure 3. The XAPP architecture. 

2.4. Reconstructing Algorithm from Relational 

Database to XML file 

Algorithm (2) describes the extraction of data from a 

relational database into an XML document. The 

docBuilder creates a root element of the document 

“results” from the first tuple of the SQL Result Set and 

append that element to our document. The result set is 

then traversed, creating row regular element from each 

row and append them to the root element results. 

Looping through all columns, the column names and 

values are obtained. The node element is created from 

column name and append value as child node and 

append node element to regular element row. 

The function “get Document As XML” passes the 

parameter “doc” which is the resultant document from 

the document builder and returns the document as 

XML string using the StringWriter() function. 

StreamResult() function then constructs a result object 

which is passed into the transform function object 

along with the DOM source object created from the 

document. Transformer object is created from 

Transformer Factory object and set Output Property 

defines necessary output parameters of transformer, 

specifying the output format as XML and using the 

encoding standard “ISO-8859-1” to support all 

characters in the document. 

2.5. Relational Schema 

The relational schema design for the SAX-based 

approach is based on the elements the XML document 

entails. 

3. Result and Discussion 

The two algorithms for mapping between an XML 

document and relational database were implemented, 

and a series of performance experiments were carried 

out and compared with a DOM based algorithm. The 

experiments were done to check the effectiveness of 

our new approach. The implementation process and 

experimental results were captured and documented. 

All experiments were executed on an Intel(R) Core 

(TM) i3-2328M System, CPU of 2.20 GHz, 4GB 

RAM and 445GB HDD and Windows 8 64-Bit OS. 

Implementation tools were PHP 5.6.25, MySQL server 

5.7.14 and Apache server 2.4.23. 

Performance metrics were based on the time taken 

to map XML document data to RDB and time to 

reconstruct XML document from RDB. The DOM-

based algorithms used for comparison was adopted 

from the study by [12]. 

Tables 1 and 2 depict the mapping and 

reconstruction time from an XML document to RDB 

and back. The SAX-based algorithms outperform the 

DOM-based algorithms in terms of execution time 

because DOM creates a tree structure of the XML 

document before parsing takes place but this is not 

required in SAX-based algorithms. The outputs of the 

SAX-based algorithms are therefore more memory 

efficient for the same reason that tree structures are not 

created. Furthermore, it was observed that while 

mapping time from XML to RBD was close for both 

SAX-based and DOM-based algorithms (ranging from 

72% to 57% as we move from 400KB to 1MB, the 

reconstruction time for SAX-based algorithm was 

much shorter (from 0.5% to 0.2% as we move from 



586                                                             The International Arab Journal of Information Technology, Vol. 19, No. 4, July 2022 

400K to 1MB), implying that it requires a lot of time 

to generate the tree structures. 

Algorithm 1: XML to RDB 

Input: XML Document 

Output: XML data stored in RDB 

1. Function XMLParser(){  

2. SAXParserFactoryspfac = SAX 

ParserFactory.newInstance() //Create a "parser factory" 

for creating SAX parsers 

3. SAXParsersp = spfac.newSAX Parser() //Use the 

parser factory to create a SAX Parser object. 

4. MyHandler handler = new MyHandler() //Create an 

instance of this class; it defines all the handler methods 

5. sp.parse("doc.xml", doc_handler) //Finally, tell the parser 

to parse the input and notify the handler. 

6. } 

7. Function docHandler(){ // this handles the callback events 

triggered by the SAX parser 

8. Procedure startElement(String name, AttributeListattrs){  

// this method is called every time the parser encounters 

the beginning of a new element 

9.  For each node Loop { 

10. If (node == ELEMENT_NODE){ //if there is node of 

element node type 

11. node.getElementName //get element name 

12. node.getElementValue(value) //gets the element value  

13. If (element hasatrribute){ //if element node has attribute 

node type 

14. node.GetAttributeName(name)//get attribute name 

15. node.GetAttributeValue(value) //gets attribute value  

16. If (element has text values){ 

17. node.getTextValues (values) // get text value. 

18. }}} 

19. Procedure characters (){// this method calls for the text 

contents between the start and end tags of the XML 

document element 

20. } 

21. Procedure end Element(String name){ // When the parser 

encounters the end of an element, it calls this method 

22. }} 

23. End loop 

24. INSERT values INTO TABLE  

25. } 

Algorithm 2: RDB to XML 

Input: SQL ResultSet 

Output: XML document 

1. Connecton= mysql_connect (‘local host’, ‘root’, 

‘username’) 

2. DocBuilder(){ //Build XML Document from database. The 

XML object is returned to main method where it is written 

to flat file 

3. ResultSetrs= “SELECT *FROM table_name; //perform 

select query to the get relational data 

4. Document doc = builder.newDocument() //creates a new 

instance of doc from the Document builder 

5. Element results = doc.createElement("Results") // 

Creating result root elements within XML doc  

6. doc.append Child(results) //Populating XML doc root 

element with data by appending results 

7. while (rs.next()) { //iterates through result set 

8. Element row = doc.createElement("Row") //Creating 

regular element from each row 

9. Results.appendChild(row) //Populating with row data by 

appending results 

10. for (inti = 1; i<= colCount; i++) { //loop through all 

columns 

11. String column Name = rsmd.getColumnName(i) //gets 

column name 

12. Object value = rs.getObject(i); // gets value as object 

13. Element node = doc.createElement(columnName) //create 

element node from column name 

14. node.appendChild(doc.CreateTextNode(value.ToString())) 

//populate node with data as string 

15. Row.AppendChild(node) // adding the node element to the 

regular element 

16. }}} 

17. Function getDocumentAsXml(Document doc) { //function 

converts newly built document doc above to XML string 

18. Source = new Source(doc) //constructs a source object 

from the XML doc 

19. Transformer Factorytf = TransformerFactory.new 

Instance() //declares tf as new instance of transformer 

from Transformer Factory 

20. Transformer transformer = tf.newTransformer() //creates 

transformer from with tf instance 

21. Transformer.SetOutputProperty(OutputKeys.METHOD,"x

ml"); //specifies the output resultformat as xml 

22. Transformer.SetOutputProperty(OutputKeys.ENCODING,

"ISO-8859-1") //specifies the encoding 

23. StringWritersw = new StringWriter() //constructs a XML 

string writer object sw 

24. StreamResult sr = new StreamResult(sw) //constructs a 

result object sr 

25. Transformer.Transform(domSource, sr) //tells the 

transformer to operate on the source objectDom Source 

and output to the result object sr. 

26. return sw.toString() //returns XML string 

27. } 

Table 1. Mapping time (sec) for XML to RBD. 

Algorithm 
Document Size 

400KB 600KB 800KB 1MB 

SAX 2,987.3 4,239.2 4,536.2 5,111.3 

DOM 4,133.1 5,804.2 7,074.0 8,948.8 

Table 2. Reconstruction time (sec) for RBD to XML. 

Algorithm 
Document Size 

400KB 600KB 800KB 1MB 

SAX 333.3 410.5 415.2 438.4 

DOM 64,695.9 95,185.6 121,258.7 272,405.8 

The complexity of this algorithm is of order ⨀(𝑛), 

that is, a linear complexity. In the algorithm, a search 

is performed using a loop statement. The loop 

statement “for” and “while” were executed according 

to the number of elements and number of attributes in 

the XML document, viz: 

𝑇𝑒𝑎 = 𝑛𝑒 + 𝑛𝑎 

Where ne is the number ofelements, 𝑛𝑎 is the number 

of attributes and Tea is the total number of elements 

and attributes of the XML document. 

4. Conclusions 

Several DOM-based algorithms have been developed. 

However, the intrinsic problem of DOM-based 

algorithm is that they consume a lot of time and space. 

In this study, a new mapping approach was proposed 

(1) 



XAPP: An Implementation of SAX-Based Method for Mapping XML Document ...                                                                   587 

 

 

to minimise the time consumed in mapping from XML 

to RBD and reconstruct from RBD to XML. The 

application developed code-named “XAPP” accepts 

XML document with or without DTD to be mapped 

into a relational database. The new approach solves the 

problem of mapping an ordered hierarchical XML to 

an unordered tabular relational database and enables 

the use of relational database systems for storing and 

reconstructing XML data using a SAX parser. The 

method works efficiently for large XML documents. 

The two algorithms were implemented and tested, with 

experiments carried out on four different sizes of 

DBLP dataset (400, 600, 800, and 1000KB). The 

mapping and reconstruction times were taken and 

compared with results from the DOM-based 

algorithm. The results show that XAPP using SAX-

based algorithms perform better than the DOM-based 

algorithm in terms of mapping and reconstruction 

speed as well as memory efficiency. The 

reconstruction time for SAX-based algorithm was 

much shorter, implying that it requires a lot of time to 

generate the tree structures. These algorithms would, 

therefore, be very useful in applications where time 

and memory are of essence and when the DOM tree 

structures are not required during reconstruction.  

While a Virtual Token Descriptor (VDT) parser has 

been reported to post a better performance than DOM-

parser or even SAX-parser, this has not been 

considered in this study. It can be an area of 

investigation in future. 

References 

[1] Ahmad K., “A Comparative Analysis of 

Managing XML Data In Relational Database,” in 

Proceedings of Intelligent Information and 

Database Systems, Daegu, pp. 100-108, 2011. 

[2] Atay M., Chebotko A., Liu D., Lu S., and 

Fotouhi F., “Efficient Schema-based XML-to-

Relational Data Mapping,” Information Systems, 

vol. 32, no. 3, pp. 458-476, 2007. 

[3] Bousalem Z. and Cherti I., “XMap: A Novel 

Approach to Store and Retrieve XML Document 

in Relational Databases,” Journal of Software, 

vol. 10, no. 12, pp. 1389-1401, 2015. 

[4] Dwebi I., “Automatic Mapping of XML 

Documents Into Relational Database,” Doctoral 

Thesis, University of Huddersfield. School of 

Computing and Engineering, 2010. 

[5] Fakharaldien M., Edris K., Zain J., and Sulaiman 

N., “Mapping Extensible Markup Language 

Document with Relational Database 

Management System,” International Journal of 

Physical Sciences, vol. 7, no. 25, pp. 4012-4025, 

2012. 

[6] Miklau G. and Suciu D., XML Data Repository, 

University of Washington, Retrieved 06 21, 

2019, from 

http://www.cs.washington.edu/research/xmldatas

ets/, 2003, Last Visited, 2022. 

[7] Qtaish A. and Ahmad K., “XAncestor: An 

Efficient Mapping Approach for Storing and 

Querying XML Documents in Relational 

Database Using Path-Based Technique,” 

Knowledge-Based Systems, vol. 114, pp. 167-

192, 2016. 

[8] Seif E., Fath E., and Haj E., “A Labeling DOM-

Based Tree Walking Algorithm for Mapping 

XML Documents into Relational Databases,” 

PhDThesis. University of Khartoum, Faculty of 

Mathematical Sciences. Khartoum: University of 

Khartoum. Retrieved 10 31, 2018, from 

http://khartoumspace.uofk.edu/handle/12345678

9/9129, 2011, Last Visited, 2022. 

[9] Subramaniam S., Haw S., and Hoong P., “S-

XML: An Efficient Mapping Scheme to Bridge 

XML and Relational Database,” Knowledge-

Based Systems, vol. 27, pp. 369-380, 2012. 

[10] Trabelsi Z., “A Generic Multimodal Architecture 

for Integrating Voice and Ink XML Formats,” 

The International Arab Journal of Information 

Technology, vol. 1, no. 1, pp. 93-101, 2004. 

[11] Wang Q., Ren Z., Dong L., and Sheng Z., “Path-

based XML Relational Storage Approach,” 

Physics Procedia, vol. 33, pp. 1621-1625, 2012. 

[12] Zhu H., Yu H., Fan G., and Sun H., “Mini-XML: 

An Efficient Mapping Approach between XML 

and Relational Database,” in Proceedings of 

IEEE/ACIS 16th International Conference on 

Computer and Information Science, Wuhan, pp. 

839-843, 2017. 

  

http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.washington.edu/research/xmldatasets/
http://khartoumspace.uofk.edu/handle/123456789/9129
http://khartoumspace.uofk.edu/handle/123456789/9129


588                                                             The International Arab Journal of Information Technology, Vol. 19, No. 4, July 2022 

Yetunde Akinwumi holds a BSc 

degree from AfeBabalola 

University Ado-Ekiti and MSc 

degree from Redeemer’s University 

Ede. She currently works on 

Information Modeling & 

Management, Data Design, mobile 

health management and web programming. She is 

currently a Research Assistant in Computer Science, 

Redeemer’s University Ede. 

Joshua Ayeni holds a PhD from the 

University of Waterloo UK. He is a 

Professor of Computer Science, 

University of Lagos and Redeemer’s 

University, Ede Nigeria. He is a 

Fellow of the Computer Registration 

Council of Nigeria (CPN). He has 

authored a book in Computer Science and published 

many articles in reputable peer reviewed journals. His 

research interest is in the area of formal modelling and 

simulation. 

Samson Arekete holds a PhD 

degree in Computer Science. He is a 

Professor of Computer Science at 

the Redeemer’s University, Ede, 

Nigeria. His research interests are in 

Artificial Intelligence, Intelligent 

Agents Systems and Modelling. He 

has published articles in learned journals and attended 

conferences. 

Mba Odim is a Reader (Associate 

Professor) in The Department of 

Computer Science, Redeemer’s 

University, and Ede. He holds a 

PhD degree in Computer Science 

and has published widely both local 

and internationally. He is a member 

of the Nigeria Computer Society 

(NCS) the Computer Registration Council of Nigeria 

(CPN). He holds the Artificial Intelligence Analyst - 

Mastery and Explorer Awards of IBM. His research 

interests include but not limited to Machine Learning, 

Deep Learning, Data Mining, Database Systems and 

Information Security. 

 

 

 

 

 

 

Adewale Ogunde is a Professor in 

Computer Science. He holds a PhD 

degree in Computer Science and is 

a registered member of the 

Computer Professionals 

Registration Council of Nigeria, 

Nigeria Computer Society, IAENG 

and several other professional bodies. He has 

published widely in both local and international 

journals. His research interests are in the area of 

Artificial Intelligence: data mining, machine learning, 

and Big Data with other intelligent and knowledge-

based systems. 

Bosede Oguntunde holds a PhD 

degree from the University of 

Ibadan. Nigeria. She is a Senior 

Lecturer in Computer Science. Her 

research interests are in Data 

Communication, Networking, 

Bioinformatics and Machine 

Learning. She has published articles in learned 

journals and presented papers at conferences. 
 

 

 

 


