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Abstract: Target coverage algorithms have considerable attention for monitoring the target point by dividing sensor nodes into
cover groups, with each sensor cover group containing the target points. When the number of sensors is restricted, optimal
sensor node placement becomes a key task. By placing sensors in the ideal position, the quality of maximum target coverage and
node connectivity can be increased. In this paper, a novel genetic algorithm based on the 2-D discrete Daubechies 4 (db4) lifting
wavelet transform is proposed for determining the optimal sensor position. Initially, the genetic algorithm identifies the
population-based sensor location and 2-D discrete db4 lifting adjusts the sensor location into an optimal position where each
sensor can cover a maximum number of targets that are connected to another sensor. To demonstrate that the suggested model
outperforms the existing method, A series of experiments are carried out using various situations to achieve maximum target
point coverage, node interconnectivity, and network lifetime with a limited number of sensor nodes.
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1. Introduction

In recent years, wireless sensor node deployment has
resulted in a vast variety of sensor nodes that are being
researched due to their potential sensing, wireless
communication, and data processing capabilities [6].
The sensor nodes in the various surveillance
applications are geographically scattered [23]. Due to
insufficient energy sources, a sensor can only be
operational for a certain amount of time.

Sensor deployment and target coverage are other key
critical issues in WSNs, which affect the sensor network
lifetime [27]. The sensors can be deployed in two
techniques known as random and deterministic sensor
deployment. When the sensing field was very large and
in a remote, hostile, and inaccessible place, random
sensor deployment was used [18, 25]. In this critical
case, sensors might be deployed randomly to be the best
choice. The sensors are scattered randomly in the sky
over the aircraft or new approach, resulting in falling at
any location in the field.

Deterministic sensor deployment is used to select the
optimum position for attaining network design
objectives such as network coverage, network cost,
network lifetime, and connection with a limited number
of sensor nodes. The coverage types can be categorized
into the area [13], barrier, and target coverage. Thus,
sensors are coordinated into different sensor cover
groups, whereas each sensor monitors the set of target
points for a specific duration when the optimal use of

sensors increases the network lifetime [24]. Also,
sensors are organized into different connectivity groups
which can be able to communicate with any sensor in
the optimal location [21]. Optimized node deployment
over the target point coverage and node connectivity
draws a lot of attention in the WSNs research
community [11].

The main objective of the paper is as follows, a novel
Genetic Algorithm (GA) with 2-D Discrete Daubechies
4 Lifting Wavelet Transform (2D D db4 LWT) is
introduced for optimal sensor placement in target point
coverage and node connectivity problem. Initially,
random sensor coordinate populations matrices are
generated based on a genetic algorithm and it is applied
into a fitness function to evaluate the quality of
maximum target coverage. Further, population matrices
are applied into crossover, and mutation operation to
improve the sensor coordinate position. Finally, discrete
Daubechies 4 lifting wavelet transform based local
enhancement to improve the quality of maximum target
coverage and node connectivity and minimized energy
consumption as to be optimum. The rest of the sections
consist of related works as shown in section 2. Section
3 described the problem formulation of the proposed
methodology. Section 4 explains about discrete
Daubechies lifting wavelet transform for the level-by-
level matrix decomposition model. Section 5 deals with
the implementation of the proposed novel GA and 2D D
db4 LWT with a suitable number of sensor nodes and
target points. Section 6 validates the performance of
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proposed methods in terms of target cover sets, sensor
connect sets, and sensor energy models with different
scenarios. Section 7 provides the conclusion and future
enhancement followed by a reference section.

2. Related Work

To extend the network lifetime, and optimal coverage of
mobile Wireless Sensor Networks (MWSN), Abo-
Zahhad et al. [2] developed a Centralized Immune-
Voronoi Deployment Algorithm (CIVA) to maximize
the coverage by using binary and probabilistic models.
The Vilela et al. [33] presented the static sensor for
dynamic networks by Iso-Probability curves based on
mobile target coverage.

The Moh’d Alia and Al-Ajouri [26] stated that the
probability of coverage ratio is categorized into fully
covered, partially (un)covered, and uncovered patterns.
A novel stochastic physics-based optimization
algorithm was proposed by Njoya et al. [28], the authors
addressed the full target coverage, whereas the move,
merge, recombine, and explode process was performed
by virtual sensors. The Nguyen et al. [27] formulated
the Integer Linear Programming (ILP) method for target
coverage. The ILP method computes target coverage
with a smaller number of sensor nodes [24].

The network lifetime depends on the number of
Disjoint Sets Covers (DSC) groups. The Ashouri et al.
[3] focused on the DSC and k-coverage problem by
using the Boolean Satisfiability (SAT) method. Chen et
al. [6] also utilized DSC with Dynamic Coverage
Maintenance (DCM) to maximize the network lifetime
when a hybrid memetic framework was applied to the
random populations. Along with k-coverage, the Mini et
al. [25] further extended this work with a 1-coverage to
improve the network lifetime and Q-coverage to cover
every target by g-sensor nodes. Gupat et al. [12] have
examined the k-coverage to each target and m-
connectivity to all sensor nodes based on a GA. The
method [7, 9, 10] achieved continuous monitoring of
certain targets for a long time with minimum energy,
whereas an optimum number of cover head selection
was based on GA. Liao and Ting [23] applied a novel
integer-coded Memetic Algorithm (MA) for the set k-
cover and tighter upper bound to reduce the search
space.

The random position of sensor coordinates was
adjusted by Two-Dimensional Discrete Haar Wavelet
Transform (2DDHWT) for local enhancement after the
memetic algorithm based on random deployment of
population matrix by Vijayaraju et al. [32]. The point-
coverage and area coverage disjoint set cover problems
were represented by forwarding encoding scheme-based
schedule transition hybrid GA [19, 25]. Area coverage
Yoon and Kim et al. [34] has also been solved by GA-
based random deployment, in addition to the phenotype
space problem. This problem is a quotient space of
genotype space and computation time is reduced by the

Monte Carlo method.

The Next-Generation Networks (NGN) problems
were explained by Abdelkhalek et al. [1], whereas
decision supported system is applied in a multi-
objective Variable-Length Genetic Algorithm (VLGA)
based on heterogeneous networks. In addition to VLGA,
Zhang et al. [36] addressed the Flexible Genetic
Algorithm (FGA) with swap-area crossover, Gaussian
mutation to the wind farm, and Radio Frequency
Identification (RFID) placements. Thi Hanh et al. [13]
combined GA with Laplace X-point crossover (LX) and
Arithmetic X-Point Crossover Operation (AMXO) to
produce two different offspring for the Virtual Force
Algorithm (VFA) based on the local search method.
Katii [21] modeled the homogeneous networks for
target coverage duration, more target cover sets, and
minimum energy path node connectivity with maximum
network lifetime [17].

The Bouzid et al. [5] have presented the Multi-
Obijective Optimization of A Wireless Network Using A
Genetic Algorithm (MOONGA) for sensing coverage
based on the degree of sensing coverage K, connectivity
was assessed based on the degree of connectivity m to
avoid redundancy of sensing coverage. Zhang et al. [35]
have extended the multi objectives optimization to
degressive Ary number encoded GA for node
placements. The Karimi-Bidhendi et al. [20] had
discussed Heterogeneous Two-Tier- Lloyd (HTTL)
algorithm to minimize the two-tier power consumption
for optimal node deployment. The Fan et al. [8] focused
on homogeneous WSN and non-uniform sensor
deployment to analyze the node density using
Probability Density Function (PDF) using the energy
consumption model.

The Harizan and Kuila [14] presented NSGA-11 with
modified dominance for scheduling problems in node
coverage, connectivity, and energy consumption. It has
a minimum number of sensor nodes, full coverage with
connectivity between the base stations, and to select the
higher energy level for scheduling [16]. The Pal et al.
[29] computed IEEE802.15.4 based real-time
monitoring system for potato and wheat crops-based
node connectivity. The Kim and Yoo [22] formulated
the sensor target coverage problem using Bat Algorithm
(BA) whereas, one bat finds the activated sensor node
for sensing and others finds the data forwarding from
the active sensor to a sink.

3. Problem Formulation
3.1. Network Model

Suppose a set of m targets are distributed as
T={T:Vkell=k<m}}yhere the target Tk is

deployed in a random location in the region A*A. Also,
a set of n sensors are distributed randomly, where Si and
Sj are the sensors in the same region A*A to monitor the
target Tk. To ensure network connectivity, each sensor
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node must perceive the sensing range RS and have a
communication range RC of at least 2RS. The main
objective is to discover optimal positions of n sensors to
cover or monitor the given m target points (S(n) < T(m))
to achieve the maximum number of targets covers, node
connectivity, and network lifetime.

3.2. Coverage Model

The target Tk is deployed randomly in the region shown
in Figure 1. (X«, Y«) and sensors Si and Sj are also
located in the position (Xi, Yi), (X;, Yj) in a similar region
with RSi, RSj sensing range, respectively. To fulfill the
distance between the sensor position and the target
location, the sensors Si or Sj are performed to monitor
the target Tk. (1). Each target is served by at least one
sensor node. If the target Tk is covered by Si or Sj, Tk
is added to the CV cover set (2). Initially, all the sensors

are having an empty cover set of targets $cS ,and all
the targets should be covered by at least one sensor

node. A Coverage set CV is defined as G SS i the
sensor Si monitors the target Tk then, it is added to the
{Si} cover set.

d(Si'Tk)z\/(xi _Xk)2+(Yi _Yk)2 (1)
C, ={s)- 1, d(S;,T,) <R Viefl<i<n}, Vk efl<k <m} 2)
VB0, otherwise

3.3. Connectivity Model

The Cn represents the set of sensor nodes within the RC
communication range. The sensors Si and Sj can
communicate data if the Boolean condition is met (3).

The connectivity set Cn is defined as Co = S \when, the
sensor Si communicates to Sj then, it is added to the
connectivity set (4). The connectivity Boolean condition
is defined as

d(S;,S;)2 =(X; =X )?+(Y, —Y,)? 3)
c. _{Si}_{l, d(Si,Sj-)SZRC:Vi, jefl<i,j<n} 4)
0, otherwise

3.4. Potential Position

The potential position of each sensor is identified as
when the sensor can cover at least one target and can
communicate with any one of the sensors. The potential
position of each sensor PSi and target covered can be
represented mathematically using a potential matrix (5)
and (6). The PSi of every sensor along with target Tk
can be represented in a Boolean matrix as given below.

bg _Jb CuILC,3LVi,jefi<i, j<n} (5)
"7 10, otherwise

T T, Ty Tm

PS,|PS,, PS, .. PS, PS,
S A B O

PS, PSi,l PSi,Z PSi,k PSi,m

PS.|ps,, PS,, .. PS, PS,.

The above PS (n, m) matrix can be signified as a
column-wise sum zx to measure the quality of the
potential position using (7) and (8).

T=(7,,Types Ty re-Tyy) where

7, = ii(PS,vk)Hl (1)

k=1 i=1
T

QPS (%) = “(n”j %100 (8)

3.5. Energy Model

The network lifetime is determined by the primary
battery power bi and energy consumption rate ei of each
sensor. The duration of battery power in terms of time
is defined. The tight upper bound U (9) denotes the
maximum network lifetime that can be achieved when
each sensor covers at least one target.

bP =(2‘j:w efl<i<n}
Zn: PS;, *b? ©)

1
U =<min,| -
kem n

4. Lifting Wavelets

The Daubechies wavelet (db4) has two wavelet analysis
processes as wavelet function (w(?)) recognized as the
mother wavelet (10) and the scaling function (p(t))
recognized as the father wavelet (11). This analysis
function can be stated as follows,

Random Target Points
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Figure 1. Random target points deployment.
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Figure 2. Random sensor pp 1 row 1 deployment.

o=@ =T+ L@+ LE D+ LEH=3 1) (10)

V=00 =0+0)+5,E)+5E)=2aE") (1)

The db4 wavelet has four vanishing moments. Wavelet
analysis function w(t) and ¢(t) has four coefficients
(90,01,02,03) and (fo,f1,f2,f3) respectively. The coefficients
values are as follows,

f:1+«/§f:3+«/§f :3—\@ f -
Y2 a2 o

The w(t) and ¢(t) can be represented as poly-phase data
and poly-phase matrixs (12), and (13).

f(z)=f.(z*)+271,(z%), 9(2) = 9. (z®) + 279, (z?)
f.(z) f,(2) f,+ f,(z7%) fl—fs(zl)}

7) = = 13

A {ge(z) go(z)} {f1+f3(21) ey O

The above poly-phase matrix can be factorized to get
p(2) and p(z)* are expressed as follows (14):

1-3
i 1 0y=1,0,=-1,0,= 1,9, =1,

(12)

*1—%01*[[2 MERE
p()~ = . Nl {o 1} ( (z’l)] 1[0 1} (14)

V2

Based on the poly-phase matrix with even and odd
sample approximate 1 and detailed ¢ coefficient using
db4 forward lifting wavelet transform can be derived.

Figure 3. Block diagram of db4 lifting wavelet transform.

The input signal x(n) can be split into even x2I and
odd x21+1 samples. The even sample is updated through
the odd sample, whereas the odd sample is predicted
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through the even samples. Finally, normalization is to
be applied for all even and odd samples [30, 31]. These
steps can be represented as shown in Figure 3. and
expressed mathematically in (15) to (19).

Split (S) : A = x,, (even), &° = X,,,, (odd. (15)

Updatel (U1) : A = 2° + /35° (16)
Predict(P):5,1:5°—£/’lq—u (17)
Update2 (U 2) : A7 = 47 — 5, (18)
J3-—1 _ B+l 19

Normalize (N) : 4, = NG a2, NE o} (19)

In general, 2-D input data can be used to build the db4
lifting wavelet by first applying the 1-D row-wise db4
lifting wavelet transform and then the 1-D column-wise
db4 lifting wavelet transform, as shown in Figure 4.
This process will produce one approximate coefficient
(LL) and three detailed sub-band (LH, HL, and HH).

Approx.

| Coefficient | {12 column
L

wise db4LTV

IDrow | |
wise db4LW

Detailed 1D column
- (nefHﬁrmn — vice dbALTY

Figure 4. Conventional 2-D db4 lifting wavelet transform.

n

n
In Figure 5. The n X n matrix can be reduced into 2~ 2
, the approximate coefficient LL can be applied using

level 2 db4 lifting to produce %~ % a submatrix. Here
db4 lifting is used in the approximate submatrix Low
Low (LL) in every level until it reaches the jth level as
presented in Figure 5. The matrix n X n is computed up
to a jth level of the matrices [4, 15].
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Figure 5.

Decomposition of 2-D by db4 lifting wavelet transform.
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5.nGA -2D db4 LW for Optimal Sensor
Placement

GA's design was inspired by natural mechanisms like
selection, crossover, and mutation. GA generates initial
population matrices that contain the random location of
each sensor. The fitness function is applied to each
chromosome in the population matrix for a potential
position. To improve the quality of the solution, the next
generation will contribute gene exchange (crossover)
and change gene values (mutation). In addition, in the
local search, a 2D discrete db4 lifting wavelet transform
is presented to change the prospective position of
sensors. The final Quality Of Potential Position (QPS)
is selected based on an optimized solution using survival
operators from the parent population matrices and the
child matrices to the next level. This process computes
the maximum number of populations.

¢ |Initial Population: random initialization is used to
generate the initial population matrices as
chromosomes (®). The scope of the population
matrix is n X n, where n is the total number of
sensors. For individual chromosomes, the gene (i)
generates a random number within the range 0 to
A*A, where A denotes the region size. Meanwhile,
every row in a chromosome indicates the position of
N Sensors.

S, S, s; S,
¢11 ¢12 ¢1i ¢1n
¢21 ¢22 ¢2i ¢2n

o= |«rande(0,A*A)

¢n1 ¢n2 ¢ni ¢nn
To search the optimal position for every sensor, a set of
10 initial populations is generated randomly. The pp:
and pp. are two randomly generated populations with

size 8X8. The entry of each population chromosome
gene is assigned to the random value from 0 to 10000.

[2347 8790 9176 8018 9470 6165 8339 8982 |
3772 9335 1484 1597 1783 4730 8179 3892
5685 5368 7875 9527 5235 3599 4013 3037
8870 5971 6474 9123 8197 6352 6427 4915

pp, = «rand (0,10000)

3381 3462 3990 5929 2438 3465 2059 2320

5003 1375 2245 9381 5104 4471 6319 6286

7275 4799 1355 2963 2684 2497 1509 3387

14638 3516 8850 6169 4227 7161 2471 9633 |

[2053 2477 2240 1136 1745 1418 2482 9352 ]
1323 2598 3270 2126 5699 4806 5428 8261
6672 3397 2715 8424 2132 7514 3122 5505
3101 6473 9497 9110 3248 9375 2459 3859
2383 9044 4122 2911 7737 5314 2918 3245
9479 8909 5374 2118 5837 3420 7277 2670

1652 4648 9755 1278 6236 6710 9561 8092

|9982 2058 6265 8686 5055 2857 2461 7385 |

pp, = «rand € (0,10000)

o Fitness Function: after the generation of the initial
population, fitness values in the direction of the
optimal solution are computed. The entry of each
chromosome is transferred into the coordinate
position of the sensor by using (20).

()| =A%) 20)

i (4, )mod( A)

Hence, the population pp; for the first row is converted
into a sensor coordinate position by using Equation (20),
the random deployment of targets, and pp2 row 1 is
shown in Figures 1 and 2.

X 23 87 91 80 94 61 83 89
pp,— > rowl =
(Y j [47 90 76 18 70 65 39 SZJ

[X] [29 24 22 11 17 14 24 93J
pp,— > rowl =

Y ) |53 77 40 36 45 18 82 52

e One Point Crossover: exchanging the genes in the
random point from the selected population matrices
generates new offspring. GA uses the random value
for a one-point crossover operation. Therefore,
offspringl and offspring2 are formed randomly using
crossover point 4, whereas the genes are
interchanged from pp: and pp2.

[2347 8790 9176 8018 1745 1418 2482 9352 ]
3772 9335 1484 1597 5699 4806 5428 8261
5685 5368 7875 9527 2132 7514 3122 5505
8870 5971 6474 9123 3248 9375 2459 3859
3381 3462 3990 5929 7737 5314 2918 3245
5903 1375 2245 9381 5837 3420 7277 2670
7275 4799 1355 2963 6236 6710 9561 8092

| 4638 3516 8850 6169 5055 2857 2461 7385 |

osl=

[2953 2477 2240 1136 9470 6165 8339 8982 |
1323 2598 3270 2126 1783 4730 8179 3892
6672 3397 2715 8424 5235 3599 4013 3037
3101 6473 9497 9110 8197 6352 6427 4915
2383 9044 4122 2911 2438 3465 2059 2320
9479 8909 5374 2118 5104 4471 6319 6286
1652 4648 9755 1278 2684 2497 1509 3387
9982 2058 6265 8686 4227 7161 2471 9633

0s 2=

Offspringl and offspring2 are obtained from the first
four columns of the same parent population (pp: and
ppz2) and the last four columns of another parent
population (pp2 and pp1) respectively.

e Mutation: normally, the mutation is used after the
crossover to improve the fitness of any chromosome
gene by changing a randomly selected mutation point
of offspringl and offspring2. GA chooses mutation
points 3 and 6 at random for offspringl and
offspring2, respectively, so that the 3rd and 6th
column of offspringl and offspring2 generates
random values again.

[2347 8790 7465 8018 1745 1418 2482 9352]]

3772 9335 6694 1597 5699 4806 5428 8261

5685 5368 1361 9527 2132 7514 3122 5505

8870 5971 3626 9123 3248 9375 2459 3859

3381 3462 6082 5929 7737 5314 2918 3245

5903 1375 4097 9381 5837 3420 7277 2670

7275 4799 4009 2963 6236 6710 9561 8092
| 4638 3516 3414 6169 5055 2857 2461 7385 |

osl=
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[2953 2477 2240 1136 9470 8462 8339 8982 |
1323 2598 3270 2126 1783 8905 8179 3892
6672 3397 2715 8424 5235 3169 4013 3037
3101 6473 9497 9110 8197 4337 6427 4915
2383 9044 4122 2911 2438 5903 2059 2320
9479 8909 5374 2118 5104 8667 6319 6286
1652 4648 9755 1278 2684 9697 1509 3387

| 9982 2058 6265 8686 4227 2887 2471 9633 |

0s 2=

e Local Search: the updated offspringl and offspring2
are used in various decomposition levels utilizing the
2D db4 lifting wavelet transform, as explained in
section 4 from Equation (15) to (19), to increase the
quality of potential position of deterministic sensor
placements for maximum target coverage. After
applying 2D db4 lifting wavelet transform some
approximate and detailed component values are
found negative or out of region size. To bring all the
sensors into the region, a simple threshold factor (21)
is applied to the jth level of child matrices and child
1 row 1 has shown in Figure 6.

&; =(|abs(¢ij)]mod A*A) (21)

[2236 2336 5630 1216 132 310 410 2647 |
2355 1255 6277 1003 2192 2253 3155 1886
4086 4545 3855 5329 7252 5302 5592 3637
2656 217 27 3171 190 1405 346 115
522 4696 2094 1157 5942 1410 1222 2865
316 2394 729 3460 610 2716 1187 1904
1510 3906 3738 1404 1326 1329 2269 1592

| 2748 991 3075 1008 3343 197 4443 2278 |

ch 1=

[1206 1444 3444 O 920 1570 2692 2041 ]
1644 1137 1301 137 5683 4544 6617 1726
3256 456 1620 335 9470 1235 3947 867
359 3422 138 3944 3057 195 3051 598
709 742 7363 1567 2190 2687 257 956
995 4128 2802 302 2349 1559 4025 979
884 6149 7618 2620 175 2616 3832 4887
|1788 4780 2487 5583 2843 2536 3999 383

ch2=

Child 1 Population 1 Row: 1
A

100

80 +

0 2|0 § 4‘0 Gb Bb 100
Figure 6. Child 1 row 1 sensor deployment.

6. Simulation Results and Discussion

The series of simulation experiments were conducted in

Python3.7 (cycler0.10.0, decoratord.4.2,
kiwisolver1.2.0, matplotlib3.2.1, networkx2.4,
numpyl.18.4, pyparsing2.4.7, python-dateutil2.8.1,
six1.14.0, PyWavelets1.1.1) to measure the

performance of the proposed novel GA with 2-D
Discrete db4 lifting wavelet transform (nGA+db4). It is

compared to existing methods such as RD and based
deployment GA. The targets and sensors are deployed
randomly in the 100X100, 500X500, and 1000X1000
regions. Sensor counts vary from 8 to 256, target point
counts range from 16 to 512, and sensor sensing ranges
range from 50 to 250.

The optimal sensor deployment problem was carried
out only when the number of sensor count is less than
the number of target points count, whereas (S(n) <
T(m)). Therefore, the simulation was conducted with

different target counts as (V2:4.and /) *S(n) o
T(m)=~v2*S(n) T(m) =v4*S(n) and

T(m) =~/6*S(n)  Using nGA+db4, the optimal sensor
location is discovered and validated by QPS where QPS
is the number of target points covered over the given
region by randomly deployed connected sensors. The
proposed strategy was validated using several
circumstances in this experiment.

6.1. Varying Sensing Range of Sensors with A
Fixed Target Count

In this section, the proposed algorithm was validated
using different sensing ranges of the sensor as 50 to 250,
sensor counts were 8 to 256 and target counts are fixed

as T(M) =~4*S(n) The simulation was carried out on
100X100, 500X500, and 1000X1000 regions.

In Table, 1, the QPS (%) of target coverage in the
potential position of sensors was increased gradually
based on two reasons:

1. When the number of sensors was increased.

2. When the sensing range of sensors was increased.
The sensors were deployed in region size 100X100
to cover a minimum of 75% and a maximum of 90%
of targets in the proposed method. Table 2 shows that
when the region size was increased, the target
coverage ratio also increases while increasing the
sensing range of sensors. Therefore, the maximum
target coverage is 92%. In Table 3, the maximized
sensing range of the sensor has a maximum number
of target cover in given ratios. The maximum
coverage was achieved here from 90% to 95%.

6.2. Fixed Sensing Range of Sensors with A
Fixed Target Count

In this section, the proposed nGA+db4 method was
validated by a fixed sensing range of the sensor is 150

and a fixed target count T(M=v8*S() The sensors
are varied from 8 to 256 and simulation regions are
100X100, and 500X500. The quality of the potential
position is to be identified to cover the maximum
number of target points shown in Figures 7, and 8.
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Figures 7, and 8. shows that the RD target coverage
ratio is very less with a minimum of 60% and a
maximum of 70%. The GA shows that a minimum of
70% and a maximum of 85% of targets were covered.
The QPS of the proposed method nGA+db4 achieved
above 90% with a different number of sensors counts.

6.3. Varying Sensing Range of Sensors with
Varying Target Counts

QPS identified for a varying sensing range of sensors
were 50 and 250 and a varying number of targets with

scenario (Scl) T(M=v2*S(M)  and scenario (Sc2)

T(m)=~/6*S(") The sensor nodes were deployed in
1000X1000 monitoring environment regions and the

average QPS (%) was identified with different sensor

counts.

The average QPS of sensors covered in the proposed
method has gradually increased from 84%, 93%
respectively for (Scl) and (Sc2) as shown in Table 4.
The maximum QPS was achieved from (Sc2) in which
sensor count 256 covers 95% of target points.

4004
4004 & RD P -+ RD /'
<% GA _‘.—" 350 { ¥ GA e
B0 g ghrdod -# 1GA+be S
L) 300 o .
. 3004 /! - ~ L
0 / a ,"
£ 2501 AlEP '
F / ‘/‘/ F 200 4 /' ' ",I
2 200+ S o 2 S e
g i £ 150 O -
3 1501 P H ;" S
> Lo * P
i f ¥ 100 e
e A
501 a ¥V 50 ’)/
i3 lII
(BN § 0+
T T . . T T T T . .
0 200 400 600 0 50 100 150 200 250
X-No of Targets X-No of Sensors

a) Number of targets.

b) Number of sensors.

Figure 9. Running time (s).

50 1

- RD 607 —&- RD

¥ GA “¥e GA

= nGA+dba -m nGA+dba

404 4 50
S z |4
[ N g
£ Lol i
En] W ] \
3 LN 3
N\ v
'E \.\ fl\ .E 30 ‘\?g\
H W T H "
@ 5n N @ "l-‘-.
=z 20 e z s
s L I <o
S T e .
~ s e
.- e iy
10 1 S " 10 Dine
~e 3
0 100 200 300 400 500 600 0 50 100 150 200 250

%-No of Targets

a) Number of targets.

Figure 10. Network lifetime (h).

X-No of Sensors

b) Number of sensors.

The time complexity (seconds) of the proposed
algorithm is measured based on; a. number of targets
and b. the number of sensor nodes in the region
1000X1000 as shown in Figure 9. The network lifetime
(hours) of deployed sensor nodes was identified with the
help of; a. number of targets b. the number of sensor
nodes as demonstrated in Figure 10 in the region

1000X1000.

Table 1. Qps % generated for sensing range 50 and T (m) = ﬁ*s(n)

100x100 500x500
RD GA nGA+db4 RD GA nGA+db4

S(n) Min Max Min Max Min Max Min Max Min Max Min Max
QPS QPS QPS QPS QPS QPS QPS QPS QPS QPS QPS QPS

8 31.25 43.75 37.50 56.25 62.50 75.00 25.00 37.50 37.50 68.75 56.25 81.25
16 34.37 46.87 43.75 68.75 65.62 84.37 28.12 43.75 46.87 71.87 59.37 84.37
32 32.81 51.56 42.18 67.18 60.93 85.93 40.62 59.37 45.31 73.43 60.93 89.06
64 43.75 56.25 53.90 68.75 59.37 87.50 56.25 68.75 57.81 71.87 67.18 88.28
128 46.87 60.15 53.12 76.56 64.84 87.10 52.73 68.35 56.25 78.12 66.79 90.62
256 50.00 60.93 59.96 79.10 64.06 89.06 53.90 71.48 66.99 80.46 70.11 95.70




A Novel Genetic Algorithm with db4 Lifting for Optimal Sensor Node Placements

Table 2. QPS % produced for sensing range 150 and | (M) = Vaxs(n),

500x500 1000x1000
RD GA nGA+db4 RD GA nGA+db4
S(n) Min Max Min Max Min Max Min Max Min Max Min Max
QPS QPS QPS QPS QPS QPS QPS QPS QPS QPS QPS QPS
8 375 56.25 43.75 68.75 50.00 81.25 37.50 62.50 43.75 75.00 56.25 81.25
16 43.75 65.62 46.87 75.00 53.12 81.25 40.62 65.62 46.87 78.12 56.25 84.37
32 43.75 75.00 51.56 78.12 56.25 82.81 45.31 68.75 48.43 78.12 57.81 84.37
64 40.62 71.87 53.90 78.12 54.68 86.71 46.09 74.21 51.56 80.46 54.68 86.71
128 47.65 69.53 54.29 78.90 54.29 86.32 46.09 72.65 51.56 78.51 55.85 84.76
256 50.00 73.82 53.12 79.10 58.59 91.79 48.82 71.48 51.95 81.05 58.59 91.60
Table 3. QPS % generated for sensing range 250 and | (M) = Vaxs(n),
100x100 10001000
RD GA nGA+db4 RD GA nGA+db4
S(n) Min Max Min Max Min Max Min Max Min Max Min Max
QPS QPS QPS QPS QPS QPS QPS QPS QPS QPS QPS QPS
8 43.75 62.50 50.00 75.00 56.25 87.50 50.00 75.00 56.25 81.25 62.50 87.50
16 43.75 68.75 56.25 78.12 62.50 90.62 53.12 78.12 59.37 84.37 62.50 87.50
32 46.87 68.75 54.68 76.56 64.06 89.06 56.25 76.56 62.50 82.81 64.06 90.62
64 48.43 73.43 56.25 85.15 67.18 90.62 54.68 79.68 61.71 80.46 64.06 92.18
128 50.00 71.87 60.54 87.89 65.62 89.45 54.29 77.73 64.45 82.81 67.18 92.18
256 50.58 70.11 67.57 86.71 65.03 90.82 53.51 78.51 67.96 83.20 69.53 94.92
Table 4. Average QPS % of Sensing Range 50 and 250 and Sc1 and Sc2.
Sensing Range 50 Sensing Range 250
RD GA nGA+db4 RD GA nGA+db4
S(n) T(m) T(m) T(m) T(m) T(m) T(m)
Scl Sc2 Scl Sc2 Scl Sc2 Scl Sc2 Scl Sc2 Scl Sc2
8 62.34 64.56 73.45 77.56 82.56 84.18 69.56 73.45 77.67 84.78 90.25 93.45
16 63.45 65.45 74.45 77.56 83.56 89.78 70.15 75.25 79.56 86.35 91.25 93.56
32 67.56 69.67 76.25 79.45 83.56 90.15 72.15 74.15 80.45 88.81 92.25 92.45
64 67.56 70.25 76.25 80.75 84.70 89.75 73.50 75.50 84.45 90.25 93.25 94.45
128 69.45 72.45 79.56 82.25 85.75 90.25 74.57 77.56 83.57 90.25 92.45 93.25
256 70.75 74.45 80.45 83.35 87.87 90.15 74.15 76.45 83.45 89.75 91.45 94.15

7. Conclusions

The problem of sensor node deployment and node
connectivity describes a novel technique called nGA-
2DD db4 lifting wavelet transform to identify the
optimal sensor node location to monitor the maximum
number of targets with connected nodes. To proceed, the
nGA-based population matrix gives sensor coordinates
for evaluating the fitness function of sensor placements.
The solution is further applied to local enhancement
based on 2D discrete db4 lifting wavelet transform to
adjust the sensor position to an optimal state. The result
of the proposed algorithm has shown the ability to cover
the maximum number of targets and enabled node
connectivity by a series of simulation results with a
different setup. The simulation results are demonstrated
with a set of scenarios that demonstrate the efficiency
and superiority of proposed methods with maximum
target coverage ratio with the least number of sensor
nodes and longer network lifetime. In the future, more
experimental setup will be necessary to test the
performance of data gathering from sensor nodes in
real-world sensor networks.
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