
932 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

Context Aware Mobile Application Pre-Launching

Model using KNN Classifier

Malini Alagarsamy

Department of Computer Science,

Thiagarajar College of Engineering, India

amcse@tce.edu

Ameena Sahubar Sathik

Infosys Pvt Ltd, India

ameenasahubarsathik@gmail.com

Abstract: Mobile applications are the application software which can be executed in mobile devices. The Performance of the

mobile application is major factor to be considered while developing the application software. Usually, the user uses a

sequence of applications continuously. So, pre-launching of the mobile application is the best methodology used to increase

the launch time of the mobile application. In Android Operating System (OS) they use cache policies to increase the launch

time. But whenever a new application enters into the cache it removes the existing application from the cache even it is

repeatedly used by the user. So the removed application needs to be re-launched again. To rectify it, we suggest K number of

applications for pre-launching by calculating the affinity between the applications. Because, the user may uses the set of

applications together for more than one time. We discover those applications from the usage pattern based on Launch Delay

(LD), Power Consumption (PC), App Affinity, Spatial and Temporal relations and also, a K-Nearest Neighbour (KNN)

classifier machine learning algorithm is used to increase the accuracy of prediction.

Keywords: Mobile application, launch time, app affinity, pre-launch, context-aware.

Received October 10, 2020; accepted December 14, 2021

https://doi.org/10.34028/iajit/19/6/11

1. Introduction

Mobile phones are the best companion for us which

can be used to communicate with others, check e-

mails, browse various websites, playing games and to

take photos, etc., [1]. User experience of mobile usage

is mainly depends on the mobile applications. Hence,

the performance of these mobile applications plays a

major role in enhancing the user experience. Usually

users want to work with the application which run

faster whenever the user click the icon of the mobile

application. The time taken by the application to

launch or to arrive at ready state is called as launch

delay. If the application takes more time for launching

then it affects the performance of the application. Cold

launch delay is the time taken by the application to get

started when the user clicks the application icon. If the

application never launched before or it is not available

in the cache then we have to fork the complete

application process which contains Create, Start and

Resume states.

Hot start is the time taken by the application to

resume or resumption of already existing process. The

application was already available in the cache. In this

case, Start and Resume states are involved in it.

Compared to the cold start, hot start produces lower

overhead. If all of your application’s activities are still

resident in memory, then the app can avoid having to

repeat object initialization, layout inflation and

rendering. However, if some memory has been purged

in response to memory trimming events, then those

objects will need to be recreated in response to the

warm start event.

The user may use many applications and navigates

among those applications when necessary. This

navigation requires the application to be re-launched.

This re-launches affects the performance of the mobile

application. In android, caches are used for fast

launching. If the cache contains more number of

applications then it consumes more energy [2, 3]. By

pre-launching the necessary application, we can reduce

the launch delay and energy consumption [13, 14, 15].

In android Operating System (OS), Least Recently

Used (LRU) cache policy is used for eviction.

A study on the Android app usage profiling of 20

participants was conducted and a similar tendency was

observed. It is observed that, for most users, there is a

small set of distinctive app usage patterns that are

repeatedly appearing. In particular, it was quite

common to see that two apps are strongly related each

other, often being launched successively. For example,

it is observed that one of 20 study participants has

launched Amazon and Flipkart together in majority

launches. Furthermore, it is observed that, the usage

pattern of a single user differs according to the current

environmental contexts. For example, when the user in

Home, he uses some set of applications repeatedly and

he uses different set of applications in college.

From the analysis of the collected usage logs, it is

observed some distinct characteristics of app usage

patterns, which formed the main motivation of this

work. First, it is observed a well-known app usage

https://doi.org/10.34028/iajit/19/6/11

Context Aware Mobile Application Pre-Launching Model using KNN Classifier 933

tendency that only a small number of favored apps are

heavily used. Second, it is also observed that there is a

strong affinity on how related apps are used. In

particular, it is observed that there are many pairs of

apps that are used together in a particular situation. By

identifying these distinctive usage patterns among a

small set of favored apps during runtime and pre-

launching related apps according to context, could

improve user experience [16, 17, 18]. The objective of

this work is to reduce the application launch delay in

android by pre-launching the related apps.

In this paper, Context Aware Mobile application

Pre-launching (CAMP) model is proposed which

reduces the re-launches and restart count by

introducing a new eviction policy called Launch App

Correlation Evictor (LACE). This model collects the

app usage log of a smartphone user and analyzes that

log which contains the app usage history along with

the temporal and spatial details of the app used. This

proposed model optimizes the launching experience by

predicting the user’s future app usage tendency and

pre-launches the related apps together. LACE policy

which will be calculating the affinity among the apps

and evict the app which have low affinity value is

proposed. This LACE policy reduces restart count

when compared to LRU since it gives priority to

related apps.

The contributions of this paper are,

 Suggest K number of applications for Pre-launching

to accelerate the launch time of an application.

 Reduce the re-launches of repeatedly used

application using LACE policy.

 Predict the applications using affinity between the

applications, location and time of the application

used.

 Improves the accuracy of prediction using KNN

classifier machine learning technique.

The remainder of this paper is organized as follows:

Section 2 shows existing literature review, section 3

discusses the proposed context aware mobile

application pre-launching model and its overall design,

section 4 deals with the real time implementation and

results and section 5 presents the conclusion.

2. Related Work

Lu and Yang [10] presented a Spatial and Temporal

App Recommender (STAR) framework which predicts

the applications using spatial and temporal relation. In

this paper, the authors proposed Spatial and Temporal

App Usage Pattern (STAUP) Mine algorithm to

discover time and location details of the applications

used by the user from the geographic Global

Positioning System (GPS) trajectory. The spatial

information related with the applications is

continuously tracked using GPS. GPS raw

information’s are converted into locations using the

STAUP mine algorithm. By analyzing the usage

pattern they discover the temporal details using

timestamps. Depending on these spatial and temporal

details, one application is suggested for pre-launching.

The STAR framework proposed in this paper suggests

only one application for pre-launching. It does not

consider power consumption and launch delay of an

application during prediction.

Song et al. [18] developed Application Usage

Model (AUM) and AUM based optimization model. In

AUM module, the app usage behavior of the user is

continuously monitored and the app usage pattern is

constructed. Using this observed usage pattern, the app

radius is calculated. Affinity among the applications is

calculated using the app radius. In optimization model

clustering method is used to predict the application to

be pre-launched. The framework suggests the

application which is used only one time by the user for

pre-launching. The suggested application pre-launched

into the cache even it does not used by the user.

Li et al. [8] implemented a low memory killer using

reinforcement learning technique. Through the trial

and error exploration the killer interacts with

environment and predicts the app launch latency. The

predicted app is killed by the killer. The automatic

decision makers continuously observe the various

indicators from the environment and make the decision

based on the environment factors. Whenever the

memory is not enough to store the reused application it

randomly selects the application and kill that

application. If the killed application used by the user in

near future it re-launched again.

Zhao et al. [20] implemented a client centric

technique Program Analysis for Latency Optimization

of Mobile Apps (PALOMA) which pre-fetches the

Hypertext Transfer Protocol (HTTP) requests and

reduces the network latency. String analysis and call

back control flow analysis are used here to pre-fetch

the request. String analysis is used to analyze the

request sent by the user. And call back control flow

analysis is used to pre-fetch the results and stored it in

temporary buffer. Pre-fetching phase of PALOMA

technique requires a large amount of memory to store

the received responses. Because it stores each and

every responses related with the words in the given

URL.

Several techniques were implemented using non-

volatile memory [6, 16], volatile memory [9, 13] and

memory reclamation techniques [7] to accelerate

launch delay. But these techniques did not consider

usage behavior and energy.

The proposed model uses app affinity, temporal and

spatial relation for predicting and suggests K number

of applications for pre-launching as shown in Figure 1.

And also a machine learning mechanism is used to

increase the accuracy of prediction. Whenever cache

try to insert new application it evicts the application

based on LACE policy.

934 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

3. Proposed Methodology

CAMP Model minimizes the user-perceived delays,

when a user launches apps. App usage pattern and

information about the applications which are used

previously by the user is tracked using the Android-

App-Tracker application. The tracked information are

given as an input for calculating Launch Delay, Power

Consumption, App affinity, Spatial and Temporal

segmentation. By applying KNN classifier machine

learning algorithm on that information the application

to be pre-launched is predicted.

3.1. Android-App-Tracker

In order to understand better how smartphone apps are

used by different users, detailed logs of smartphone

usage from 20 participants were collected. All the

participants of this usage study were typical

smartphone users, almost always carrying their

smartphones with them. For this usage study, a special

Android app namely Android-App-Tracker shown in

Figure 5 was developed which collects various usage

information while users interact with their favored

apps [11]. This app automatically collects information

on smartphone use, including information about apps

used based on context (location, time), the start and

end of each app use. It also finds out the cold launch

and hot launch delay of the every application. Cold

launch or launch delay is the time taken by an

application to come to foreground when the application

is clicked. Hot launch delay or re-launch delay is the

resumption of existing application process. The hot and

cold launch delays are measured in milliseconds for

better accuracy. These details are sent to the Decision

Engine for further processing.

3.2. Computation of Launch Delay (LD) and

Power Consumption (PC)

Using the data given by the application tracker, launch

probability of the application is identified. Launch

probability defines the probability of using the

application in near future. It is computed using

Equation (1),

Launch Probability(app
x
) =

usage_count(appx,time,location)

Total_usage_counttime,location

Usage-count (appx,time,location) indicates how many times

app ‘x’ is used by the user at particular time and

location.

LD is computed using Equation (2) for every

application [19].

Launch Delay LDA = PA × (ColdA − HotA)

Where, PA is the launch probability of an application A,

ColdA is launch delay in milliseconds and HotA is re-

launch delay in milliseconds.

PC [12] is computed using Equation (3) for every

application,

Power Consumption PCA = (AvgPCA) × DA

Where, AvgPCA is average power consumption of an

application in joule and is duration of application used

in seconds. Power tutor is used for power profiling. It

measures the energy consumption in joule. So, convert

the energy into watts/second using Equation(4)

Power Consumption (watt) = Energy (joule) / Time (second)

3.3. Computation of Spatial and Temporal

Segmentations

To predict the Spatial and Temporal segmentations, we

use the different timestamp values of the used

application which can be extracted from the app usage

pattern.

Si={t1, t2, t3,…..tn} Si=sequence of timestamps

having highest frequency.

Compute the threshold value α using the Equation

(5),

𝛼 = ∑
𝑡i−𝑡(𝑖−1)

𝑛
− (𝑛 − 1)𝑛

𝑖=2

dij=difference between the two timestamps ti and tj.

If dij> α then add the two timestamps ti and tj into

the ntsp.

Finally divide Si into ntsp+1 time intervals.

Depending on these time intervals, app usage

information and user past history we computed the

spatial information.

3.4. Computation of App Affinity

App affinity Computation Engine identifies strongly

related apps based on a metric that characterizes the

launch affinity among apps [18]. It computes app

affinity between apps from usage sequence collected

by Application Tracker. Let ‘S’ be the app sequence

used by the user for a particular period,

S = < a1, a2, a3,……………,an>

Algorithm (1) represents the sequence of steps used to

compute the affinity between the application in the

given application sequence. First, Algorithm (1)

calculates the usage count and app usage position

values of all the application. And then it calculates the

distance between each and every application in the

given application sequence. It calculates the average

distance between the applications which are repeatedly

used by the user or the value of AUC>1. Affinity

between the two applications is calculated by adding

the average distances between the applications.

For every app ‘A’ in S, following data can be

computed,

a) Launch Distance Di (A) of app ‘A’ relative to Bi in S

defined as ‘d’, where,

1. A = ajin S

2. d = | i - j | such that, there is no ak = A for | i - k | <d

(1)

(2)

(3)

(5)

(4)

(4)

Context Aware Mobile Application Pre-Launching Model using KNN Classifier 935

Figure 1. Architectural design of CAMP model.

Algorithm 1: Computing the affinity correlation between two

applications.

INPUT: Array contain sequence of apps, s=<ai, ai+1,

ai+2,…..an > where i=0.

OUTPUT: Apps having high affinity.

STEPS:

1.Compute usage count (UC) for each app ai in the given

sequence.

2. Compute the distance between the apps,

D[i][j]=|i-j|

Where D[i][j] = distance between the apps in ith and jth

position.

i,j = position values of an apps.

3. For each app ai ,

If UC[i] >1 then

Compute the average distance,

Avg_dis[i] = (n-D[i][j])/UC[i];

Avg_dist = Average distance value of an app which is in ith

position.

n= sequence length.

UC[i] = App Usage Count value of an app in the ith position.

4. Compute the Affinity between the apps,

Aff[i][j] = Avg_dis[i] + Avg_dis[j];

Aff[i][j] = Affinity between the apps in the ith and jth position.

5. Select the apps in ith and jth position which having

maximum value in Aff[i][j].

Apps in the ith and jth position are strongly related

Since the same app ‘B’ can appear in multiple

locations, the average app launch distance of app A

relative to B is computed using Equation (6),

Davg(A|B) =
∑ n− 𝐷𝑖(A) i∈SB

|SB|

n -Length of app sequence ‘S’

A -App in app Sequence ‘S’

Di(A)-Distance of app A relative to Bi in S

SB-{ j∈ {1,…., n } | aj = B in S}

b) App affinity value can be computed using Equation

(7),

AA (A, B) = Davg(A|B) + Davg(B|A)

The higher value of app affinity indicates, the apps are

strongly related.

3.5. KNN Classifier Machine Learning

Algorithm

K-nearest-neighbor is a data classification algorithm

that attempts to determine the group of a data point by

looking at the data points around it. An algorithm,

looking at one point on a grid, trying to determine if a

point is in group A or B, looks at the states of the

points that are near to it. The range is arbitrarily

determined, and then it took the sample of data. If the

majority of the points are in group A, then it is likely

that the data point in question will be A rather than B,

and vice versa.

Here, five inputs are supplied to decision engine-

App Affinity, Launch Delay, Power Consumption,

Location and Time. The app usage information is

preprocessed. The various levels of inputs are low,

medium and high. The output Victim selection has two

levels:

1. Pre-Launch.

2. Remove.

Based on the rules in the rule set, the decision engine

will decide whether to pre-launch or remove the

application. The rules defined in rule set are listed

below,

 Rule 1: if app affinity is high AND Launch Delay is

high AND Power Consumption is low AND

Location is home AND Time is day THEN pre-

launch.

 Rule 2: if app affinity is low AND Launch Delay is

low AND Power Consumption is high AND

Location is home AND Time is day THEN remove.

(6)

(7)

936 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

 Rule 3: if app affinity is low AND Launch Delay is

high AND Power Consumption is high AND

Location is home AND Time is day THEN remove.

 Rule 4: if app affinity is high AND Launch Delay is

high AND Power Consumption is low AND

Location is college AND Time is day THEN pre-

launch.

 Rule 5: if app affinity is high AND Launch Delay is

high AND Power Consumption is low AND

Location is home AND Time is night THEN pre-

launch.

 Rule 6: if app affinity is high AND Launch Delay is

low AND Power Consumption is high AND

Location is home AND Time is day THEN remove.

 Rule 7: if app affinity is low AND Launch Delay is

high AND Power Consumption is low AND

Location is college AND Time is night THEN

remove.

 Rule 8: if app affinity is high AND Launch Delay is

high AND Power Consumption is low AND

Location is Home AND Time is day THEN pre-

launch.

3.6. Launch App Correlation Eviction

LACE uses app affinity computes as explained in

section 3.4. Let consider the user pattern (most used)

observed for a user as shown in Figure2. For

simplicity, consider stack contains only 4 apps, since

there are six different apps used by the users in a

particular pattern.

Under the Android’s default LRU policy whenever

cache is filled, the new arrived app replace the least

recently used app. According to this scenario, for the

identified pattern shown in Figure 2, Facebook enters

into cache at step 4 and 9 and it replaces the least

recently used app WhatApp from the cache even it is

used right after Facebook. Similarly Flipkart enters

into cache at step 6 replaces the least recently used app

Amazon from the cache even it is used right after

Flipkart. Hence we have to restart those applications

which are recently evicted from the cache.

This could be avoided by the Launch App

Correlation Eviction policy. Since LACE uses affinity

values between apps for eviction, it could identify

strongly related apps. Whenever new app enters into

cache the lace policy finds the app having lower

affinity with the new app. It evicts that app and inserts

the new app into cache. If the app is having high

affinity with new app, then it will be reused after

sometime. By using lace policy the restart count

reduced from 6 to 2 in Figures 3 and 4 respectively.

Figure 2. App usage pattern.

Figure 3. LRU eviction policy-restart count 6.

Killed

Phone

Killed

Facebook

Killed

Whatsapp

Killed

Flipkart

Killed

Amazon

Killed

Gmail

Killed

Facebook

Killed

Whatsapp

Killed

Flipkart

Step 1 Step 2

Step 3

Step 4

Step 5 Step 6 Step 7

Step 8

Step 9

Step 10

***** ***** *****

Context Aware Mobile Application Pre-Launching Model using KNN Classifier 937

Figure 4. LACE policy-restart count 2.

4. Results and Discussion

The evaluation of the CAMP model is performed on

the set of android applications selected from the

Google play store. The evaluation is done on Moto G4

device with 2 GB RAM and Android 6.0.1 OS.

Various categories of applications are taken for

evaluating the proposed model. The major categories

are online and offline applications. Both are further

classified into multimedia applications like Facebook,

YouTube etc. and non-multimedia applications like

contacts, phone etc. The sample set of applications

used by a user, its cold and hot launch delay calculated

by application tracker is listed in the Table 1. Here the

Android-Ap-Tracker application is installed on the

device and the users are asked to use the device

normally for a period of 4 weeks to identify the usage

pattern. It is evident that the usage of smart

phones/tablets varies from user to user. So the averages

of cold launch and hot launch are taken for the

applications. From Figure 6, it is obvious that the cold

launch delay is greater than the hot-launch or re-

launches delay, since resuming the applications takes

lesser time. The app sequence identified by the

application tracker for the applications listed in Table

1, are given in Figures 7, 8, 9, and 10. Length of app

sequence taken is 20, since only a small number of

different apps (approximately 10 to 15 apps) are used

by each user. Two locations as Home and Office and

time as Day and Night were taken.

Figure 5. Android app tracker-app sequence.

Killed

Whatsapp

Killed

Phone

Killed

Gmail

Killed

Flipkart

Killed

Whatsapp

Killed

Flipkart

Step 1 Step 2

Step 3

Step 4

Step 5 Step 6 Step 7

Step 8

Step 9

Step 10

938 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

Table 1. Average cold and hot launch delay of the applications.

Application

Name

Cold-launch Delay

(ms)

Hot-launch Delay

(ms)

Adobe reader 1281 890

Amazon 1948 1230

Angry birds 3564 2623

Browser 1598 829

Calculator 945 753

Contacts 632 387

Facebook 2450 1542

File manager 895 654

Flipkart 1831 1132

Gallery 991 683

Gmail 1040 703

Google Drive 1002 678

Music 664 402

Olive office premium 978 870

Phone 656 358

PhonePe 2067 1432

Temple Run 3895 2550

WhatsApp 1802 1024

Youtube 1654 897

Figure 6. Cold launch Vs hot launch.

For app sequence given in Figure 7, during day time

in Home location, Flipkart appeared in 1, 10 positions.

Then the average launch distance of Amazon relative

to Flipkart is computed using Equation (8). Let A=

Amazon and B= Flipkart. Total number of occurrences

for Flipkart is 2, So |SFlipkart|=|SB|= 2. The app sequence

length is 20, i.e., n= 20. Amazon is appeared in 2, 11

positions i.e., immediately after Flipkart. Hence the

launch distance of Amazon relative to Flipkart is 1 in

both cases, i.e., D1(Amazon)=1 and D10(Amazon)=1.

Davg(A|B)=
∑ n− 𝐷𝑖(A) i∈SB

|SB|

Davg(Amazon|Flipkart) =(20-D1(Amazon))+(20-D10(Amazon))/|SFlipkart|

 = (19 + 19) / 2 = 19
Similarly,

Davg(Flipkart |Amazon) = (20- D2(Flipkart))+(20- D11(Flipkart))/|SAmazon|

 = (19 + 19) / 2 = 19

Similarly for all pair (X, Y) in Ds,app affinity is

computed, where Ds= set of distinct apps in app usage

pattern shown in Figure 7. The results are tabulated in

Table 2. The high affinity value indicates that the

apps are strongly related apps and they are pre-

launched together. In this case, the pair of apps

(Flipkart, Amazon) and (Browser, Music) has high

affinity values, i.e. the apps Flipkart and Amazon are

strongly related apps. They are almost launched

together by the user. Similarly the user launches

Browser and Music almost together of his/her usage.

So these applications have to pre-launch.

Table 2. Launch time improvement.

Time / Location Launch Time improvement (%)

Day / Home 40.65

Night / Home 38.56

Day / Office 36.89

Night / Office 41.95

App usage pattern identified for context (Night,

Home), (Day, Office) and (Night, Office) are shown in

Figures 8, 9, and 10 respectively. The app affinity

values for context (Night, Home), (Day, Office) and

(Night, Office) are computed as explained in section

3.4. In the context (Night, Home), the pair of apps

(Angry Birds, Temple Run), (Browser, Music) and

(Facebook, Youtube) are strongly related apps, since

they have high affinity values. They are almost

launched together by the user. So these applications

have to pre-launch during (Night, Home).

0

500

1000

1500

2000

2500

3000

3500

4000

A
d
o

b
e

re
ad

er
A

m
az

o
n

A
n
g

ry
 b

ir
d
s

B
ro

w
se

r
C

al
cu

la
to

r
C

o
n
ta

ct
s

F
ac

eb
o

o
k

F
il

e
m

an
ag

er
F

li
p

k
ar

t
G

al
le

ry
G

m
ai

l
G

o
o

g
le

 D
ri

v
e

M
u

si
c

O
li

v
e

o
ff

ic
e

p
re

m
iu

m
P

h
o

n
e

P
h
o

n
eP

e
T

em
p

le
 R

u
n

W
h
at

sA
p

p
Y

o
u

tu
b
e

L
au

n
ch

 T
im

e
(m

s)

Applications

Cold Launch Vs Hot Launch

Cold-launch Delay (ms) Hot-launch Delay (ms)

(8)

Context Aware Mobile Application Pre-Launching Model using KNN Classifier 939

Figure 7. App usage pattern (Day, Home).

Figure 8. App usage pattern (Night, Home).

Figure 9. App usage pattern (Day, Office).

Figure 10. App usage pattern (Night, Office).

During Day time in Office, the apps (Facebook,

Youtube) and (Gmail, Google Drive) are identified as

strongly related apps through affinity value. During

(Night, Office) context, the apps (Facebook,

WhatsApp) and (Browser, Music) are identified as

strongly related apps through affinity value. So these

applications have to pre-launch.

Figure 11. Launch time improvements (Context wise).

From the Table 2 and Figure 11, it is evident that

CAMP model improves launch time in four contexts.

As an average, CAMP model improves launch time by

40%. In this paper the statistical t-test analysis of

CAMP model was done [4]. The t-value and p-value

are 2.0959 and 0.021592 respectively. The result is

significant at p< .05.

4.1. Comparison with Existing Methods

Chung et al. [3] proposed Energy Aware Stack

Regulator using Poisson predictor (EASR) to reduce

the application launch delay for multimedia

applications. EASR improves launch time by 18%. The

proposed strategies are best suitable for multimedia

applications. Zhong et al. [21] proposed NVM-Swap to

build high-performance smart phones which replace

the part of the DRAM with NVM, and use it as a swap

area. NVM-Swap is used to reduce launch time and

maintain good user experience. NVM-Swap improves

launch time by 21%. The CAMP model proposed in

this paper improves launch time by 40%. From Figure

12, it is evident that the proposed CAMP model

performs better than existing techniques.

Figure 12. Comparison with existing methods.

4.2. Applying KNN Classifier Algorithm for

Decision Making

The collected information are stored in the database

and given as an input to the Decision Engine which

makes a decision to pre-launch or remove application

from cache. We extract features from the collected

information. So the raw values are replaced for all

attributes in the data set with the modes and means

from the training data. We extracted five features

Launch Delay, Power Consumption, Time, Location

and App affinity.

Feature scaling is different from feature extraction.

It creates new features by combining the original

feature. It eliminates the irrelevant and redundant

features. So, the learning procedure takes less time to

learn the features. Learning algorithms focus only on

0%

10%

20%

30%

40%

50%

Day /

Home

Night /

Home

Day /

Office

Night /

Office

Launch Time improvement

0% 10% 20% 30% 40% 50%

EASR

NVM Swap

Proposed CAMP

Model

Launch Time Improvement (%)

940 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

the essential features because it operates without

intervention of irrelevant and noisy features.

Various machine learning algorithms are applied on

the pre-processed information. Based on the rules in

the rule set described in section 4 the decision engine

makes decision whether to pre-launch or remove the

application to or from cache. Machine learning

algorithms such as KNN, Decision Tree, Bayes Net,

Naïve Bayes and Random Tree applied on the dataset

[5]. Among the all applied algorithms KNN produces

better results such as 92% accuracy. Because KNN

algorithm is automatically non-linear, and it can handle

large number of data points. The tree algorithms like

Decision tree and Random tree performs well in very

low dimensional space. In our framework we have

high dimensional space and large number of data

points which are heterogeneously distributed. Hence,

we are proceeding with KNN classifier algorithm in

our framework for making decisions.

5. Conclusions and Future Work

In this paper, a CAMP Model with a new eviction

policy called LACE is proposed for minimizing the

application launch delay. First an application tracker

is introduced and this identifies app usage pattern by

collecting usage information about apps including

apps used based on context (location, time), the start

and end of each app use, cold launch and hot launch

delay of the every application. From the data set

provided by the application tracker, App Affinity

computation Engine identifies related apps i.e., the

apps that are launched together at most by the user

and pre-launch them to improve launch time. The

LACE policy reduces restart count when compared to

LRU since it gives priority to related apps. The

CAMP model proposed in this paper improves the

launch time by 40%. And various machine learning

algorithms are applied on that information to increase

the prediction accuracy. The experimental results

shows that KNN classifier machine learning

algorithm gives the better accuracy (92.3) when

compared with the other machine learning algorithms

as shown in Figure 13.

Figure 13. Comparison of Machine learning algorithms accuracy.

Currently, we designed our frame work based on the

android architecture and it works only for android

devices. In future we will be extended to iOS and black

berry smart phones and hardware optimization, Power

management can also be done to improve the launch

time.

References

[1] Albazaz D., “Design A Mini-Operating System

for Mobile Phone,” The International Arab

Journal of Information Technology, vol. 9, no. 1,

pp. 56-65, 2012.

[2] Balasubramanian N., Balasubramanian A., and

Venkataramani A., “Energy Consumption in

Mobile Phones: A Measurement Study and

Implications for Network Applications,”

in Proceedings of the 9th ACM SIGCOMM

Conference on Internet Measurement, Chicago,

pp. 280-293, 2009.

[3] Chung Y., Lo Y., and King C., “Enhancing User

Experiences by Exploiting Energy and Launch

Delay Trade-off of Mobile Multimedia

Applications,” ACM Transactions on Embedded

Computing Systems, vol. 12, no. 1, pp. 1-19,

2013.

[4] Dodge Y., Cox D., and Commenges D., The

Oxford Dictionary of Statistical Terms, Oxford

University Press on Demand, 2006.

[5] Hssina B., Merbouha A., Ezzikouri H., and

Erritali M., “A Comparative Study of Decision

Tree ID3 and C4. 5,” International Journal of

Advanced Computer Science and

Applications, vol. 4, no. 2, pp. 13-19, 2014.

[6] Kim H., Lim H., Manatunga D., Kim H., and

Park G., “Accelerating Application Start-Up with

Nonvolatile Memory in Android Systems,” IEEE

Micro, vol. 35, no. 1, pp. 15-25, 2015.

[7] Kim S., Jeong J., Kim J., and Maeng S.,

“Smartlmk: A Memory Reclamation Scheme for

Improving User-Perceived App Launch

Time,” ACM Transactions on Embedded

Computing Systems, vol. 15, no. 3, pp. 1-25,

2016.

[8] Li C., Bao J., and Wang H., “Optimizing Low

Memory Killers for Mobile Devices Using

Reinforcement Learning,” in Proceeding of the

13th International Wireless Communications and

Mobile Computing Conference, Valencia, pp.

2169-2174, 2017.

[9] Lin Y., Yang C., Li H., and Wang C., “A Hybrid

DRAM/PCM Buffer Cache Architecture for

Smartphones with Qos Consideration,” ACM

Transactions on Design Automation of Electronic

Systems, vol. 22, no. 2, pp. 1-22, 2016.

[10] Lu E. and Yang Y., “Mining Mobile Application

Usage Pattern for Demand Prediction By

Considering Spatial and Temporal Relations,”

0

20

40

60

80

100

KNN Naïve

Bayes

Decision

Tree

Bayes

Net

Random

Tree

A
cc

u
ra

cy

Machine Learing Algorithms

Accuracy

Context Aware Mobile Application Pre-Launching Model using KNN Classifier 941

GeoInformatica, vol. 22, no. 4, pp. 693-721,

2018.

[11] Malini A., Sundarakantham K., Prathibhan C.,

and Bhavithrachelvi A., “Fuzzy-based

Automated Interruption Testing Model for

Mobile Applications,” International Journal of

Business Intelligence and Data Mining, vol. 15,

no. 2, pp. 228-253, 2019.

[12] Mittal R., Kansal A., and Chandra R.,

“Empowering Developers to Estimate App

Energy Consumption,” in Proceedings of the 18th

Annual International Conference on Mobile

Computing and Networking, Istanbul, pp. 317-

328, 2012.

[13] Nguyen P. and Garg A., “Application Pre-

Launch to Reduce User Interface Latency,” U.S.

Patent No. 7,076,616. Washington, DC: U.S.

Patent and Trademark Office, 2006.

[14] Parate A., Böhmer M., Chu D., Ganesan D., and

Marlin B., “Practical Prediction and Prefetch for

Faster Access to Applications on Mobile

Phones,” in Proceedings of the ACM

International Joint Conference on Pervasive and

Ubiquitous Computing, Zurich, pp. 275-284,

2013.

[15] Schwartz C., Hoßfeld T., Lehrieder F., and Tran-

Gia P., “Angry Apps: The Impact of Network

Timer Selection on Power Consumption,

Signalling Load, and Web Qoe,” Journal of

Computer Networks and Communications, 2013.

[16] Shi L., Li J., Jason Xue C., and Zhou X., “Hybrid

Nonvolatile Disk Cache for Energy-Efficient and

High-Performance Systems,” ACM Transactions

on Design Automation of Electronic Systems, vol.

18, no. 1, pp. 1-23, 2013.

[17] Shin C., Hong J., and Dey A., “Understanding

and Prediction of Mobile Application Usage for

Smart Phones,” in Proceedings of the ACM

Conference on Ubiquitous Computing,
Pittsburgh, pp. 173-182, 2012.

[18] Song W., Kim Y., Kim H., Lim J., and Kim J.,

“Personalized Optimization for Android

Smartphones,” ACM Transactions on Embedded

Computing Systems, vol. 13, no. 2, pp. 1-25,

2014.

[19] Yan T., Chu D., Ganesan D., Kansal A., and Liu

J., “Fast App Launching for Mobile Devices

Using Predictive User Context,” in Proceedings

of the 10th International Conference on Mobile

Systems, Applications, and Services, Low Wood

Bay, pp. 113-126, 2012.

[20] Zhao Y., Laser M., Lyu Y., and Medvidovic N.,

“Leveraging Program Analysis to Reduce User-

perceived Latency in Mobile Applications,” in

Proceedings of the 40th International Conference

on Software Engineering, Gothenburg, pp. 176-

186, 2018.

[21] Zhong K., Wang T., Zhu X., Long L., Liu D., Liu

W., Shao Z., and Sha E., “Building High-

performance Smartphones Via Non-volatile

Memory: The Swap Approach,” in Proceeding of

the International Conference on Embedded

Software, Uttar Pradesh, pp. 1-10, 2014.

Malini Alagarsamy obtained her

PhD in Information and

Communication Engineering from

Anna University, Chennai. She is

currently working as an assistant

professor at Thiagarajar College of

Engineering, Madurai, India. She

has published several research papers in journals and

international/national conferences. Her research

interest includes software Engineering, Testing,

Mobile Application development, Green Computing,

Internet of Things, Block chain and Machine Learning.

Ameena Sahubar Sathik obtained

her B.E in Computer Science and

Engineering from Anna University

(University College of Engineering,

Ramanathapuram) in 2017 and

completed her Master degree (M.E)

in Computer Science and

Engineering in Anna University in 2019. She is

currently working as a Senior Systems Engineer at

Infosys Pvt Ltd. Her research interest includes software

testing, software design and mobile application

development.

