
894 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

A Network Performance Aware QoS Based

Workflow Scheduling for Grid Services

 Shinu John1 and Maluk Mohamed2
 1Department of Computer Science and Engineering, St Thomas College of Engineering and Technology,

India
2Department of Computer Science and Engineering, MAM College of Engineering and Technology, India

Abstract: Grids enable sharing, selection and aggregation of geographically distributed resources among various

organizations. They are now emerging as promising computing paradigms for resource and compute intensive scientific

workflow applications modeled as a Directed Acyclic Graph (DAG) with intricate inter-task dependencies. Job scheduling is

an important and challenging issue in a grid environment. There are various scheduling algorithm proposed for grid

environments to distribute the load among processors and maximize resource utilization while reducing task execution time.

Task execution time is not the only parameter to be improved; various Quality of Service (QoS) parameters are also to be

considered in job scheduling in grid computing. In this Research we have studied the existing QoS based Task scheduling,

work flow scheduling and formulated the problem. The possible solutions are developed for the problems identified in existing

algorithms. The scheduling of dependent task (work flow) is more challenging than independent task scheduling. The

scheduling of both dependent and independent tasks with satisfying QOS requirements of users is a very challenging issue in

grid computing. This paper proposes a Novel Network aware QoS workflow scheduling method for Grid Services. The

proposed scheduling algorithm considers network and QoS constraints. The goal of the proposed scheduling algorithm is to

implement the workflow schedule so that it reduces execution time and resource cost and yet meets the deadline imposed by the

user. The experimental result shows that the proposed algorithm improves the success ratio of tasks and throughput of

resources while reducing makespan and workflow execution cost.

Keywords: Grid scheduling, QoS, DAG, execution time, deadline, trust rate.

Received June 25, 2014; accepted September 7, 2015

1. Introduction

Grid computing is fundamentally based on a kind of

parallel and distributing computing, namely cluster

computing and point-to-point computing which can

handle diverse computing services. This was achieved

by the high speed internet and powerful processors that

support middle wares without disturbing computer’s

normal job. The major differences among Grid

computing and traditional distributed systems are as

follows:

 There is no middle control over the computers.

 General-purpose protocols are used.

 The Quality of Services is typically very high.

As the speed of the internet increases, the distinction

between two Personal Computers (PCs) functioning

next to each other in a single building, or in a city or

country regularly fades out. Consequently, users

accomplish their tasks on geographically shared

sources. The major concept followed in a Grid

environment is that we can use the entire

computational power of individual systems equally so

that we utilize all resources separately. Similarly, it is

aimed to develop an approach to connect the incredible

computational power of the complete universe, where

the cost is directly dependent on the amount of

computational power being used. Grid scheduling has

turned to be a major challenge. The significant

challenges of scheduling in Grid environment are as

follows:

 Resources are generally shared among users, so

there is a competition among them.

 The scheduler is not in control of the sources.

 The number of available sources changes

continuously.

 Sources are located at dissimilar management sites.

 Sources are heterogeneous.

 The majority of the workflow applications are data-

centric and hence a large amount of data transfer is

needed between two sites.

Scheduling in the grid can be considered as static and

dynamic approaches. In the static method, each task is

assigned once to a resource and its estimated cost of

computation is prepared in advance of actual

execution. On the other hand, dynamic scheduling is

where a system is not conscious of the run-time

behaviour of the application before execution.

The problem of task scheduling in workflows can be

described by a Directed Acyclic Graph, known as

(DAG). Scheduling is an optimization problem in the

A Network Performance Aware QoS Based Workflow Scheduling for Grid Services 895

context of traditional homogeneous or heterogeneous

parallel computing, but in a grid environment, it is

entirely dissimilar. Moreover, heterogeneity and

substantial communication overheads, issues correlated

to different administrative domains, are to be

considered during a resource allocation to an

application. All these problems might hinder the

utilization of parallelism [8, 9]. The current challenges

in scheduling workflow applications in grid computing

are resource distribution in grids and competition for

resources, etc., [3]. To overcome these problems, the

concept of reserving resources in progress through the

resource brokers [4] is resorted to. A resource broker is

a common gateway to access grid resources. They

make workflow implementation in Grids easy and

reduce execution time. But, scheduling workflows

considering users’ Quality of Service (QoS) needs are

not considered in current Grid workflow management

systems. Pricing for a service is dependent on the

required QoS level. In general service providers charge

a higher price for higher QoS. Consequently, users

may not require completing the workflows before the

actual deadline. Instead, they favour using cheaper

services with lower QoS that are enough to cater their

needs. Keeping this in mind, this [19, 20] work

presents a QoS-based workflow management, which

aims to reduce execution cost, while satisfying users’

QoS requirements

This research examines the fundamentals of

workflow management, based on QoS requirements of

service Grids and proposes a novel Network

performance aware QoS workflow scheduling for Grid

Services. The goal of the proposed scheduling

algorithm is to implement the workflow schedule to

reduce execution time, resource cost and yet meet the

deadline imposed by the user. To resolve scheduling

issues powerfully for large-scale workflows, we first

calculate the priority value for each node of the DAG

based on the priority value by partitioning the

workflow tasks and readying the workflow for

scheduling. A deadline assignment scheme is also

developed to allocate the overall deadline over each

partition. Based on the partitioning of tasks, a network

aware QoS workflow scheduling algorithm is offered.

The motivation is that it predicts the trust of the

resource node during task execution and then makes

scheduling decisions regarding the trust of successful

execution of tasks.

2. Related Works

Nadia and Zimeo [9] proposed a time and cost-

constrained scheduling approach that, follows the data

parallelism model, is capable of organizing scientific

and business workflow tasks (or other application

tasks) on pools of resources to reduce overall execution

time. This research considers the difficulty of

allocating heterogeneous computing resources to data

parallel tasks of a Grid application with the

fundamentals of QoS constraints, specifically time and

cost. This algorithm doesn’t evaluate the overhead.

Moreover, reservation and execution time prediction

techniques are explored at the middleware level to

support the effectiveness of the algorithm with non-

dedicated resources and more complex execution

environments.

Gharooni-Fard et al. [4] presents a new genetic

method known as “chaos-genetic approach” to resolve

the scheduling problem addressing the user’s budget

and deadline. In this work, the cost of a service is

normally related to the quality of the service it

provides. Generally, the service providers charge more

in response to a higher quality of service. Further,

users may not always require completing workflows

earlier than they need. Cheaper services with lower

QoS enough to meet the user’s requests are sometimes

preferred. Therefore, a trade off between the time and

monetary cost needs to be considered. In the above

case the QoS parameters like reliability, stability,

throughput and efficiency are not considered together.

Amalarethinam and Selvi [3] present a novel

method for scheduling called Efficient Dual Objective

Scheduling (EDOS) to improve the resource utilization

in a grid and reduce makespan through advance

reservation of resources and priority based task

scheduling. In the EDOS approach, scheduling of

reserving the resources in advance for complete

workflow is static [12], but the mapping of resources to

an executing task is dynamic. In this method,

imputation of necessary resources is easier as the

number of tasks in the DAG is identified in advance.

This work is not focused to reduce communication

cost. The algorithm does not consider failure of a task

or resource during scheduling.

Abrishami et al. [1], and Abrishami and

Naghibzadeh [2] introduce a scheduling technique for

workflow, the critical path heuristics which attempt to

schedule critical tasks initially. A novel QoS-based

workflow scheduling algorithm based on the proposed

model is known as Partial Critical Paths (PCP), which

attempts to reduce the workflow execution cost with a

user specified deadline. To improve performance, a

high degree of concurrency is achieved for all time by

running various instances concurrently. A scheduler

must deal equally with potential deadlock problems

due to oversubscribed resources and improving

performance, as considered by makespan and/or

throughput.

Wu et al. [16] presents a Scientific Workflow

Automation and Management Platform (SWAMP),

which allows scientists to collect, implement, examine,

manage, and guide computing workflows in shared

environments through a unified web based user

interface. SWAMP also incorporates a specially

considered mapping engine that automatically maps,

conceptual workflows to underlying networks to

896 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

achieve Minimum End-to-end Delay (MED) and

Maximum Frame Rate (MFR). The time changing

environment of system and network resource’s

availability makes it a challenging problem to achieve

an accurate estimation of the execution time of a

module or transfer time over a link in real networks.

Abrishami et al. [1, 2] present an innovative heuristic

scheduling algorithm for workflow based on QoS

constraints, named Partial Critical Paths (PCP)

algorithm. The goal of the PCP algorithm is creating a

schedule that reduces total execution cost of a

workflow while demanding a user-specified deadline

for total execution time. This approach has two steps:

Deadline Distribution and Planning. In the initial step,

the whole deadline of the workflow is shared between

individual tasks, so that it can execute it before the

user’s deadline and thereby reduce its execution cost.

In the second step, the scheduler chooses the cheapest

service for a task; likewise the entire workflow is

completed before its sub deadline. This algorithm is

not efficient for parallel pipelines. This method has

greater time complexity, as a relatively large number

of rescheduling is needed during execution of the

algorithm.

Vasques and Veiga [15] introduces a framework for

decentralized scheduling with effectiveness based

scheduling algorithm that assumes partial request

fulfilment to overcome the shortcomings of definite

solutions. This scheduling algorithm assumes partial

requirement execution based on information produced

by users. Su et al. [13] presents a cost-efficient task-

scheduling algorithm using dual heuristic strategies.

The initial step dynamically maps tasks to the cost-

efficient resources based on the idea of Pareto

dominance. The second step complements the first and

minimizes the monetary costs of non-critical tasks.

This method computes scheduling plans that ensures

makespan as good as the best known algorithm while

considerably reducing monetary costs. Task

management is to represent a set of tasks with a

workflow diagram, which can capture task

decomposition, the communication between subtasks,

and cost of computation and communication. But in [2,

11] the monetary cost does not include storage,

network resources and communication cost. This work

incorporates penalties for violating consumer-provider

contracts.

Rahman et al. [10] proposed a Dynamic Critical-

Path (DCP) based adaptive workflow scheduling

approach for grids, which resolves efficient mapping of

workflow tasks to grid resources dynamically by

estimating the critical path in the workflow task graph

at every step. However, this method is described for

mapping tasks to resources, and is static, in the sense

that the schedule is calculated once for a task graph.

This algorithm extends the DCP algorithm to map and

schedule tasks in a workflow to heterogeneous

resources in a dynamic grid environment.

Wu et al. [17] deals with QoS scheduling based on

following strategies:

1) The task owned higher priority should be scheduled

prior to tasks with lower priority.

2) Atask should be completed as soon as possible.

 In this, TS-QoS approach estimates the priority of the

tasks based on their specific attributes and then sort

them based on priority. The algorithm then calculates

the completion time of each task on different

resources, and schedules them to a resource which can

complete the task as soon as possible according to the

sorted task queue. But in this procedure priority varies

dynamically and an increase helps to resolve the

“starvation” difficulty followed by First Come First

Serve (FCFS) concept. The scheduling is efficient and

load balancing by QoS uses priority and execution

time.

Hasham et al. [5] offers a pilot job idea that has

intelligent data reprocess and job execution approach

to reduce allocation, queuing, implementation and data

access latencies. A pilot job is one that is accountable

for setting up the necessary completing environment

and for controlling the execution of a real job. A pilot

job allows the traditional grid submission method;

though, a job will bypass it as a pilot job downloads it

from a global scheduler queue for completion. Through

the aid of this method, a pilot job can support the job

of finding all or several of its necessary files in the

cache managed on the worker nodes. A job can begins

implementation as quickly, if scheduled to a pilot job,

thus minimizing queuing and allocation delays. If a job

has completed its execution; a pilot job instantly

notifies its execution status to the scheduling and

monitoring mechanism for reducing delays.

Yousaf and Welzl [18] proposed an algorithm,

network based Heterogeneous-Earliest-Finish Time

(HEFT) where such data transfers are fixed to their

practical execution time. A HEFT planned with fixed

data transfers presents practical execution time for the

schedule. Following this phase, HEFT is functional

again with fixed communication costs and this is

continual till a better schedule is found. Ijaz et al. [8]

proposed a novel approach for mapping the DAG

based application to available machines effectively. In

this method A Minimal Latest Start Time algorithm

was used to schedule tasks which have the latest

schedule time by taking into consideration the start

time of tasks. This method assigns priority to tasks

based on the level of the tasks. Low level tasks will

have high priority and high level tasks will have low

priority.

Hassan and Abdullah [6] proposed a novel

semantic-based scalable decentralized grid Resource

Discovery (RD) framework to achieve an effective

resource discovery in grid computing. Grid RD

framework is built by integrating ontology, Peer-to-

Peer network and intelligent agents with two aspects

A Network Performance Aware QoS Based Workflow Scheduling for Grid Services 897

called description of the resource information and

resource information.

Hsu et al. [7] proposed an online scheduling

approach for multiple mixed-parallel workflows in grid

environments. Online Workflow Management (OWM)

includes four processes called Critical Path Workflow

Scheduling (CPWS), Task Scheduling, multi-processor

task rearrangement and Adaptive Allocation (AA). It

also includes three data structures called online

workflows, a grid environment and a waiting queue

similar to offline workflow scheduling [19].

3. Workflow Scheduling in Grid

The proposed algorithm for workflow scheduling

employs the Grid-Architecture model considering

resource organization and networking. Grid-

Architecture integrates distributed resource brokering

and allocation services as part of a cooperative

resource sharing environment. The Grid-Architecture,

GA = { R1, R2, ….., Rn} contains many grid sites, n,

with each grid site providing its resource to the

framework. Every grid site in the architecture has its

own resource defining Ri which consists of the

description of the resource, it is willing to provide. Ri

can involve information about the number of

processors, CPU architecture, operating system type,

memory size, secondary storage size, etc.,

In this research, Ri = {pi, ai, si, oi}, which involves

processors denoted pi, processor architecture denoted

ai, their speed denoted si, and installed operating

system type denoted oi. Resource brokering, indexing

and allocation in Grid-Architecture are facilitated by a

Resource Management System (RMS) known as Grid-

Architecture Model (GAM). Figure 1 shows an

instance of Grid-Architecture resource distributing

model containing of Internet-wide shared parallel

resources. Every contributing grid site manages its own

service represented as three entities: Grid Resource

Manager (GRM), Resource Manager (RM) and

Distributed Information Manager (DIM) or Grid. The

Grid Resource manager is responsible for scheduling

locally submitted workflows.

Resource Manager performs other activities to

facilitate federation wide job submission and migration

process like answering GRM queries related to local

job queue length, expected response time, and current

resource utilization status. Here, it considers the

scientific workflow applications as a case study for the

proposed scheduling approach. A Scientific workflow

application can be modeled as a Directed Acyclic

Graph (DAG), where tasks in the workflow are

denoted as nodes in the graph and the dependencies

among tasks are denoted as directed arcs among nodes.

Figure 1. Grid Architecture Model (GAM).

We focus on scheduling workflow application,

which has a collection of tasks. Our technique

maintains allocation of various tasks in a workflow

Management System in the Grid-Framework (shown in

Figure 2), if the total number of processors demand for

implementing all tasks in a workflow are not available

in a single Grid site. In our model, every task needs

accessibility to one processor within a Grid site.

Figure 2. Workflow management system.

If at any time no resource is able to suggest a single

processor as requested by a resource maintain object,

then the declared object is stored in the coordination

space and kept pending and when one of the Grid sites

publishes a resource permit and contributes one

D
ev

el
o

p
m

en
t

E
n

v
ir

o
n

m
en

t Application

Composition

Visualization

G
ri

d
 I

n
fo

rm
at

io
n

S
er

v
ic

e

Data

Catalogue

Resource

Catalogue

Workflow

Management System

Execution

Monitor

Scheduler

Resource

Discovery

Researc

her

User

Resources Pool

Data

node

Portal

GAM

Grid Resources

Portal

GAM

Resources

Resourc

es

Grid Resource

Manager

Schedule jobs

Manage

Execution of jobs

Resource Manager

Grid

Peer

Search

Route

Coordin
ate

Grid Architecture Model (GAM)

898 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

available processor. Sites of grid resource permit the

following in certain time interval approaches for

1. Task scheduling.

2. Resource provisioning.

3. Resource coordination as specified in the paper [2,

11].

4. Grid Workflow Scheduling based on QoS

Constraints

The completion time and resource cost are important

dual constraints in QoS to implement workflows on

“pay-per-use” services. Users usually would like to get

the tasks completed at minimum costs within available

time. In this section we present Network performance

aware QoS scheduling method for workflow and the

algorithm that allows the workflow system to minimize

completion time while delivering results within the

deadline.

4.1. Analysis and Assessment of Evidence

Gathered

This model represents an efficient workflow

application as a Directed Acyclic Graph (DAG). Let G

= <V, E, W, D> be a DAG is a node-weighted, time

constraint and edge-weighted directed graph, where V

=<n1, n2, n3... nn> is the set of task nodes, with each

node denoting a task, E is the set of weighted edges

representing precedence constraints between nodes in

V. Let D be the user defined deadline for the execution

of workflows.

In this workflow, we call a task an entry with exit

task being represented as Ventry and Vexit. The entry task

is defined as a task which lacks a parent. Similarly the

exit task represents a task that lacks a child.

4.2. QoS Constraints for DAG

4.2.1. Failure Rate Analysis

The weight on each edge Eij W, represents the

amount of data being transmitted from task node ni to

task node nj. Grid resources are represented as R = {R1,

R2 . . . RM}. For each task ni  V, the weight on each

node, T(ni), represents execution time on each resource

node: T(ni) = {t1(i),t2(i),. . . ,tM(i)}, where tj(i)

represents execution time of ni on Rj. dij denotes

network delay from Ri to Rj, namely network

bandwidth. Let bij be a binary number that represents

whether ith task is assigned to jth resource, 1 for

assigned and 0 for not assigned. Let psij be the

probability of jth resource node not failing during the

running of ith task on jth node.

The probability of the system not to fail is expressed

in Equation (1).

(())
= ()

M N b t i Tij j iat

r ij
j 1 i 1

P ξ ps


 



 = ()
M

lat pi pk kj j
p prec(i) k 1

T E b d SL
 

    

Tlat denotes execution latency of task ni, including the

time that task ni spends to fetch needed data from the

preceding nodes and the scheduling length of resource

node Pj(SLj). prec(i) represented as p is a set of

immediate precursor of task i. k represents the pth

precursors on kth resource. dkj is the delay between

node k and j.  is the fix up parameter used to modify

it based on the theoretical result of Pr. It is

experimentally set in the range of (0.1 - 1.0).

The Failure Rate (FR) is defined as the product of

resource failure rate and the execution time of the task

as follows:

(1) (())
ij ij j lat

FR ps t i T   

4.2.2. Stability Analysis

Stability is defined as the variability in the

performance of a service. α is a computational unit,

measured in mips. αavg,i,j is the observed average

performance of the task i who leased resource j, αs1a,i,j

is the promised values in the SLA, ST is service time

and n the total number of tasks. For computational

resources, it is the deviation from the performance

specified in SLAs.

 =

avg,ij sla,ij

N M

ij
i 1 j 1

α α

STS
n 





4.2.3. Throughput Analysis

Throughput is the number of tasks executed by the

resources per unit of time. It is slightly different from

the Service Response Time metric, which measures

how fast the resource is provided. tj(i) represents the

execution time of ni on Rj and n is the total number of

tasks.

()
ij

j ij

n
T

t i d




4.2.4. Efficiency Analysis

Grid system efficiency indicates the effective

utilization of leased resources. So, a higher value for

efficiency indicates that the overhead will be smaller.

()

()

j

ij

j ij

t i
Ef

t i d




4.3. A Novel Network Aware QoS Scheduling

for Grid Workflow Services

Our proposed scheduling algorithm is based on the

Dependable Grid Workflow Scheduling (DGWS) [14]

and consists of four phases: priority, partitioning,

deadline constraints and scheduling. The sample

(1)

(2)

(3)

(4)

(5)

A Network Performance Aware QoS Based Workflow Scheduling for Grid Services 899

workflow DAG graph is represented in Figure 3. The

proposed method is presented in Algorithm1.

 Priority Phase: In the first phase, a weight is

allocated to every node and edge of DAG; based on

the mean of all feasible values of the cost of a node

(or edge, correspondingly) on every resource (or

grouping of resources correspondingly). With this

weight, upward priority value is calculated and each

node of the DAG is assigned a priority value. The

upward priority value of node i, priorityu (ni), is

recursively defined according to Equation (6).

()

() (1 ())
u i i ik u k

n succ nk j

priority n a max / d E priority n


   

()
jM

j 1i

t i
a

M
 

Where


()

ijM M

i 1 j 1 2

M

d
d

2 C
   




()

2

M

M!
C

M! M-2 !


Where ia is the mean weight of task node i, succ (ni)

is a set of instant successors of task node i and d the

mean of network delay among any two nodes.

 Partitioning Phase: Next Phase, based on the

priority value (priorityu(ni)) of the task nodes of the

DAG is sorted in descending order. By means of

this order, they are separated into different partitions

as follows. The initial node is added to a first

partition. If there is dependency, a new partition is

created and the new partition’s number is the

current partition is increased by one, and then the

node with the least priority value is the element of

the new partition. The final outcome is a set of

ordered partitions.

Figure 3. A sample workflow DAG graph.

 Deadline Constraints Phase: After task partitioning

in the DAG, we allocate the overall deadline among

every ni in G. The deadline d[ni] allocated to any ni

is a sub-deadline of the overall deadline D. This

paper assumes the following deadline allocation

methods:

 Method 1: The collective sub-deadline of any

independent path among two dependent tasks

should be equal. A dependent task cannot be

implemented till all tasks in its parent task partitions

are executed. Consequently, instead of waiting for

other independent paths to be executed, a path

capable of being completed in advance is executed

on slower but cheaper services.

 Method 2: The collective sub-deadline of any path

from ni(Ventry  ni) to nj(Vexit  nj) is equivalent to

the overall deadline D. This method confirms that

once each task partition is estimated within its

allocated deadline, the entire workflow

implementation assures the user’s defined deadline.

 Method 3: Any allocated sub-deadline should be

greater than or equal to the minimum processing

time of the consequent task partition. If the allocated

sub-deadline is less than the minimum processing

time of a task partition, its anticipated execution

time will beyond the capacity, its execution services

can handle.

 Method 4: The whole deadline is separated over task

partitions are part of their minimum processing

time.

 Scheduling Phase: The scheduling phase follows in

two approaches:

1. Without partitioning the workflow.

2. With partitioning the workflow.

4.3.1. Without Partitioning the Workflow

In this approach all tasks in the workflow are mapped

to a trust rate to resources to minimize the execution of

the whole workflow. In this scheduling, the algorithm

is to develop workflow schedule based on the QoS

constraints like time, cost, reliability, stability,

throughput and efficiency.

4.3.2. With Partitioning the Workflow

The scheduling phase makes an efficient schedule for

advance reservation and dynamic execution. The

advanced reservation and dynamic execution methods

are explained in [12, 21]. The schedule assigns each

workflow task to a particular service so that they meet

users’ deadline at low execution cost. We resolve the

workflow scheduling problem by separating the entire

problem into several task partition scheduling

problems. Once every task partition has its hold sub-

deadline, it is capable of discovering a local best

schedule for every task partition. If every local

18
21

19

13

11 17

23

15

13
23

27

16
19

14

99

12

18

1

2
4

9

3

7

5
6

8

10

11

12

(6)

900 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

schedule promises that their task execution will be

finished within their sub-deadline, the entire workflow

execution will be executed within the overall deadline.

Task in resources, if any partition is predicted which

does not meet the deadline it will mean rescheduling

the partitioned task with a new possible sub partition as

shown in Algorithm 2. Likewise, the outcome of the

cost minimization solution for every task partition

leads to an optimized cost solution for the whole

workflow. Consequently, an efficient workflow

schedule can be simply constructed by local best

schedules.

Finally, following the ascending order of partitions’

number with deadline, tasks within every partition are

scheduled. In our method, tasks in every partition are

scheduled based on the trust rate of the resource. But,

if any partition is predicted which does not meet the

deadline it will mean rescheduling the partitioned task

with a new possible sub partition. Then it reschedules

the sub partition based on the trust rate of resources.

Consequently, we chose the method with a

successful task execution is lowest and schedule the

task to it. This way, we minimize execution time and

cost of workflow.

Algorithm 1: QoS scheduling algorithm.

Input: A workflow G = <V, E, W, D> graph

Output: Scheduling the task in workflow

1. Allocate Weight value for V and E over i
V G  and

ij
E W 

2. for all i
V G do

3. Calculate priorityu(ni) using (6)

4. Vi are sorted in descending order of priorityu(ni)

5. Calculate FRij, Sij, Tij, EFij using (2) (3) (4) (5)

6. Compute Trust Rate of Task i on Resource j on

(())
M N

ij ij ij ij ij ij
j 1 i-1i 1

TR b S T EF /FR
 

   

Max ((())M N

j 1 i 1 ij ij ij ij ij
b S T EF / FR    )

7. Partitioning nodes considering the descending order of

their upward priority

Group (ni..j-1) Є priority(ni...j-1) < priority(nj...k-1) i=1...p-

1, j= p...q-1, k=q…r-1 for different p,q,r form different

group (Q={P1,P2,…,Pn})

8. for all i
P Q do

9. Compute TRij

10. if (min(completion_time(Q) < min (completion time (G)

) then

11. Schedule for i based on Q

12. else

13. Schedule for i based on G.

14. dl[i] get expected completion time of i

15. if (dl[i]D[i]) then

16. Reschedule Pi with new possible sub partition

Algorithm 2: QoS rescheduling algorithm

Input: A task partition graph G=<V, E, W, D> delayed

partitioned task Pi

Output: a new schedule for unexecuted tasks in the workflow

1. for all i P

2. Calculate ()
u i

priority P using (6)

3. End for

4. Pi are sorted in the descending order of ()
u i

priority P

5. Partitioning nodes (Pi) into sub partition (SPi) by

considering their upward priority

6. for all i SP

7. Compute TRij using (7)

8. End for

9. Schedule task with maxTRij

 Repeat the process till all tasks are completed in the

workflow.

5. Results and Discussion

Experimental grid setup was performed using gridsim

by which we created the 4 Grid Information Service

(GIS),10 users, 10 jobs, 27 resources with different

bandwidth and 2 routers (Table 1). Each resource runs

multiple tasks.

Table 1. The router Initialization.

Router_Name
Baud_rate

(GB/s)
Prop_delay (ms)

Maximum

transmission unit

(mtu(byte))

Router 0 1 10.0 1500

Router 2 1 10.0 1500

The following are the graphical results of the

implemented workflow schedule namely Network

Performance Aware QoS workflow scheduling

algorithm for Grid Services and parameters considered

for the comparison of the methods include:

 Makespan.

 Execution Cost.

 Throughput.

 Average Success Ratio.

Makespan is calculated as the execution time of the

entire workflow, which equals the variation between

start time of Ventry in the workflow and output

occurrence time of Vexit in that workflow as shown in

Figure 4. In the graph, the amount of tasks varies from

50 to 500 along the x-axis and average makespan

workflow is in using along y-axis various from 0 to

5000.

Figure 4. Makespan graph.

It can be conditional from the graph that makespan

of Network aware QoS scheduling algorithm is lesser

than Dependable Grid Workflow Scheduling. Network

(7)

A Network Performance Aware QoS Based Workflow Scheduling for Grid Services 901

aware QoS scheduling algorithm for workflow is

11.80% faster than Dependable Grid Workflow

Scheduling.

Figure 5. Execution cost graph.

The costs related to a specific resource can differ

depending on the time taken when the resource is

managed. By performing a complete analysis of the

resource costs through one or more particular periods,

we decide the optimum times for scheduling activities

that involve the resource. Figure 5 represents the cost

of resource utilized. In Figure 5, the number of tasks

ranging from 50 to 500 is taken along x-axis and

execution cost workflow is taken along the y-axis

ranging from 0 to 100. In the graph the cost of

Network aware QoS scheduling algorithm for

workflow is 12.28% lesser than Dependable Grid

Workflow Scheduling.

Throughput refers to the performance of tasks by a

computing service or device over a specific period. It

measures the amount of completed work against the

time consumed and may be used to measure the

performance of a processor, memory and/or network

communications. Throughput is measured by

calculating the amount of data transferred between

locations during a specified period, generally resulting

as Kilo Bytes Per Second (KBPS).

Figure 6. Throughput Graph.

Figure 6 represents the overall throughput

calculation where the number of tasks ranging from 50

to 500 is taken along x-axis and throughput is taken

along y-axis ranging from 0 to 1000. The graph shows

that throughput of Network aware QoS scheduling

algorithm is 11.76% higher than the Dependable Grid

Workflow Scheduling.

Success Ratio is defined as the ratio of the number

of successful tasks to the number of all tasks. Figure 7

represents the average success ratio of resources where

the number of tasks ranging from 50 to 500 is taken

along x-axis and average success ratio is taken along y-

axis ranging from 0 to 100.

Figure 7. Average success ratio graph.

From the results of the graph the success ratio of

Network aware QoS scheduling algorithm is 17.06%

higher than Dependable Grid Workflow Scheduling.

6. Conclusions and Future Work

In existing, grid workflow system has not addressed

the high dynamic feature and dependable workflow

scheduling. The present work proposes an efficient

scheduling mechanism by first analysing the DAG and

scheduling a workflow management system based on

QoS. The proposed framework presents, an innovative

model known as Network Performance aware QoS

based Workflow scheduling for Grid Services that

reduces the cost of task completion while meeting the

deadline. Based on our work, a Network Performance

Aware QoS Workflow scheduling algorithm is

implemented, which considers QoS constraints and the

workflow with and without the partition method. For

the workflow the priority values are calculated for each

task on a node, based on priority value. The work flow

is partitioned into groups. The user can specify the

deadline for each task in the partition. The resources

are selected based on minimum resource cost and meet

the deadline of each task. We also described task

partitioning, deadline constraints and resource

availability for efficient scheduling of task execution.

Our algorithm improves the success ratio of tasks

and throughput of resources and reduces makespan and

the execution cost of workflow. In future application

based QoS parameters may be developed to obtain

more accurate resource selection on user requirements.

References

[1] Abrishami S., Naghibzadeh M., and Epema D.,

“Cost-Driven Scheduling of Grid Workflows

Using Partial Critical Paths,” IEEE Transactions

902 The International Arab Journal of Information Technology, Vol. 15, No. 5, September 2018

on Parallel and Distributed Systems, vol. 23, no.

8, pp. 1400-1414, 2012.

[2] Abrishami S. and Naghibzadeh M., “Deadline-

Constrained Workflow Scheduling in Software as

A Service Cloud,” Scientia Iranica, vol. 19, no.

3, pp. 680-689, 2012.

[3] Amalarethinam G. and Selvi K., “An Efficient

Dual Objective Grid Workflow Scheduling

Algorithm,” International Journal of Computer

Applications, vol. 33, no. 1, pp. 7-12, 2011.

[4] Gharooni-Fard G., Moein-Darbari F., Deldari H.,

and Morvaridi A., “Scheduling of Scientific

Workflows using AChaos- Genetic Algorithm,” in

Proceedings of International Conference on

Computational Science, Netherlands, pp. 1439-

1448, 2010.

[5] Hasham K., Peris A., Anjum A., Evans D.,

Hufnagel D., Huedo E., Hernández J.,

McClatchey R., Gowdy S., and Metson S., “CMS

Workflow Execution using Intelligent Job

Scheduling and Data Access Strategies,” IEEE

Transactions on Nuclear Science, vol. 58, no. 3,

pp. 1221-1232, 2011.

[6] Hassan M. and Abdullah A., “A New Grid

Resource Discovery Framework,” The

International Arab Journal of Information

Technology, vol. 8, no. 1, pp. 99-107, 2011.

[7] Hsu C., Huang K., and Wang F., “Online

Scheduling of Workflow Applications in Grid

Environments,” Future Generation Computer

Systems, vol. 27, no. 6, pp. 860-870, 2011.

[8] Ijaz S., Munir E., Anwar W., and Nasir W.,

“Efficient Scheduling Strategy for Task Graphs

in Heterogeneous Computing Environment,” The

International Arab Journal of Information

Technology, vol. 10, no. 5, pp. 486-492, 2013.

[9] Nadia R. and Zimeo E., “Time and Cost-Driven

Scheduling of Data Parallel Tasks in Grid

Workflows,” IEEE Systems Journal, vol. 3, no. 1,

pp. 104-120, 2009.

[10] Rahman M., Hassan R., Ranjan R., and Buyya

R., “Adaptive Workflow Scheduling for

Dynamic Grid and Cloud Computing

Environment,” Concurrency Computation

Practice Experience, vol. 25, no. 13, pp. 1816-

1842, 2013.

[11] Rahman M., Ranjan R., and Buyya R.,

“Cooperative and Decentralized Workflow

Scheduling in Global Grids,” Future Generation

Computer Systems, vol. 26, no. 5, pp. 753-768,

2010.

[12] Smith W., Foster I., and Taylor V., “Scheduling

with Advanced Reservations,” in Proceedings of

International Parallel and Distributed

Processing Symposium, Cancun, pp. 127-132,

2000.

[13] Su S., Li J., Huang Q., Huang X., Shuang K., and

Wang J., “Cost-Efficient Task Scheduling for

Executing Large Programs in the Cloud,”

Parallel Computing, vol. 39, no. 4-5, pp. 177-

188, 2013.

[14] Tao Y., Jin H., Wu S., Shi X., and Shi L.,

“Dependable Grid Workflow Scheduling Based

on Resource Availability,” Journal of Grid

Computing, vol. 11, no. 1, pp. 47-61, 2013.

[15] Vasques J. and Veiga L., “A Decentralized

Utility-Based Grid Scheduling Algorithm,” in

Proceedings of the 28th Annual ACM Symposium

on Applied Computing, Coimbra, pp. 619-624,

2013.

[16] Wu Q., Zhu M., Gu Y., Brown P., Lu X., Lin W.,

and Liu Y., “A Distributed Workflow

Management System with Case Study of Real-

Life Scientific Applications on Grids,” Journal of

Grid Computing, vol. 10, no. 3, pp. 367-393,

2012.

[17] Wu X., Deng M., Zhang R., Zeng B., and Zhou

S., “A Task Scheduling Algorithm Based on

QoS-Driven in Cloud Computing,” in

Proceedings of ITQM in Elsevier, China, pp.

1162-1169, 2013.

[18] Yousaf M. and Welzl M., “Network-Aware

HEFT Scheduling for Grid,” The Scientific World

Journal, vol. 2014, pp. 1-13, 2014.

[19] Yu J., Buyya R., and Ramamohanarao K., Meta-

Heuristics for Scheduling in Distributed

Computing Environments, Springer, 2008.

[20] Yu J., Buyya R., and Tham C., “QoS-based

Scheduling of Workflow Applications on Service

Grids,” in Proceedings of the 1st IEEE

International Conference on E-Science and Grid

Computing, Australia, pp. 1-9, 2005.

[21] Zhao H. and Sakellariou R., “Advance

Reservation Policies for Workflows,” in

Proceedings of Job Scheduling Strategies for

Parallel Processing, Saint-Malo, pp. 47-67,

2007.

A Network Performance Aware QoS Based Workflow Scheduling for Grid Services 903

Shinu John is a Professor in the

department of Computer Science

and Engineering at the St. Thomas

College of Engineering and

Technology, Kannur, India. He

obtained his Ph. D. from Anna

University, Chennai. He received his

M.E. and B.E. degrees in Computer Science and

Engineering from Anna University, India and the M.S.

University, Tirunelveli, India respectively. He is a

member of the System Software Group at MAM

College of Engineering, India and has published many

papers in various national, international journals and

conferences. His research interests include Grid

Computing, Mobile Computing and Computer

Networks. He is a life member of Computer Society of

India, the Indian Society for Technical Education

(ISTE), Institution of Engineers and a member of IEEE

since 2006.

Maluk Mohamed obtained his

Ph.D. from the Indian Institute of

Technology (IIT) Madras in 2006,

Masters in Engineering from the

National Institute of Technology,

Tiruchirappalli in 1995 and

Bachelors from the Bharathidasan

University in 1993. He is currently a professor in the

Department of Computer Science and Engineering,

M.A.M. College of Engineering, India. He coordinates

research activities for the System Software Group at

MAMCE. His research interests include distributed

computing and its family ie; grid computing, mobile

computing, cloud computing and wireless sensor

networks, software engineering and distributed

databases. He has guided 5 Ph. D, 1 M.S. (By research)

and 32 M. Tech., scholars and is currently guiding 5

Ph.D., and 3 M. Tech., research scholars. He is a

member of the Board of Studies, in Anna University

and JNTU Anantapur. He is the principal investigator

for a number of funded projects like Cyberspace

Security and Cloud API.

