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Abstract: The expressive power and intelligence of traditional database systems can be improved by recursion. Using 
recursion, relational database systems are extended into knowledge-base systems (deductive database systems). Linear 
recursion is the most frequently found type of recursion in deductive databases. In this paper, an algorithm to solve the 
generalized partially instantiated form of the same generation query in deductive databases is presented. The algorithm uses 
special data structures, namely, a special matrix that stores paths from roots of the graph representing a two-attribute 
normalized database relation to all nodes reachable from these roots, and a reverse matrix that stores paths from any node to 
all roots related to that node. Using simulation, this paper also studies the performance of the algorithm and compares that 
with the standard depth-first search based algorithms. 
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1.  Introduction 
The development of efficient algorithms to process 
recursive rules and queries within the context of large 
database systems has recently attracted a large amount 
of research efforts due to the important role of 
recursive rules in improving the intelligence of 
database systems and extending them into knowledge-
base systems [1-11]. One of the main features of these 
intelligent database systems, namely deductive 
databases, is their ability to define recursive rules and 
to process queries on them directly. 

In deductive databases, most recursive rules appear 
in a simple form in which the rule’s head appears only 
once in the body of the rule [5]. In general, this type of 
logic rules is called linearly recursive. A same 
generation (sg) rule is a linearly recursive rule of the 
following form: 
sg( nXXX ,...,, 21 ):- par( 11 , XY ), par( 22 , XY ),…, 

par( nn XY , ), sg( nYYY ,...,, 21 ) 
where “par” is an extensional (base) predicate and “sg” 
is an intentional database predicate. Within the context 
of deductive databases, the extensional database 
predicate “par” is defined by a two-attribute 
normalized database relation with very many tuples as 
shown in Figure 1-a [5, 7]. Another common view for 
the base relation is represented by a directed graph, as 
shown in Figure 1-b. For every tuple <x,y> of the base 
relation, there exists, in the corresponding graph, a 
directed edge from node x to node y. The nodes in such 

a graph are the set of distinct values in the two 
columns of the base relation (i.e., the domain). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. The binary relation “par” in a) table form b) graph form. 
 
To generate solutions from the above recursive rule, 

another non-recursive rule, the exit rule, which defines 
the predicate “sg( nXXX ,...,, 21 )” must exist. This 
non-recursive rule is given by: 
sg( nXXX ,...,, 21 ):- par( 1, XY ), par( 2, XY ),…, 

par( nXY , ) 
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A query on a predicate that is defined by the the 
recursive and the exit rule is called a same generation 
query. This query is a headless rule of the following 
form: 

:- sg( nXXX ,...,, 21 ) 

A query typically involves a predicate symbol with 
some variable arguments, and its meaning or answer is 
the different constant combinations that when bound 
(assigned) to the variables, can make the predicate true. 
In general, an n-place unit query, such as the above 
one, may have different forms depending on the 
instantiation status of the variables [8]. In this article, 
we propose an algorithm for solving the generalized 
partially instantiated form of the same generation 
query, i.e., a query that has the form: 

:- sg( iXXX ,...,, 21 , nii ccc ,...,, 21 ++ ) 
 

where iXXX ,...,, 21  are the uninstantiated variables 

whose values are to be determined and nii ccc ,...,, 21 ++  
are constants representing nodes in the graph. The 
order of the arguments is irrelevant since “sg” is a 
symmetric relation. Let the uninstantiated set of nodes 
(USN) be { iXXX ,...,, 21 } and the instantiated set of 

nodes (ISN) be { nii ccc ,...,, 21 ++ }, then the answer of 
such a query is the set of nodes with a cardinality of i 
that are of the same generation as nii ccc ,...,, 21 ++  (i.e., 
the set of nodes that are on the same level of a family 
tree with nii ccc ,...,, 21 ++ ).  

The counting technique for linear rules and the 
magic-sets rule rewriting are the two best-known 
techniques to solve such query in its simplest form 
(without the generalization to n-place queries) [9]. In 
solving queries like the partially instantiated same 
generation, these techniques process every node on the 
paths of the graph. The Modified HaNa method is 
similar to the counting technique and the magic-sets 
rule rewriting in the sense that it processes all the 
nodes on the paths of the graph [6]. The generalized 
partially instantiated same generation query algorithm, 
as presented in this article, is more efficient than these 
techniques. The algorithm considers the relevant part 
of the graph/database by examining the set of nodes 
that are connected to the selected node from the set of 
instantiated nodes in the query and involves less 
computation.  
 
2. The Structure Used in the Algorithm 
The structure used in the algorithm is a special matrix. 
This structure has been used in computing the 
transitive closure of a database relation [8], and in 
answering the simple form of the partially instantiated 
same generation query in deductive databases [7]. In 
this matrix, the rows represent some paths in the graph 

starting from the roots/source nodes to the leaves. 
Basically, depth-first search is used to create the paths 
of the graph. Instead of storing every node in all paths, 
the common parts of these paths can be stored only 
once to avoid duplications. If two paths 

>=< mn bbbaaaP ,...,,,...,, 21,211 and >=< ln cccaaaP ,...,,,...,, 21,212  

have the common parts < naaa ...,, ,21 >, then 1P  and 

2P  can be stored in the two consecutive rows of the 

matrix as >< mn bbbaaa ,...,,,...,, 21,21  and < -- n 

empty entries -- >lccc ,...,,, 21 , where the first n 
entries of the second row are empty. To prevent the 
duplicate storage of the nodes in the matrix, a different 
technique is used; for the first visit to the node, it is 
entered into the matrix and the coordinates of its 
location is recorded. On subsequent visits, instead of 
entering the node itself, its coordinates are entered into 
the matrix (a pointer to the already stored node). In this 
way, only a single copy of each of the graph’s nodes is 
guaranteed to be entered in the matrix. Moreover, there 
will be only one entry (either a node or a pointer) in the 
matrix for each edge in the graph. In Figure 2-a, the 
matrix representation of the graph given in Figure 1-b 
is presented. In that graph, there are 25 edges, and in 
its matrix representation there are 25+2 =27 nonempty 
entries in the matrix (another two entries for the nodes 
s and n). An important advantage of this matrix 
structure is that it stores a path from each node to all 
the roots that can reach the node. 
 
 

 0 1 2 3 4 5 6 
0 s r o     
1   p 0,2    
2    g f e d 
3      2,6  
4  q 1,2     
5   m 2,3    
6    i h c a 
7       b 
8 n 5,2      
9  k 6,3     
10  l 9,1     
11   j 6,3    

 

a) Matrix representation. 

 
 
 
 
 
 
 
 
 
 
 

b) Reverse matrix representation. 
 

Figure 2. Matrix and reverse matrix representation of the graph of 
Figure 1. 
 

 0 1 2 3 4 5 6 
0 o r s     
1  p 0,1     
2   q 0,2    
3 d e f g 1,1   
4     m 2,2  
5      n  
6  3,2      
7 a c h i 4,4   
8     k 5,5  
9      1 5,5 
10     j 9,5  
11 b 7,1      
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0,0 0,1 0,2 1,2 1,3 2,3 2,4 2,5 2,6 3,5 4,1 4,2 5,2 5,3 6,3 
s r o p 0,2 g f e d 2,6 q 1,2 m 2,3 i 

 
6,4 6,5 6,6 7,6 8,0 8,1 9,1 9,2 10,1 10,2 11,2 11,3 
h c a b n 5,2 k 6,3 l 9,1 j 6,3 

 
Figure 3. An array representation of the matrix of Figure 2-a. 

 
In the implementation of this sparse matrix, the 

empty entries are not stored explicitly. The matrix can 
be stored sequentially row by row as shown in Figure 
3. For each row, storing the column number of its first 
non-empty entry and the sequence of non-empty 
entries in the row is sufficient. Thus, the size of the 
stored matrix is much smaller than the original relation 
and matrix.  

After the special matrix form is created, a (reverse) 
matrix, which is the matrix representation of the 
reverse graph, is generated using the reverse graph. For 
our purposes, the reversed graph is defined as follows. 

Definition: Let G=(V,E) be a graph, where V is a finite 
set of vertices/nodes and E is a finite set of arcs/edges 
such that each arc e in E is associated with an ordered 
pair of vertices/nodes v and w, written as e=(v,w), then 
the reverse graph RG is given by RG=(V,E') where V is 
a finite set of vertices/nodes (the same set of vertices of 
the original graph) and E' is a finite set of arcs such 
that each arc e' in E' is associated with an ordered pair 
of vertices w and v, written by e'=(w,v) for each 
e=(v,w) in E.  

The reverse matrix representation generated from 
the graph in Figure 1-b is the matrix given in Figure 2-
b. An important advantage of this matrix structure is 
that it stores paths from every node to the root node(s). 
For solving the same generation query, we are 
interested in the parents and ancestors of a certain node 
and not in its descendants and this information can be 
extracted easily from the reverse matrix (and not from 
the original matrix). Therefore, we need the reverse 
matrix representation. The reverse matrix can also be 
stored sequentially row by row as explained for the 
original matrix. In fact, there is no need even to store 
the whole matrix structure, because storing the row 
beginnings, row ends, the entries stored at the row 
ends, and matrix coordinates of the nodes is sufficient. 
This is due to the fact that we are interested in the path 
lengths and not in the stored nodes themselves, from 
the reverse matrix structure. 
 
3. The General ized Partially Instantiated 

Same Generation Query Algorithm 
As mentioned before, the matrix structure stores paths 
from the roots to all nodes reachable from these roots. 
This means that the nodes in the matrix are clustered 
on the roots of the graph, i.e., starting from any root, 
all nodes reachable from that root can be accessed. The 
reverse matrix structure stores paths from each node to 
all roots related to that node, which means that the 

nodes in the reverse matrix are clustered on the leaves 
of the graph, i.e., starting from any node, all roots 
related to that node can be accessed. This information 
can be exploited to solve the generalized partially 
instantiated same generation query. In solving such a 
query, the algorithm proceeds as follows: 

1. Starting from one of the nodes in the instantiated set 
of nodes (ISN) of the query and using the reverse 
matrix structure, the path lengths to all relevant 
roots are determined. During this computation, only 
the row beginnings and ends are used. In addition to 
that, only the relevant roots of the graph are 
considered. After that, these path lengths are sorted 
in ascending order, according to the roots and 
lengths, and duplicate paths are removed. 

2. Taking each root from the above step and using the 
forward matrix structure, all nodes having the same 
path lengths as the selected node from step (1) are 
determined. Let this set of nodes in the result be 
(RS). In this step, only the row beginnings and row 
ends are also used in the computation of the paths. 
The original matrix entries are used only in the 
collection of nodes.  

3. Having all nodes (RS) collected in step (2), the 
algorithm makes sure that all nodes in ISN are in the 
result i.e., ISN ⊆ RS. In addition, the number of 
nodes in RS-ISN should be greater than or equal to 
the number of nodes in USN (i.e.,  |RS-
ISN| ≥ |USN|). The result of the query will consist of 
all combinations of the nodes in the set RS-ISN. 

The path lengths will be sorted because the algorithm 
will collect all the nodes in the same generation with 
the given node in a single step. For example, if a 
certain node has a set of path lengths 
{ klll ,...,, 21 | klll <<< ...21 } from the selected query 
node, then all nodes that are reachable from that root 
node with these path lengths are collected in a single 
step. The duplicate paths will be removed because they 
will not add new nodes to the solution set. The 
generalized partially instantiated same generation 
query algorithm, as described above, can be 
summarized as shown in Figure 4. 

It is worth emphasizing that this algorithm considers 
only the relevant part of the database/graph, i.e., it 
considers only the set of nodes that are somehow 
relevant to the instantiated part of the query (the node 
in ISN that has been used in determining the path 
lengths to all relevant roots). In addition to that, the 
algorithm jumps from one node to another, skipping 
many nodes on the paths of the underlying graph, since 
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it only uses the row beginnings and row ends of the 
matrices in the computation of the paths rather than the 
nodes of the graph themselves. 

 

 
Figure 4. The generalized partially instantiated same generation 
query algorithm. 

 
Example: For the graph in Figure 1-b, the answer of 
the query :- sg(j, 21 , XX ) is computed as follows: 

1. The algorithm starts from one of the instantiated 
arguments (i.e., j, where ISN={j} and 
USN={ 21 , XX }) and uses the reverse matrix 
structure to determine the set of path lengths to all 
relevant roots. These paths are sorted and duplicates 
are removed. Thus, this step generates one path of 
length 2 to root n. 

2. From the above step, the algorithm determines that 
n is the only relevant root (the root s is not 
considered in the computation). Therefore, the 
algorithm starts from n and uses the forward matrix 
structure to determine all nodes with path lengths of 
2 from root n. When a node of path length 2 is 
reached, it is recorded and the search continues until 
all relevant parts of the graph is traversed up to path 
lengths of 2 (the search terminates at this point for 
the current path of the graph since nodes with 
lengths greater than 2 are irrelevant in answering the 
query) or until leaves are encountered. The set of 
nodes in the result is RS={g,i,k,j}. 

3. Since ISN ⊆ RS (i.e., {j}⊆ {g,i,k,j}) and |RS-
ISN| ≥ |USN| (i.e., |{g,i,k}|≥ |{ 21 , XX }|), then the 
answer of the query is the set of all combinations of 
{g,i,k}, which is equal to {(g,i),(g,k),(i,k)}. Each 
combination has two nodes since there are two 
uninstantiated variables in the query. 

 
4. Performance Evaluation of the Algorithm 
To determine the performance of the new algorithm, 
simulations of the algorithm were performed for 
random database relations with 2000 tuples with 4 

different outdegree values from 1 to 4. For more 
accurate results, the algorithms were executed 5 times 
for each case and the average was taken. The same 
generation query algorithm was tested for 50 randomly 
generated queries. The number of nodes visited to 
answer these queries was determined for the algorithm 
and the depth-first search based technique such as the 
magic-sets rule rewriting technique and the counting 
technique. These numbers were plotted for different 
outdegrees of the randomly generated graphs as shown 
in Figure 5. When the graph obtained from the 
execution of the algorithms was examined, two things 
were observed. First, the number of nodes visited in 
the algorithms (where the row beginnings and row 
ends of the matrix representation are visited only) is 
less than the number of nodes visited in the usual way 
(where all nodes along the paths are visited). Second, 
increasing the outdegree of the underlying graph, is in 
favor of the technique used in visiting the nodes in our 
algorithm. This is due to the fact that larger outdegree 
values of the underlying graph generate longer paths, 
which results in skipping larger number of nodes in the 
graph.  
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Figure 5. Comparative performance for the generalized partially 
instantiated same generation query algorithm. 
 

According to [6, 9], the counting technique, the 
magic-sets rule rewriting, and the Modified HaNa 
method are not significantly different and they are the 
best-known techniques to solve such a query. In 
solving queries like the partially instantiated same 
generation query, these techniques process every node 
on the paths of the graph. It is clear that the generalized 
partially instantiated same generation query algorithm, 
as presented in this article, is more efficient than the 
above-mentioned techniques. The algorithm considers 
the relevant part of the graph/database by examining 
the set of nodes that are connected to the selected node 
from the set of instantiated nodes in the query and 
involves less computation than the above techniques. 
Therefore, the algorithm solves the generalized 
partially instantiated same generation query efficiently. 
 
5. Conclusion 
This paper presents an efficient algorithm to solve the 
generalized partially instantiated same generation 

Procedure Generalized_Partially_Instantiated_Same 
_Generation() 
begin 

Compute all paths from one of nodes in ISN to all 
  relevant roots using the reverse matrix structure. 
Sort the path lengths in ascending order. 
Remove duplicate paths. 
for all generated roots r and using the original 
matrix structure do 
   Collect the nodes RS that are of a length as one 
   of the path lengths of r. 

          if  ISN ⊆ RS and |RS-ISN| ≥ |USN| then 
            the result of the query will consist of all 
            combinations of the nodes in RS-ISN 
end 
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query in deductive databases. The algorithm uses 
special data structures, namely, a matrix representation 
of the graph, representing the two-attribute normalized 
database relation, and a reverse matrix representation 
of the reverse graph. The paper also presents a 
performance study of the algorithm, and shows the 
advantages of the techniques used in the algorithm in 
solving the generalized form of the partially 
instantiated same generation query in deductive  
databases. Finally, the paper compares the algorithms 
with other approaches used to solve such queries like 
the counting technique, magic-sets rule rewriting, and 
the Modified HaNa method. 
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