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Abstract: Target coverage algorithms have considerable attention for monitoring the target point by dividing sensor nodes into 

cover groups, with each sensor cover group containing the target points. When the number of sensors is restricted, optimal 

sensor node placement becomes a key task. By placing sensors in the ideal position, the quality of maximum target coverage and 

node connectivity can be increased. In this paper, a novel genetic algorithm based on the 2-D discrete Daubechies 4 (db4) lifting 

wavelet transform is proposed for determining the optimal sensor position. Initially, the genetic algorithm identifies the 

population-based sensor location and 2-D discrete db4 lifting adjusts the sensor location into an optimal position where each 

sensor can cover a maximum number of targets that are connected to another sensor. To demonstrate that the suggested model 

outperforms the existing method, A series of experiments are carried out using various situations to achieve maximum target 

point coverage, node interconnectivity, and network lifetime with a limited number of sensor nodes.  
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1. Introduction  

In recent years, wireless sensor node deployment has 

resulted in a vast variety of sensor nodes that are being 

researched due to their potential sensing, wireless 

communication, and data processing capabilities [6]. 

The sensor nodes in the various surveillance 

applications are geographically scattered [23]. Due to 

insufficient energy sources, a sensor can only be 

operational for a certain amount of time. 

Sensor deployment and target coverage are other key 

critical issues in WSNs, which affect the sensor network 

lifetime [27]. The sensors can be deployed in two 

techniques known as random and deterministic sensor 

deployment. When the sensing field was very large and 

in a remote, hostile, and inaccessible place, random 

sensor deployment was used [18, 25]. In this critical 

case, sensors might be deployed randomly to be the best 

choice. The sensors are scattered randomly in the sky 

over the aircraft or new approach, resulting in falling at 

any location in the field.  

Deterministic sensor deployment is used to select the 

optimum position for attaining network design 

objectives such as network coverage, network cost, 

network lifetime, and connection with a limited number 

of sensor nodes. The coverage types can be categorized 

into the area [13], barrier, and target coverage. Thus, 

sensors are coordinated into different sensor cover 

groups, whereas each sensor monitors the set of target 

points for a specific duration when the optimal use of  

 

sensors increases the network lifetime [24]. Also, 

sensors are organized into different connectivity groups 

which can be able to communicate with any sensor in 

the optimal location [21]. Optimized node deployment 

over the target point coverage and node connectivity 

draws a lot of attention in the WSNs research 

community [11].  

The main objective of the paper is as follows, a novel 

Genetic Algorithm (GA) with 2-D Discrete Daubechies 

4 Lifting Wavelet Transform (2D D db4 LWT) is 

introduced for optimal sensor placement in target point 

coverage and node connectivity problem. Initially, 

random sensor coordinate populations matrices are 

generated based on a genetic algorithm and it is applied 

into a fitness function to evaluate the quality of 

maximum target coverage. Further, population matrices 

are applied into crossover, and mutation operation to 

improve the sensor coordinate position. Finally, discrete 

Daubechies 4 lifting wavelet transform based local 

enhancement to improve the quality of maximum target 

coverage and node connectivity and minimized energy 

consumption as to be optimum. The rest of the sections 

consist of related works as shown in section 2. Section 

3 described the problem formulation of the proposed 

methodology. Section 4 explains about discrete 

Daubechies lifting wavelet transform for the level-by-

level matrix decomposition model. Section 5 deals with 

the implementation of the proposed novel GA and 2D D 

db4 LWT with a suitable number of sensor nodes and 

target points. Section 6 validates the performance of 
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proposed methods in terms of target cover sets, sensor 

connect sets, and sensor energy models with different 

scenarios. Section 7 provides the conclusion and future 

enhancement followed by a reference section.  

2. Related Work 

To extend the network lifetime, and optimal coverage of 

mobile Wireless Sensor Networks (MWSN), Abo-

Zahhad et al. [2] developed a Centralized Immune-

Voronoi Deployment Algorithm (CIVA) to maximize 

the coverage by using binary and probabilistic models. 

The Vilela et al. [33] presented the static sensor for 

dynamic networks by Iso-Probability curves based on 

mobile target coverage.  

The Moh’d Alia and Al-Ajouri [26] stated that the 

probability of coverage ratio is categorized into fully 

covered, partially (un)covered, and uncovered patterns. 

A novel stochastic physics-based optimization 

algorithm was proposed by Njoya et al. [28], the authors 

addressed the full target coverage, whereas the move, 

merge, recombine, and explode process was performed 

by virtual sensors. The Nguyen et al. [27] formulated 

the Integer Linear Programming (ILP) method for target 

coverage. The ILP method computes target coverage 

with a smaller number of sensor nodes [24].  

The network lifetime depends on the number of 

Disjoint Sets Covers (DSC) groups. The Ashouri et al. 

[3] focused on the DSC and k-coverage problem by 

using the Boolean Satisfiability (SAT) method. Chen et 

al. [6] also utilized DSC with Dynamic Coverage 

Maintenance (DCM) to maximize the network lifetime 

when a hybrid memetic framework was applied to the 

random populations. Along with k-coverage, the Mini et 

al. [25] further extended this work with a 1-coverage to 

improve the network lifetime and Q-coverage to cover 

every target by q-sensor nodes. Gupat et al. [12] have 

examined the k-coverage to each target and m-

connectivity to all sensor nodes based on a GA. The 

method [7, 9, 10] achieved continuous monitoring of 

certain targets for a long time with minimum energy, 

whereas an optimum number of cover head selection 

was based on GA. Liao and Ting [23] applied a novel 

integer-coded Memetic Algorithm (MA) for the set k-

cover and tighter upper bound to reduce the search 

space.  

The random position of sensor coordinates was 

adjusted by Two-Dimensional Discrete Haar Wavelet 

Transform (2DDHWT) for local enhancement after the 

memetic algorithm based on random deployment of 

population matrix by Vijayaraju et al. [32]. The point-

coverage and area coverage disjoint set cover problems 

were represented by forwarding encoding scheme-based 

schedule transition hybrid GA [19, 25]. Area coverage 

Yoon and Kim et al. [34] has also been solved by GA-

based random deployment, in addition to the phenotype 

space problem. This problem is a quotient space of 

genotype space and computation time is reduced by the 

Monte Carlo method.  

The Next-Generation Networks (NGN) problems 

were explained by Abdelkhalek et al. [1], whereas 

decision supported system is applied in a multi-

objective Variable-Length Genetic Algorithm (VLGA) 

based on heterogeneous networks. In addition to VLGA, 

Zhang et al. [36] addressed the Flexible Genetic 

Algorithm (FGA) with swap-area crossover, Gaussian 

mutation to the wind farm, and Radio Frequency 

Identification (RFID) placements. Thi Hanh et al. [13] 

combined GA with Laplace X-point crossover (LX) and 

Arithmetic X-Point Crossover Operation (AMXO) to 

produce two different offspring for the Virtual Force 

Algorithm (VFA) based on the local search method. 

Katii [21] modeled the homogeneous networks for 

target coverage duration, more target cover sets, and 

minimum energy path node connectivity with maximum 

network lifetime [17].  

The Bouzid et al. [5] have presented the Multi-

Objective Optimization of A Wireless Network Using A 

Genetic Algorithm (MOONGA) for sensing coverage 

based on the degree of sensing coverage k, connectivity 

was assessed based on the degree of connectivity m to 

avoid redundancy of sensing coverage. Zhang et al. [35] 

have extended the multi objectives optimization to 

degressive Ary number encoded GA for node 

placements. The Karimi-Bidhendi et al. [20] had 

discussed Heterogeneous Two-Tier- Lloyd (HTTL) 

algorithm to minimize the two-tier power consumption 

for optimal node deployment. The Fan et al. [8] focused 

on homogeneous WSN and non-uniform sensor 

deployment to analyze the node density using 

Probability Density Function (PDF) using the energy 

consumption model. 

The Harizan and Kuila [14] presented NSGA-II with 

modified dominance for scheduling problems in node 

coverage, connectivity, and energy consumption. It has 

a minimum number of sensor nodes, full coverage with 

connectivity between the base stations, and to select the 

higher energy level for scheduling [16]. The Pal et al. 

[29] computed IEEE802.15.4 based real-time 

monitoring system for potato and wheat crops-based 

node connectivity. The Kim and Yoo [22] formulated 

the sensor target coverage problem using Bat Algorithm 

(BA) whereas, one bat finds the activated sensor node 

for sensing and others finds the data forwarding from 

the active sensor to a sink. 

3. Problem Formulation 

3.1. Network Model 

Suppose a set of m targets are distributed as 
}}1{:{ mkkTT k  where the target Tk is 

deployed in a random location in the region A*A. Also, 

a set of n sensors are distributed randomly, where Si and 

Sj are the sensors in the same region A*A to monitor the 

target Tk. To ensure network connectivity, each sensor 



804                                                   The International Arab Journal of Information Technology, Vol. 19, No. 5, September 2022 

 

node must perceive the sensing range RS and have a 

communication range RC of at least 2RS. The main 

objective is to discover optimal positions of n sensors to 

cover or monitor the given m target points (S(n) ≤ T(m)) 

to achieve the maximum number of targets covers, node 

connectivity, and network lifetime. 

3.2. Coverage Model 

The target Tk is deployed randomly in the region shown 

in Figure 1. (Xk, Yk) and sensors Si and Sj are also 

located in the position (Xi, Yi), (Xj, Yj) in a similar region 

with RSi, RSj sensing range, respectively. To fulfill the 

distance between the sensor position and the target 

location, the sensors Si or Sj are performed to monitor 

the target Tk. (1). Each target is served by at least one 

sensor node. If the target Tk is covered by Si or Sj, Tk 

is added to the CV cover set (2). Initially, all the sensors 

are having an empty cover set of targets S , and all 

the targets should be covered by at least one sensor 

node. A Coverage set CV is defined as SCV  , if the 

sensor Si monitors the target Tk then, it is added to the 

{Si} cover set.  
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3.3. Connectivity Model 

The Cn represents the set of sensor nodes within the RC 

communication range. The sensors Si and Sj can 

communicate data if the Boolean condition is met (3). 

The connectivity set Cn is defined as SCn  when, the 

sensor Si communicates to Sj then, it is added to the 

connectivity set (4). The connectivity Boolean condition 

is defined as  
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3.4. Potential Position 

The potential position of each sensor is identified as 

when the sensor can cover at least one target and can 

communicate with any one of the sensors. The potential 

position of each sensor PSi and target covered can be 

represented mathematically using a potential matrix (5) 

and (6). The PSi of every sensor along with target Tk 

can be represented in a Boolean matrix as given below.  
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The above PS (n, m) matrix can be signified as a 

column-wise sum τk to measure the quality of the 

potential position using (7) and (8). 
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3.5. Energy Model 

The network lifetime is determined by the primary 

battery power bi and energy consumption rate ei of each 

sensor. The duration of battery power in terms of time 

is defined. The tight upper bound U (9) denotes the 

maximum network lifetime that can be achieved when 

each sensor covers at least one target. 
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4. Lifting Wavelets 

The Daubechies wavelet (db4) has two wavelet analysis 

processes as wavelet function (ψ(t)) recognized as the 

mother wavelet (10) and the scaling function (φ(t)) 

recognized as the father wavelet (11). This analysis 

function can be stated as follows, 

 

Figure 1. Random target points deployment.  
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Figure 2. Random sensor pp 1 row 1 deployment. 
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The db4 wavelet has four vanishing moments. Wavelet 

analysis function  ψ(t) and φ(t) has four coefficients 

(g0,g1,g2,g3) and (f0,f1,f2,f3) respectively. The coefficients 

values are as follows, 
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The ψ(t) and φ(t) can be represented as poly-phase data 

and poly-phase matrixs (12), and (13). 
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The above poly-phase matrix can be factorized to get 

ρ(z) and ρ(z)-1 are expressed as follows (14): 
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Based on the poly-phase matrix with even and odd 

sample approximate λ and detailed δ coefficient using 

db4 forward lifting wavelet transform can be derived. 

 

Figure 3. Block diagram of db4 lifting wavelet transform. 

The input signal x(n) can be split into even x2l and 

odd x2l+1 samples. The even sample is updated through 

the odd sample, whereas the odd sample is predicted 

through the even samples. Finally, normalization is to 

be applied for all even and odd samples [30, 31]. These 

steps can be represented as shown in Figure 3. and 

expressed mathematically in (15) to (19).  
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In general, 2-D input data can be used to build the db4 

lifting wavelet by first applying the 1-D row-wise db4 

lifting wavelet transform and then the 1-D column-wise 

db4 lifting wavelet transform, as shown in Figure 4. 

This process will produce one approximate coefficient 

(LL) and three detailed sub-band (LH, HL, and HH).  

 

Figure 4. Conventional 2-D db4 lifting wavelet transform. 

In Figure 5. The n X n matrix can be reduced into 2 2

n n


, the approximate coefficient LL can be applied using 

level 2 db4 lifting to produce 4 4

n n


 a submatrix. Here 

db4 lifting is used in the approximate submatrix Low 

Low (LL) in every level until it reaches the jth level as 

presented in Figure 5. The matrix n X n is computed up 

to a jth level of the matrices [4, 15].  

 

Figure 5. Decomposition of 2-D by db4 lifting wavelet transform. 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 



806                                                   The International Arab Journal of Information Technology, Vol. 19, No. 5, September 2022 

 

5. nGA -2D db4 LW for Optimal Sensor 

Placement 

GA's design was inspired by natural mechanisms like 

selection, crossover, and mutation. GA generates initial 

population matrices that contain the random location of 

each sensor. The fitness function is applied to each 

chromosome in the population matrix for a potential 

position. To improve the quality of the solution, the next 

generation will contribute gene exchange (crossover) 

and change gene values (mutation). In addition, in the 

local search, a 2D discrete db4 lifting wavelet transform 

is presented to change the prospective position of 

sensors. The final Quality Of Potential Position (QPS) 

is selected based on an optimized solution using survival 

operators from the parent population matrices and the 

child matrices to the next level. This process computes 

the maximum number of populations. 

 Initial Population: random initialization is used to 

generate the initial population matrices as 

chromosomes (Φ). The scope of the population 

matrix is n X n, where n is the total number of 

sensors. For individual chromosomes, the gene (ϕij) 

generates a random number within the range 0 to 

A*A, where A denotes the region size. Meanwhile, 

every row in a chromosome indicates the position of 

n sensors. 
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To search the optimal position for every sensor, a set of 

10 initial populations is generated randomly. The pp1 

and pp2 are two randomly generated populations with 

size 8X8. The entry of each population chromosome 

gene is assigned to the random value from 0 to 10000. 
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 Fitness Function: after the generation of the initial 

population, fitness values in the direction of the 

optimal solution are computed. The entry of each 

chromosome is transferred into the coordinate 

position of the sensor by using (20).  
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Hence, the population pp1 for the first row is converted 

into a sensor coordinate position by using Equation (20), 

the random deployment of targets, and pp2 row 1 is 

shown in Figures 1 and 2. 
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 One Point Crossover:  exchanging the genes in the 

random point from the selected population matrices 

generates new offspring. GA uses the random value 

for a one-point crossover operation. Therefore, 

offspring1 and offspring2 are formed randomly using 

crossover point 4, whereas the genes are 

interchanged from pp1 and pp2. 
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Offspring1 and offspring2 are obtained from the first 

four columns of the same parent population (pp1 and 

pp2) and the last four columns of another parent 

population (pp2 and pp1) respectively. 

 Mutation: normally, the mutation is used after the 

crossover to improve the fitness of any chromosome 

gene by changing a randomly selected mutation point 

of offspring1 and offspring2. GA chooses mutation 

points 3 and 6 at random for offspring1 and 

offspring2, respectively, so that the 3rd and 6th 

column of offspring1 and offspring2 generates 

random values again. 
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 Local Search: the updated offspring1 and offspring2 

are used in various decomposition levels utilizing the 

2D db4 lifting wavelet transform, as explained in 

section 4 from Equation (15) to (19), to increase the 

quality of potential position of deterministic sensor 

placements for maximum target coverage. After 

applying 2D db4 lifting wavelet transform some 

approximate and detailed component values are 

found negative or out of region size. To bring all the 

sensors into the region, a simple threshold factor (21) 

is applied to the jth level of child matrices and child 

1 row 1 has shown in Figure 6. 
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Figure 6. Child 1 row 1 sensor deployment. 

6. Simulation Results and Discussion 

The series of simulation experiments were conducted in 

Python3.7 (cycler0.10.0, decorator4.4.2, 

kiwisolver1.2.0, matplotlib3.2.1, networkx2.4, 

numpy1.18.4, pyparsing2.4.7, python-dateutil2.8.1, 

six1.14.0, PyWavelets1.1.1) to measure the 

performance of the proposed novel GA with 2-D 

Discrete db4 lifting wavelet transform (nGA+db4). It is 

compared to existing methods such as RD and based 

deployment GA. The targets and sensors are deployed 

randomly in the 100X100, 500X500, and 1000X1000 

regions. Sensor counts vary from 8 to 256, target point 

counts range from 16 to 512, and sensor sensing ranges 

range from 50 to 250. 

The optimal sensor deployment problem was carried 

out only when the number of sensor count is less than 

the number of target points count, whereas (S(n) ≤ 

T(m)). Therefore, the simulation was conducted with 

different target counts as ( 2, 4, 6) * ( )and S n , i.e., 

( ) 2 * ( )T m S n , ( ) 4 * ( )T m S n , and 

( ) 6 * ( )T m S n . Using nGA+db4, the optimal sensor 

location is discovered and validated by QPS where QPS 

is the number of target points covered over the given 

region by randomly deployed connected sensors. The 

proposed strategy was validated using several 

circumstances in this experiment.  

6.1. Varying Sensing Range of Sensors with A 

Fixed Target Count 

In this section, the proposed algorithm was validated 

using different sensing ranges of the sensor as 50 to 250, 

sensor counts were 8 to 256 and target counts are fixed 

as ( ) 4 * ( )T m S n . The simulation was carried out on 

100X100, 500X500, and 1000X1000 regions. 

In Table, 1, the QPS (%) of target coverage in the 

potential position of sensors was increased gradually 

based on two reasons: 

1. When the number of sensors was increased. 

2. When the sensing range of sensors was increased. 

The sensors were deployed in region size 100X100 

to cover a minimum of 75% and a maximum of 90% 

of targets in the proposed method. Table 2 shows that 

when the region size was increased, the target 

coverage ratio also increases while increasing the 

sensing range of sensors. Therefore, the maximum 

target coverage is 92%. In Table 3, the maximized 

sensing range of the sensor has a maximum number 

of target cover in given ratios. The maximum 

coverage was achieved here from 90% to 95%.   

6.2. Fixed Sensing Range of Sensors with A 

Fixed Target Count 

In this section, the proposed nGA+db4 method was 

validated by a fixed sensing range of the sensor is 150 

and a fixed target count ( ) 6 * ( )T m S n . The sensors 

are varied from 8 to 256 and simulation regions are 

100X100, and 500X500. The quality of the potential 

position is to be identified to cover the maximum 

number of target points shown in Figures 7, and 8.  

(21) 
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 Figure 7. Number of Sensors deployed in 100X100 region vs QPS 

(%).  

 

Figure 8. Number of Sensors deployed in 500X500 region vs QPS 

(%).  

Figures 7, and 8. shows that the RD target coverage 

ratio is very less with a minimum of 60% and a 

maximum of 70%. The GA shows that a minimum of 

70% and a maximum of 85% of targets were covered. 

The QPS of the proposed method nGA+db4 achieved 

above 90% with a different number of sensors counts. 

 

 

6.3. Varying Sensing Range of Sensors with 

Varying Target Counts  

QPS identified for a varying sensing range of sensors 

were 50 and 250 and a varying number of targets with 

scenario (Sc1) ( ) 2 * ( )T m S n , and scenario (Sc2) 
( ) 6 * ( )T m S n . The sensor nodes were deployed in 

1000X1000 monitoring environment regions and the 

average QPS (%) was identified with different sensor 

counts. 

The average QPS of sensors covered in the proposed 

method has gradually increased from 84%, 93% 

respectively for (Sc1) and (Sc2) as shown in Table 4. 

The maximum QPS was achieved from (Sc2) in which 

sensor count 256 covers 95% of target points.  

 
                 a) Number of targets.                            b) Number of sensors. 

Figure 9. Running time (s). 

 
             a) Number of targets.                         b) Number of sensors.     

Figure 10. Network lifetime (h). 

The time complexity (seconds) of the proposed 

algorithm is measured based on; a. number of targets 

and b. the number of sensor nodes in the region 

1000X1000 as shown in Figure 9. The network lifetime 

(hours) of deployed sensor nodes was identified with the 

help of; a. number of targets b. the number of sensor 

nodes as demonstrated in Figure 10 in the region 

1000X1000. 

 

Table 1. Qps % generated for sensing range 50 and ( ) 4 * ( )T m S n .
 

 
S(n) 

100x100 500x500 

RD GA nGA+db4 RD GA nGA+db4 

Min 

QPS 

Max 

QPS 

Min 

QPS 

Max 

QPS 

Min 

QPS 

Max 

QPS 

Min 

QPS 

Max 

QPS 

Min 

QPS 

Max 

QPS 

Min 

QPS 

Max 

QPS 

8 31.25 43.75 37.50 56.25 62.50 75.00 25.00 37.50 37.50 68.75 56.25 81.25 

16 34.37 46.87 43.75 68.75 65.62 84.37 28.12 43.75 46.87 71.87 59.37 84.37 

32 32.81 51.56 42.18 67.18 60.93 85.93 40.62 59.37 45.31 73.43 60.93 89.06 

64 43.75 56.25 53.90 68.75 59.37 87.50 56.25 68.75 57.81 71.87 67.18 88.28 

128 46.87 60.15 53.12 76.56 64.84 87.10 52.73 68.35 56.25 78.12 66.79 90.62 

256 50.00 60.93 59.96 79.10 64.06 89.06 53.90 71.48 66.99 80.46 70.11 95.70 

 



A Novel Genetic Algorithm with db4 Lifting for Optimal Sensor Node Placements                                                                   809 

 

Table 2. QPS % produced for sensing range 150 and ( ) 4 * ( )T m S n . 

 

S(n) 

500x500 1000x1000 

RD GA nGA+db4 RD GA nGA+db4 

Min 
QPS 

Max 
QPS 

Min 
QPS 

Max 
QPS 

Min 
QPS 

Max 
QPS 

Min 
QPS 

Max 
QPS 

Min 
QPS 

Max 
QPS 

Min 
QPS 

Max 
QPS 

8 37.5 56.25 43.75 68.75 50.00 81.25 37.50 62.50 43.75 75.00 56.25 81.25 

16 43.75 65.62 46.87 75.00 53.12 81.25 40.62 65.62 46.87 78.12 56.25 84.37 

32 43.75 75.00 51.56 78.12 56.25 82.81 45.31 68.75 48.43 78.12 57.81 84.37 

64 40.62 71.87 53.90 78.12 54.68 86.71 46.09 74.21 51.56 80.46 54.68 86.71 

128 47.65 69.53 54.29 78.90 54.29 86.32 46.09 72.65 51.56 78.51 55.85 84.76 

256 50.00 73.82 53.12 79.10 58.59 91.79 48.82 71.48 51.95 81.05 58.59 91.60 

Table 3. QPS % generated for sensing range 250 and ( ) 4 * ( )T m S n . 

 
S(n) 

100x100 1000x1000 

RD GA nGA+db4 RD GA nGA+db4 

Min 
QPS 

Max 
QPS 

Min 
QPS 

Max 
QPS 

Min 
QPS 

Max 
QPS 

Min 
QPS 

Max 
QPS 

Min 
QPS 

Max 
QPS 

Min 
QPS 

Max 
QPS 

8 43.75 62.50 50.00 75.00 56.25 87.50 50.00 75.00 56.25 81.25 62.50 87.50 

16 43.75 68.75 56.25 78.12 62.50 90.62 53.12 78.12 59.37 84.37 62.50 87.50 

32 46.87 68.75 54.68 76.56 64.06 89.06 56.25 76.56 62.50 82.81 64.06 90.62 

64 48.43 73.43 56.25 85.15 67.18 90.62 54.68 79.68 61.71 80.46 64.06 92.18 

128 50.00 71.87 60.54 87.89 65.62 89.45 54.29 77.73 64.45 82.81 67.18 92.18 

256 50.58 70.11 67.57 86.71 65.03 90.82 53.51 78.51 67.96 83.20 69.53 94.92 

Table 4. Average QPS % of Sensing Range 50 and 250 and Sc1 and Sc2. 

 

S(n) 

Sensing Range 50 Sensing Range 250 

RD GA nGA+db4 RD GA nGA+db4 

T(m) T(m) T(m) T(m) T(m) T(m) 

Sc1 Sc2 Sc1 Sc2 Sc1 Sc2 Sc1 Sc2 Sc1 Sc2 Sc1 Sc2 

8 62.34 64.56 73.45 77.56 82.56 84.18 69.56 73.45 77.67 84.78 90.25 93.45 

16 63.45 65.45 74.45 77.56 83.56 89.78 70.15 75.25 79.56 86.35 91.25 93.56 

32 67.56 69.67 76.25 79.45 83.56 90.15 72.15 74.15 80.45 88.81 92.25 92.45 

64 67.56 70.25 76.25 80.75 84.70 89.75 73.50 75.50 84.45 90.25 93.25 94.45 

128 69.45 72.45 79.56 82.25 85.75 90.25 74.57 77.56 83.57 90.25 92.45 93.25 

256 70.75 74.45 80.45 83.35 87.87 90.15 74.15 76.45 83.45 89.75 91.45 94.15 

7. Conclusions 

The problem of sensor node deployment and node 

connectivity describes a novel technique called nGA-

2DD db4 lifting wavelet transform to identify the 

optimal sensor node location to monitor the maximum 

number of targets with connected nodes. To proceed, the 

nGA-based population matrix gives sensor coordinates 

for evaluating the fitness function of sensor placements. 

The solution is further applied to local enhancement 

based on 2D discrete db4 lifting wavelet transform to 

adjust the sensor position to an optimal state. The result 

of the proposed algorithm has shown the ability to cover 

the maximum number of targets and enabled node 

connectivity by a series of simulation results with a 

different setup. The simulation results are demonstrated 

with a set of scenarios that demonstrate the efficiency 

and superiority of proposed methods with maximum 

target coverage ratio with the least number of sensor 

nodes and longer network lifetime. In the future, more 

experimental setup will be necessary to test the 

performance of data gathering from sensor nodes in 

real-world sensor networks. 
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