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Abstract: Hyperspectral Images (HSIs) represent an important source of information in the remote sensing field. Indeed, 

HSIs, which collect data in many spectral bands, are more simple interpretable and provide a detailed information about 

interest areas. However, hyperspectral imaging systems generate a huge amount of redundant data and an important level of 

noise. Dimensionality reduction is an important task that attempts to reduce dimensionality and remove noise so as to enhance 

the accuracy of remote sensing applications. The first dimensionality reduction approaches date back to 1970s, and various 

model-based methods have been proposed since these years. This field has known an increasing attention by the suggestion of 

graph based models that have yielded promising results. While graph based approaches generate considerable outputs, these 

models require often an important processing time to handle data. In this work, we aim to reduce the computational burden of 

a promising graph based method called the Modified Schroedinger Eigenmap Projections (MSEP). In this respect, we suggest 

an efficient superpixel algorithm, called Improved Simple Linear Iterative Clustering (Improved SLIC), to lessen the heavy 

computational load of the MSEP method. The proposed approach exploits the superpixels as inputs instead of pixels; and then 

runs the MSEP algorithm. While respecting the HSIs properties, the proposed scheme illustrates that the MSEP method can be 

performed with computational efficiency. 

Keywords: Hyperspectral images, dimensionality reduction, graph, MSEP, superpixels, improved SLIC. 

Received April 14, 2021; accepted March 27, 2022 

https://doi.org/10.34028/iajit/19/6/13 
 

1. Introduction 

Progress in remote sensing imaging has led to the 

emergence of a new advanced generation of satellite 

sensors that can produce images with very high 

spectral resolution, known by Hyperspectral images 

(HSIs). Thanks to its discrimination ability, HSIs have 

been widely exploited by various applications such as 

classification, object recognition and target detection. 

Despite its interesting potentialities, hyperspectral data 

treatment is a difficult process. Indeed, HSIs generates 

also an important amount of redundant data; which 

poses difficulties during image processing and storage. 

To reduce hyperspectral data, various dimensionality 

reduction approaches have been proposed in the last 

decade. The concern subject is how to reduce data 

dimensionality while keeping the significant properties 

[6, 7, 8, 14, 18, 19, 20, 22]. 

In this paper, we are particularly interested to the 

linear modified Schroedinger Eigenmap projections 

(MSEP) [9] approach. This latter is a recent powerful 

graph-based method which is based on the Modified 

Locality Preserving Projection (MLLP) framework 

[21] and the Schrodinger theory. Despite its noted 

classification precision, the suggested MSEP approach 

requires a computational effort, during the adjacency 

graph construction, especially when the number of the 

image pixels is important. To resolve the  

 
computational issue, we suggest adopting superpixels 

as input. In fact, generating superpixels can 

significantly reduce the computational load without 

severely affecting the classification accuracy.  

Recently, several superpixel algorithms have been 

suggested. These algorithms can be classified into 

two families: graph-based techniques and gradient 

ascent methods [1]. The first family is derived from 

graph-based image models; in which superpixels are 

generated based on the distance between pixels and the 

centroid feature. In the second branch, the clusters of 

superpixels are generated iteratively from an initial 

grouping of pixels until reaching a particular 

convergence criterion. Since they are iterative models, 

gradient ascent methods yield is relatively slow. In this 

paper, we adopt a graph-based algorithm called 

Improved Simple Linear Iterative Clustering (SLIC) 

[13] to generate superpixels. The developed Improved 

SLIC is an efficient superpixel method that presents a 

fast implementation and powerful yield during several 

image clustering tasks.  

This work is an attempt to lessen the computational 

cost of the MSEP method without impacting the 

significant image data properties. Section 2 presents 

state-of-art superpixel algorithms. We introduce the 

MSEP algorithm in section 3. Section 4 conducts on 

experimental analysis and results. Finally, section 5 

outlines conclusions. 
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2. Graph-Based Algorithms for Superpixels 

Generation 

2.1. State-of-the-Art Superpixel Methods 

Clustering, used widely in image analysis applications, 

can be defined as the best grouping of an image into 

avariety of partitions in such way that features in the 

same partition are more similar to one another and 

features from different partitions share the maximum 

number of differences. Superpixels, or the partition of 

pixels into small clusters, can execute data more 

efficiently. Recently, several kinds of superpixels have 

been adopted for image analysis and processing. 

Among these methods, we can mention: the 

Normalized Cuts (NC) algorithm [3, 4] which is based 

on local texture and contours to partition a graph. It 

minimizes the cost function determined by the edges 

and texture cues. NC can provide good visually 

superpixels, but it is considered among the slowest 

methods. Felzenszwalb-Huttenlocher method [10] is 

another superpixel approach which segments image 

regions used edges concept. Although, the suggested 

approach exhibited a quiet computing load, it continues 

to produce superpixels without any control over the 

size or the shape proprieties. In [16, 17], the Superpixel 

Lattice (SL) approach was also proposed as a 

superpixel methodology. SL divides the image into 

small partitions based on optimal paths, found from 

graph cut algorithms. Nevertheless, the SL method 

doesn’t take into consideration boundary maps; which 

can affect quality and speed outputs.  

The most of these methods suffer from qualitative 

or computational issues. In order to solve these 

problems, the SLIC [1, 23] was put forward. The SLIC 

approach is a novel version of k-means clustering; 

which is based on the spectral (color) and spatial 

distances. Since it includes spectral and spatial pixel 

features, the developed method presents a high 

computational speed in addition to its significant 

classification performance. Nevertheless, the 

conventional SLIC suffers from two main problems. 

Firstly, cluster centers are updated based on some 

misclassified pixels, produced from the first iteration. 

Consequently, more pixels are incorrectly classified. 

Secondly, small clusters are incorporated into their 

neighbors. Hence, generated superpixels don’t cohere 

to the image boundary. To address these issues, an 

improved variant of SLIC method has been proposed 

by Kim et al. [13]. The proposed approach introduces a 

sigma filter to avert errors propagation. Then, it adopts 

luminance similarity instead of the neighbor cluster 

size to avoid small cluster pixels misclassification. 

2.2. Improved Simple Linear Iterative 

Clustering (SLIC) Method  

The Improved SLIC [13] superpixel method is a recent 

variant of the SLIC superpixel approach [1, 23]; which 

produces more uniform and regular superpixels with an 

efficient computing time. Unlike the SLIC method 

which produces clusters with misclassified pixels, the 

Improved SLIC uses a post-processing step to avoid 

fault pixels propagation and correct segments 

superpixels. The Improved SLIC algorithm can be 

summarized as follows: 

1. Define a feature vector φ for each image pixel: 

φ(x, y)=|

δx

δy

I(x, y)

| 

Where x and y represent spatial positions, I(x, y) 

corresponds to the vector of each channel code values 

and δ is a parameter used to loadspatial and spectral 

features impact. δ can be phrased as the ratio of 

nominal size of the superpixel (S) and the superpixel 

regularity (R). 

2. Introduce an M initial cluster centers CM=φ(xk,yk) 

sampled evenly. Cluster centers are, then, change to 

the lowest gradient location. 

3. Attribute pixels to the nearest cluster center within a 

2S×2S neighbourhood. 

4. Update cluster centers: after the first assignation, 

some pixels can be misclassified. Consequently, 

cluster centers are updated with wrong classified 

pixels. To avoid error propagation, the Improved 

SLIC adapts a sigma filter that uses only pixels 

which have analog luminance values with the initial 

centers. 

Ωj = (||Q
i
- Q

j
||< ∂.σj)∩Cj 

We note that σj is the standard deviation of the 

luminance Q of the jth  cluster C's pixels and 𝜕  is a 

fixed constant. 

5. Merge small clusters based on the luminance 

similarity. The luminance distance QD between a 

small cluster C and its neighbor Cf (f = 1,…,F) can 

be computed using (2). 

Q
D

= (μ - μ
f
)
2
 

μ and μf are the mean luminance values of a small 

cluster and its neighbour respectively. 

6. Repeat until the distance between successive cluster 

center updates is below a predefined threshold T. 

No complex mathematical models are needed for the 

suggested superpixel-based method, and thus, the 

Improved SLIC algorithm can be simply extended for 

HSIs processing. 

3. Modified Schroedinger Eigenmaps 

Projections (MSEP) Algorithm 

While keeping the significant HSI properties, 

dimensionality reduction methods tend to find the 

reduced subspace data points Y=[y1,y2,..,yp] in Ʀ𝑑 from 

(1) 

(2) 
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the original HSI ones X=[x1,x2,..,xp] , where X ϵ Ʀn. We 

note that p presents the number of HSI pixels, n is the 

number of spectral bands and d is the dimension of 

reduced subspace (d˂n). 

The MSEP method is a recent contribution to graph-

based dimensionality reduction algorithms; which has 

proven satisfactory results during HSIs classification 

tasks. The developed method involves the construction 

of an adaptive graph. The key idea is to choose 

conveniently the number of neighbours for each data 

point to build the adjacency graph. Then after, the 

MSEP approach incorporates spatial information with 

the spectral ones in order to more represent the image 

proprieties in the low-dimensional space. The MSEP 

algorithm proceeds as follows: 

1. The first step deals with the adjacency graph 

construction that adopts the graph growing strategy 

[9]. Indeed, the built graph is created adaptively to 

the ground object’s properties. Hence, 

Neighborhoods are formed with different sizes and 

the adjacency graph is constructed without any 

parameter.  

2. The second step exploits proximity relations, 

extracted from the constructed graph, to compute 

the weighted matrix ω This latter represents the 

connectivity of the graph and it can be defined as 

follows: 

ωij= {
0, if xi andxj are nearest neighbours

1 , otherwise
  

3. While the weighted matrixω is reserved to encode 

spectral similarity, the cluster potential matrix V (4), 

defined in the third step, includes spatial elements 

proximity. Spatial coordinates are also extracted 

from the graph constructed in the first phase based 

on non-diagonal cluster potentials addition. The 

potential matrix V can be computed as bellow: 

V= ∑ ∑ V(i,j).γ
ij
.e

||xi
s - xj

s||
2

σs
2

xj ∈Nε
s(xi)

k
i =1  

Nε
s(xi)  represents the set of points in X which has 

spatial components in the ε- neighborhood of 

xi, γij
= exp  (-

||xi
f
- xj

f
||
2

σf
2 ), xi

f
and  xi

s  represent the pixel’s 

spectral and spatial information, σf and σS are the 

spectral and spatial scale parameters and V(i,j) is a non-

diagonal matrix, incorporates spectral information, 

determined by: 

V(k, l)

(i, j)
 = {

1, if (k, l)∈ {(i, i), (j, j)}

-1, if (k, l)∈ {(i, j), (j, i)}

0, otherwise                     

 

4. The last step revolves around solving the 

optimization problem, from which the low 

dimensional space data Y are produced. Maximum 

eigenvectors and eigenvalues can be computed from 

the following generalized eigendecomposition 

problem: 

X Z XT m = λ X D X
T
m  

Z is a Schroedinger matrix which being defined as a 

kind of incorporation between the potential coordinates 

V and the Laplacian matrix L, it expressed by:  

 

Figure 1. Architecture of the proposed approach. 

Z = L + αV  

D is the diagonal weighted degree matrix, L=D-ω 

represents the Laplacian matrix, and α is a parameter 

used to load Laplacian and potential matrix 

participation. The resulting vectors m1,m2, …,md 

correspond to the eigenvectors of (6). 

In this work, the Improved SLIC superpixel 

algorithm is firstly adopted, and then the algorithm 

MSEP is executed. The suggested approach is 

recapped through Figure 1. 

4. Classification Experiments 

After presenting the main idea and defining 

mathematical notions, this section is reserved for the 

experimental evaluation. The new suggested method, 

entitled Improved Schroedinger Eigenmap Projections 

(ImSEP), adopts the Improved SLIC superpixel pre-

processing to reduce the MSEP computational burden. 

4.1. Data Sets 

To evaluate the suggested methodology impact, two 

reference HSIs were employed, in this work, which 

are: Indian Pines and Pavia University data sets. The 

first tested image was acquired by the AVIRIS Sensor. 

The studied scene, taken in June of 1992, captures the 

northwest of Indiana United States of America (USA). 

It contains 200 spectral bands in the spectral range 

[0.4-2.5μm]. Each band contains 145×145 pixels; with 

a spectral resolution of 
  

 

C1 C5 C9 C13 

C2 C6 C10 C14 

C3 C7 C11 C15 

C4 C8 C12 C16 
 

C1 C4 C7 

C2 C5 C8 

C3 C6 C9 

     a) Indian pines.                                             b) Pavia university. 

Figure 2. Color composites of the two hyperspectral data sets and 

their ground truth maps. 

(3) 

(4) 

(5) 

(6) 

(7) 
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10 nm and a spatial resolution of 20 m. Indian Pines 

HSI includes 16 classes. The second used data set, 

recorded by the ROSIS sensor over Pavia University 

(Italy), contains 103 spectral bands with a spectral 

range from 0.43 to 0.86 μm and a spatial resolution of 

1,3 m per pixel. Each band is composed of 640 × 340 

pixels. The Pavia University image includes 9 ground 

truth classes. Tested HSIs and their ground truth maps, 

shown in Figure 2, were got from [5]. 

4.2. Experimental Analysis and Parameters 

Choice 

To evaluate in an objective manner the proposed 

ImSEP approach, three other graph-based 

dimensionality reduction methods: Locality Preserving 

Projections (LPP) [15], Schroedinger Eigenmap 

Projections (SEP) [11] and modified SEP (MSEP) [9], 

were implemented and then they were compared to the 

suggested method. All tested algorithms were 

implemented using Matlab language. A Toshiba laptop 

with a 2-GHz processor and 4 GB memory was used 

for the experimental study.Since it can deal with high 

dimensional data sets, the Support Vector Machine 

(SVM) classifier [2] was selected to classify data 

classes. SVM classifier follows a supervised strategy in 

which, few train samples, randomly selected, are 

chosen from the available labeled data and used for 

learning. Classification result is then tested using 

remaining samples. Each algorithm script was repeated 

ten times and the average of the classification results 

was reported to evaluate the proposed approach yield. 

Confusion matrix results were used to compute 

classification outputs, Overall Accuracy (OA), 

Average Accuracy (AA) and Kappa coefficient [12]. 

Computing time and classification maps were also 

adopted to judge the proposed method efficiency. 

For the Improved SLIC algorithm, two 

parametersshould be analyzed; which are: the nominal 

size of superpixel (S) and the superpixel regularity (R). 

Figures 3, and 4 exhibit the relationship between S, R, 

OA index and processing time. Figure 3 illustrates OA 

evolution versus computing time for the suggested 

ImSEP approach when the Improved SLIC superpixel 

methodology is implemented. Blue, Red and Green 

curves mark the superpixel sizes S=5, 8, and 12, for the 

Indian Pines data set and S=10, 15 and 20 for the Pavia 

University one; respectively. The Superpixel regularity 

R is altered along each curve. In Figure 4, we provided 

the same quantities, while switching the superpixel 

parameters. Blue, Red and Green curves exhibit the 

superpixel regularities R=0,01, 0,1, and 1; respectively. 

The superpixel size S is changed along each curve. 

From these figures, we can observe that there is a 

trade-off between superpixel size (S) and classification 

performance. Indeed, when S is wide, there are fewer 

superpixels. Consequently, the proposed method 

requires less computational charge. On the other hand, 

classification performance OA lowers for a wide S. 

The superpixel regularity less attracts the 

computational performance. In fact, the OA metric is 

almost stable when the regularity R is varied (using 

fixed superpixel size). To have a balance between 

quality and speed yields, we adopted a nominal size of 

superpixel S=8 and a superpixel regularity R=0,01 for 

the first HSI and S=15, R=0,01 for the second one. 

Tables 1, and 2 exhibit the details about the 

implemented parameters for all the tested methods. 

 
a) Indian pines. 

 
b) Pavia university data sets. 

Figure 3. Classification Accuracy (OA) versus computing time 

with different values of S. 

 
a) The indian pines. 

 
b) The pavia data sets. 

Figure 4. Classification Accuracy (OA) versus computing time 

with different values of R. 

Table 1. Details about implemented parameters for the indian pines 
data set. 

Parameters LPP SEP MSEP ImSEP 

S - - - 8 

R - - - 0,01 

ᾶ - 17,78 16,11 16,11 

n 20 20 20 20 

σ𝑓 - 1 1 1 

σ𝑠 - 1 1 1 

M - - - 50 

T - - - 200 
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Table 2. Details about implemented parameters for Pavia 
University data set. 

Parameters LPP SEP MSEP ImSEP 

S - - - 15 

R - - - 0,01 

ᾶ - 23,71 23,71 23,71 

n 25 25 25 25 

σ𝑓 - 1 1 1 

σ𝑠 - 1 1 1 

M - - - 100 

T - - - 200 

4.3. Results and Discussions 

4.3.1. Indian Pines HIS 

Table 3 describes the classification results for Indian 

Pines HSI with all tested cases. By analyzing this table, 

we can observe that the proposed ImSEP approach 

gives the highest classification accuracy: 87,80% of 

OA and 85,14% of Kappa. It succeeded to increase the 

OA index by about 11%, 9%, and 2% compared to 

LPP, SEP and MSEP reference methods respectively. 

Indeed, the correction mechanism recommended by the 

Improved SLIC method contributes to avoid the 

propagation of errors and subsequently to better adhere 

to image proprieties. The worst results were produced 

by LPP and SEP methods. In fact, the LPP gave 

76,29% of OA while the SEP technique offered 

78,32%. These results can be explained by the inability 

of the aforementioned methods to keep the 

dissimilarities between neighboring data points during 

the adjacency graph construction. With regards to AA 

produced results, we noticed that the ImSEP works 

fairly well on eight classes (C2, C3, C6, C7, C9, C12, 

C13 and C15) and competitively with the other ones. 

Note that the best AA results have been yielded by C1, 

C7, C8 and C9. For this image, the class C11, as the 

other reference techniques, still gives a low accuracy 

(92,55% of AA). Moreover, the integrated superpixels 

approach (Improved SLIC) can reduce 

considerably the time required to execute the MSEP 

algorithm. It can save about 15 seconds; which means 

47,35% of computing time. We can observe also that 

the ImSEP dimensionality reduction method 

outperforms the LPP and the SEP techniques in 

computing efficiency. Figure 5 shows the different 

classification maps obtained by all the implemented 

algorithms, for the Indian Pines HSI. Although a 

certain level of inaccuracy is presented, the thematic 

classification maps for the SVM classifier confirm that 

the ImSEP dimensionality reduction approach can 

provide the best visualization output. Indeed, the 

adopted SLIC strategy succeeded to separate relatively 

the nearest classes. This can be seen especially in the 

top left area of the image. The generated maps confirm 

also that the proposed approach satisfied a competitive 

accuracy in term of visualization clarity for the large 

classes (C10, C11, and C12). 

Table 3. Indian pines classification results for various 
dimensionality reduction methods. 

Classes LPP SEP MSEP ImSEP 

C1 99,97 99,98 99,98 99,95 

C2 89,69 91,71 94,20 95,09 

C3 93,83 94,52 96,00 96,83 

C4 98,47 99,37 99,57 99,12 

C5 98,94 99,00 99,57 99,44 

C6 97,58 97,65 98,63 98,90 

C7 99,93 99,92 99,94 99,98 

C8 99,66 99,83 99,92 99,90 

C9 99,82 99,70 99,82 99,90 

C10 96,33 96,37 97,46 97,31 

C11 89,38 88,86 93,09 92,55 

C12 95,03 95,27 96,80 97,71 

C13 99,15 99,48 99,71 99,83 

C14 97,81 98,09 98,77 98,66 

C15 97,17 96,97 97,91 98,14 

C16 99,80 99,91 99,92 99,83 

OA (%) 76,29 78,32 85,65 87,80 

AA (%) 97,04 97,29 98,21 98,32 

Kappa (%) 72,62 75,02 83,55 85,14 

Time (S) 23,62 27,4 32,63 17,18 

 

 

a) LPP. 

 

b) SEP. 

 

c) MSEP. 

 

d) ImSEP. 

Figure 5. Indian Pines classification maps for various 

dimensionality reduction methods. 

4.3.2. Pavia University HSI  

Table 4 summarizes classification results of the second 

studied HSI. According to the obtained results, we can 

notice that the best results (92,28% of OA and 87,47% 

of kappa) have been achieved by the new suggested 

method. In fact, our approach performs better than all 

the tested algorithms, it improved the precision OA by 

about 14%, 7% and 1% compared to LPP, SEP and 

MSEP methods; respectively. By analyzing the AA 

classification results obtained by the Pavia University 

dataset, we can notice that the ImSEP method has the 

best precision compared to the other implemented 

methods. Indeed, the new suggested approach gave 

98,06% of AA while the LPP technique maintained 

93,98 %, the SEP method provided 96,78% and the 

original MSEP yielded 97,86%. Moreover, the 

quantitative classification results of the University of 

Pavia confirm that the novel proposed method is 

proficient at retaining the intrinsic hyperspectral details 

for the nine image classes. This can be explained by 

the ability of the Improved SLIC method to respect the 

original image properties. With respect to the 

processing time, it can be seen that computing time of 

the proposed ImSEP (234,61 s) is significantly low in 

comparison to the MSEP (576,21 s) and the 

conventional SEP (495,60 s) methods. Practically, the 

Improved SLIC pre-processing step can conserve about 

49% of the processing time compared to the MSEP 

method and this can be considered as an encouraging 

result. Figure 6 shows the thematic classification maps 
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for the second tested HSI with all the implemented 

dimensionality reduction methods. This figure 

confirms that the Improved SLIC pre-processing step 

provides a much clearer visualization than the 

techniques that adopt the pixels as inputs. In particular, 

our ImSEP approach shows a great ability to retain 

small image details. 

Table 4. Pavia University classification results for various 

dimensionality reduction methods. 

Classes LPP SEP MSEP ImSEP 

C1 86,38 94,86 96,98 97,27 

C2 90,15 90,86 93,69 94,37 

C3 94,20 97,79 98,20 98,28 

C4 93,91 96,17 97,59 97,82 

C5 96,68 99,48 99,85 99,86 

C6 93,95 96,61 97,72 97,90 

C7 98,08 99,05 99,32 99,34 

C8 94,31 96,77 97,58 97,90 

C9 98,20 99,40 99,79 99,82 

OA (%) 78,75 85,49 91,36 92,28 

AA (%) 93,98 96,78 97,86 98,06 

Kappa (%) 72,01 80,20 86,97 87,47 

Time (S) 428,76 495,6 576.21 234.61 

 

 

a) LPP. 

 

b) SEP. 

 

c) MSEP. 

       

d) ImSEP. 

Figure 6. Pavia university classification maps for various 

dimensionality reduction methods. 

5. Conclusions and Future Work 

In this paper, a new graph-based dimensionality 

reduction approach, called ImSEP, was proposed for 

HSIs classification tasks. The suggested approach 

adopts a pre-processing step to lessen the 

computational burden of the MSEP technique. ImSEP 

method, tested on two real HSIs, has conducted to a 

satisfactory classification yield with a low computing 

time. Compared to the original MSEP method, the 

ImSEP approach has saved 47% of the processing 

time, for the first data set and 49% for the second 

one.Although obtained results are acceptable, other 

improvements may be made to the proposed approach 

input data representations, addressing more 

discriminating features, such as morphological 

features, texture features and intrinsic decomposition. 

This could further improve the classification 

performance. 
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