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Abstract: Mobile applications are the application software which can be executed in mobile devices. The Performance of the 

mobile application is major factor to be considered while developing the application software. Usually, the user uses a 

sequence of applications continuously. So, pre-launching of the mobile application is the best methodology used to increase 

the launch time of the mobile application. In Android Operating System (OS) they use cache policies to increase the launch 

time. But whenever a new application enters into the cache it removes the existing application from the cache even it is 

repeatedly used by the user. So the removed application needs to be re-launched again. To rectify it, we suggest K number of 

applications for pre-launching by calculating the affinity between the applications. Because, the user may uses the set of 

applications together for more than one time. We discover those applications from the usage pattern based on Launch Delay 

(LD), Power Consumption (PC), App Affinity, Spatial and Temporal relations and also, a K-Nearest Neighbour (KNN) 

classifier machine learning algorithm is used to increase the accuracy of prediction. 
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1. Introduction 

Mobile phones are the best companion for us which 

can be used to communicate with others, check e-

mails, browse various websites, playing games and to 

take photos, etc., [1]. User experience of mobile usage 

is mainly depends on the mobile applications. Hence, 

the performance of these mobile applications plays a 

major role in enhancing the user experience. Usually 

users want to work with the application which run 

faster whenever the user click the icon of the mobile 

application. The time taken by the application to 

launch or to arrive at ready state is called as launch 

delay. If the application takes more time for launching 

then it affects the performance of the application. Cold 

launch delay is the time taken by the application to get 

started when the user clicks the application icon. If the 

application never launched before or it is not available 

in the cache then we have to fork the complete 

application process which contains Create, Start and 

Resume states. 

Hot start is the time taken by the application to 

resume or resumption of already existing process. The 

application was already available in the cache. In this 

case, Start and Resume states are involved in it. 

Compared to the cold start, hot start produces lower 

overhead. If all of your application’s activities are still 

resident in memory, then the app can avoid having to 

repeat object initialization, layout inflation and 

rendering. However, if some memory has been purged 

in response to memory trimming events, then those  

 
objects will need to be recreated in response to the 

warm start event. 

The user may use many applications and navigates 

among those applications when necessary. This 

navigation requires the application to be re-launched. 

This re-launches affects the performance of the mobile 

application. In android, caches are used for fast 

launching. If the cache contains more number of 

applications then it consumes more energy [2, 3]. By 

pre-launching the necessary application, we can reduce 

the launch delay and energy consumption [13, 14, 15]. 

In android Operating System (OS), Least Recently 

Used (LRU) cache policy is used for eviction. 

A study on the Android app usage profiling of 20 

participants was conducted and a similar tendency was 

observed. It is observed that, for most users, there is a 

small set of distinctive app usage patterns that are 

repeatedly appearing. In particular, it was quite 

common to see that two apps are strongly related each 

other, often being launched successively. For example, 

it is observed that one of 20 study participants has 

launched Amazon and Flipkart together in majority 

launches. Furthermore, it is observed that, the usage 

pattern of a single user differs according to the current 

environmental contexts. For example, when the user in 

Home, he uses some set of applications repeatedly and 

he uses different set of applications in college. 

From the analysis of the collected usage logs, it is 

observed some distinct characteristics of app usage 

patterns, which formed the main motivation of this 

work. First, it is observed a well-known app usage 
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tendency that only a small number of favored apps are 

heavily used. Second, it is also observed that there is a 

strong affinity on how related apps are used. In 

particular, it is observed that there are many pairs of 

apps that are used together in a particular situation. By 

identifying these distinctive usage patterns among a 

small set of favored apps during runtime and pre-

launching related apps according to context, could 

improve user experience [16, 17, 18]. The objective of 

this work is to reduce the application launch delay in 

android by pre-launching the related apps. 

In this paper, Context Aware Mobile application 

Pre-launching (CAMP) model is proposed which 

reduces the re-launches and restart count by 

introducing a new eviction policy called Launch App 

Correlation Evictor (LACE). This model collects the 

app usage log of a smartphone user and analyzes that 

log which contains the app usage history along with 

the temporal and spatial details of the app used. This 

proposed model optimizes the launching experience by 

predicting the user’s future app usage tendency and 

pre-launches the related apps together. LACE policy 

which will be calculating the affinity among the apps 

and evict the app which have low affinity value is 

proposed. This LACE policy reduces restart count 

when compared to LRU since it gives priority to 

related apps. 

The contributions of this paper are,  

 Suggest K number of applications for Pre-launching 

to accelerate the launch time of an application. 

 Reduce the re-launches of repeatedly used 

application using LACE policy. 

 Predict the applications using affinity between the 

applications, location and time of the application 

used. 

 Improves the accuracy of prediction using KNN 

classifier machine learning technique. 

The remainder of this paper is organized as follows: 

Section 2 shows existing literature review, section 3 

discusses the proposed context aware mobile 

application pre-launching model and its overall design, 

section 4 deals with the real time implementation and 

results and section 5 presents the conclusion. 

2. Related Work 

Lu and Yang [10] presented a Spatial and Temporal 

App Recommender (STAR) framework which predicts 

the applications using spatial and temporal relation. In 

this paper, the authors proposed Spatial and Temporal 

App Usage Pattern (STAUP) Mine algorithm to 

discover time and location details of the applications 

used by the user from the geographic Global 

Positioning System (GPS) trajectory. The spatial 

information related with the applications is 

continuously tracked using GPS. GPS raw 

information’s are converted into locations using the 

STAUP mine algorithm. By analyzing the usage 

pattern they discover the temporal details using 

timestamps. Depending on these spatial and temporal 

details, one application is suggested for pre-launching. 

The STAR framework proposed in this paper suggests 

only one application for pre-launching. It does not 

consider power consumption and launch delay of an 

application during prediction. 

Song et al. [18] developed Application Usage 

Model (AUM) and AUM based optimization model. In 

AUM module, the app usage behavior of the user is 

continuously monitored and the app usage pattern is 

constructed. Using this observed usage pattern, the app 

radius is calculated. Affinity among the applications is 

calculated using the app radius. In optimization model 

clustering method is used to predict the application to 

be pre-launched. The framework suggests the 

application which is used only one time by the user for 

pre-launching. The suggested application pre-launched 

into the cache even it does not used by the user. 

Li et al. [8] implemented a low memory killer using 

reinforcement learning technique. Through the trial 

and error exploration the killer interacts with 

environment and predicts the app launch latency. The 

predicted app is killed by the killer. The automatic 

decision makers continuously observe the various 

indicators from the environment and make the decision 

based on the environment factors. Whenever the 

memory is not enough to store the reused application it 

randomly selects the application and kill that 

application. If the killed application used by the user in 

near future it re-launched again. 

Zhao et al. [20] implemented a client centric 

technique Program Analysis for Latency Optimization 

of Mobile Apps (PALOMA) which pre-fetches the 

Hypertext Transfer Protocol (HTTP) requests and 

reduces the network latency. String analysis and call 

back control flow analysis are used here to pre-fetch 

the request. String analysis is used to analyze the 

request sent by the user. And call back control flow 

analysis is used to pre-fetch the results and stored it in 

temporary buffer. Pre-fetching phase of PALOMA 

technique requires a large amount of memory to store 

the received responses. Because it stores each and 

every responses related with the words in the given 

URL. 

Several techniques were implemented using non-

volatile memory [6, 16], volatile memory [9, 13] and 

memory reclamation techniques [7] to accelerate 

launch delay. But these techniques did not consider 

usage behavior and energy. 

The proposed model uses app affinity, temporal and 

spatial relation for predicting and suggests K number 

of applications for pre-launching as shown in Figure 1. 

And also a machine learning mechanism is used to 

increase the accuracy of prediction. Whenever cache 

try to insert new application it evicts the application 

based on LACE policy. 
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3. Proposed Methodology 

CAMP Model minimizes the user-perceived delays, 

when a user launches apps. App usage pattern and 

information about the applications which are used 

previously by the user is tracked using the Android-

App-Tracker application. The tracked information are 

given as an input for calculating Launch Delay, Power 

Consumption, App affinity, Spatial and Temporal 

segmentation. By applying KNN classifier machine 

learning algorithm on that information the application 

to be pre-launched is predicted. 

3.1. Android-App-Tracker 

In order to understand better how smartphone apps are 

used by different users, detailed logs of smartphone 

usage from 20 participants were collected. All the 

participants of this usage study were typical 

smartphone users, almost always carrying their 

smartphones with them. For this usage study, a special 

Android app namely Android-App-Tracker shown in 

Figure 5 was developed which collects various usage 

information while users interact with their favored 

apps [11]. This app automatically collects information 

on smartphone use, including information about apps 

used based on context (location, time), the start and 

end of each app use. It also finds out the cold launch 

and hot launch delay of the every application. Cold 

launch or launch delay is the time taken by an 

application to come to foreground when the application 

is clicked. Hot launch delay or re-launch delay is the 

resumption of existing application process. The hot and 

cold launch delays are measured in milliseconds for 

better accuracy. These details are sent to the Decision 

Engine for further processing. 

3.2. Computation of Launch Delay (LD) and 

Power Consumption (PC) 

Using the data given by the application tracker, launch 

probability of the application is identified. Launch 

probability defines the probability of using the 

application in near future. It is computed using 

Equation (1), 

Launch Probability(app
x
) =  

usage_count(appx,time,location)

Total_usage_counttime,location

 

Usage-count (appx,time,location) indicates how many times 

app ‘x’ is used by the user at particular time and 

location. 

LD is computed using Equation (2) for every 

application [19]. 

Launch Delay LDA =  PA × (ColdA −  HotA ) 

Where, PA is the launch probability of an application A, 

ColdA is launch delay in milliseconds and HotA is re-

launch delay in milliseconds. 

PC [12] is computed using Equation (3) for every 

application, 

Power Consumption PCA = (AvgPCA) × DA 

Where, AvgPCA is average power consumption of an 

application in joule and is duration of application used 

in seconds. Power tutor is used for power profiling. It 

measures the energy consumption in joule. So, convert 

the energy into watts/second using Equation(4) 

Power Consumption (watt)  = Energy (joule) / Time (second) 

3.3. Computation of Spatial and Temporal 

Segmentations 

To predict the Spatial and Temporal segmentations, we 

use the different timestamp values of the used 

application which can be extracted from the app usage 

pattern. 

Si={t1, t2, t3,…..tn} Si=sequence of timestamps 

having highest frequency. 

Compute the threshold value α using the Equation 

(5), 

𝛼 = ∑
𝑡i−𝑡(𝑖−1)

𝑛
− (𝑛 − 1)𝑛

𝑖=2  

dij=difference between the two timestamps ti and tj. 

If dij> α then add the two timestamps ti and tj into 

the ntsp. 

Finally divide Si into ntsp+1 time intervals. 

Depending on these time intervals, app usage 

information and user past history we computed the 

spatial information. 

3.4. Computation of App Affinity 

App affinity Computation Engine identifies strongly 

related apps based on a metric that characterizes the 

launch affinity among apps [18]. It computes app 

affinity between apps from usage sequence collected 

by Application Tracker. Let ‘S’ be the app sequence 

used by the user for a particular period,  

S = < a1, a2, a3,……………,an> 

Algorithm (1) represents the sequence of steps used to 

compute the affinity between the application in the 

given application sequence. First, Algorithm (1) 

calculates the usage count and app usage position 

values of all the application. And then it calculates the 

distance between each and every application in the 

given application sequence. It calculates the average 

distance between the applications which are repeatedly 

used by the user or the value of AUC>1. Affinity 

between the two applications is calculated by adding 

the average distances between the applications. 

For every app ‘A’ in S, following data can be 

computed, 

a) Launch Distance Di (A) of app ‘A’ relative to Bi in S 

defined as ‘d’, where, 

1. A = ajin S 

2. d = | i - j | such that, there is no ak = A for | i - k | <d

  

(1) 

(2) 

(3) 

(5) 

(4) 

(4) 
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Figure 1. Architectural design of CAMP model.

Algorithm 1: Computing the affinity correlation between two 

applications. 

INPUT: Array contain sequence of apps, s=<ai, ai+1, 

ai+2,…..an > where i=0. 

OUTPUT: Apps having high affinity. 

STEPS: 

1.Compute usage count (UC) for each app ai in the given 

sequence. 

2. Compute the distance between the apps, 

D[i][j]=|i-j| 

Where D[i][j] = distance between the apps in ith and jth 

position. 

i,j = position values of an apps. 

3. For each app ai , 

If UC[i] >1 then 

Compute the average distance, 

Avg_dis[i] = (n-D[i][j])/UC[i]; 

Avg_dist = Average distance value of an app which is in ith 

position. 

n= sequence length. 

UC[i] = App Usage Count value of an app in the ith position. 

4. Compute the Affinity between the apps, 

Aff[i][j] = Avg_dis[i] + Avg_dis[j]; 

Aff[i][j] = Affinity between the apps in the ith and jth position. 

5. Select the apps in ith and jth position which having 

maximum value in Aff[i][j]. 

Apps in the ith and jth position are strongly related 

Since the same app ‘B’ can appear in multiple 

locations, the average app launch distance of app A 

relative to B is computed using Equation (6), 

Davg(A|B) = 
∑ n− 𝐷𝑖(A) i∈SB

|SB|
 

n -Length of app sequence ‘S’ 

A -App in app Sequence ‘S’ 

Di(A)-Distance of app A relative to Bi in S  

SB-{ j∈ {1,…., n } | aj = B in S} 

b) App affinity value can be computed using Equation 

(7), 

AA (A, B) = Davg(A|B) + Davg(B|A) 

The higher value of app affinity indicates, the apps are 

strongly related. 

3.5. KNN Classifier Machine Learning 

Algorithm 

K-nearest-neighbor is a data classification algorithm 

that attempts to determine the group of a data point by 

looking at the data points around it. An algorithm, 

looking at one point on a grid, trying to determine if a 

point is in group A or B, looks at the states of the 

points that are near to it. The range is arbitrarily 

determined, and then it took the sample of data. If the 

majority of the points are in group A, then it is likely 

that the data point in question will be A rather than B, 

and vice versa. 

Here, five inputs are supplied to decision engine-

App Affinity, Launch Delay, Power Consumption, 

Location and Time. The app usage information is 

preprocessed. The various levels of inputs are low, 

medium and high. The output Victim selection has two 

levels:  

1. Pre-Launch.  

2. Remove. 

Based on the rules in the rule set, the decision engine 

will decide whether to pre-launch or remove the 

application. The rules defined in rule set are listed 

below, 

 Rule 1: if app affinity is high AND Launch Delay is 

high AND Power Consumption is low AND 

Location is home AND Time is day THEN pre-

launch. 

 Rule 2: if app affinity is low AND Launch Delay is 

low AND Power Consumption is high AND 

Location is home AND Time is day THEN remove. 

(6) 

(7) 
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 Rule 3: if app affinity is low AND Launch Delay is 

high AND Power Consumption is high AND 

Location is home AND Time is day THEN remove. 

 Rule 4: if app affinity is high AND Launch Delay is 

high AND Power Consumption is low AND 

Location is college AND Time is day THEN pre-

launch. 

 Rule 5: if app affinity is high AND Launch Delay is 

high AND Power Consumption is low AND 

Location is home AND Time is night THEN pre-

launch. 

 Rule 6: if app affinity is high AND Launch Delay is 

low AND Power Consumption is high AND 

Location is home AND Time is day THEN remove. 

 Rule 7: if app affinity is low AND Launch Delay is 

high AND Power Consumption is low AND 

Location is college AND Time is night THEN 

remove. 

 Rule 8: if app affinity is high AND Launch Delay is 

high AND Power Consumption is low AND 

Location is Home AND Time is day THEN pre-

launch. 

3.6. Launch App Correlation Eviction 

LACE uses app affinity computes as explained in 

section 3.4. Let consider the user pattern (most used) 

observed for a user as shown in Figure2. For 

simplicity, consider stack contains only 4 apps, since 

there are six different apps used by the users in a 

particular pattern. 

Under the Android’s default LRU policy whenever 

cache is filled, the new arrived app replace the least 

recently used app. According to this scenario, for the 

identified pattern shown in Figure 2, Facebook enters 

into cache at step 4 and 9 and it replaces the least 

recently used app WhatApp from the cache even it is 

used right after Facebook. Similarly Flipkart enters 

into cache at step 6 replaces the least recently used app 

Amazon from the cache even it is used right after 

Flipkart. Hence we have to restart those applications 

which are recently evicted from the cache. 

This could be avoided by the Launch App 

Correlation Eviction policy. Since LACE uses affinity 

values between apps for eviction, it could identify 

strongly related apps. Whenever new app enters into 

cache the lace policy finds the app having lower 

affinity with the new app. It evicts that app and inserts 

the new app into cache. If the app is having high 

affinity with new app, then it will be reused after 

sometime. By using lace policy the restart count 

reduced from 6 to 2 in Figures 3 and 4 respectively. 

 

Figure 2. App usage pattern. 

 

Figure 3. LRU eviction policy-restart count 6. 
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Figure 4. LACE policy-restart count 2.

4. Results and Discussion 

The evaluation of the CAMP model is performed on 

the set of android applications selected from the 

Google play store. The evaluation is done on Moto G4 

device with 2 GB RAM and Android 6.0.1 OS. 

Various categories of applications are taken for 

evaluating the proposed model. The major categories 

are online and offline applications. Both are further 

classified into multimedia applications like Facebook, 

YouTube etc. and non-multimedia applications like 

contacts, phone etc. The sample set of applications 

used by a user, its cold and hot launch delay calculated 

by application tracker is listed in the Table 1. Here the 

Android-Ap-Tracker application is installed on the 

device and the users are asked to use the device 

normally for a period of 4 weeks to identify the usage 

pattern. It is evident that the usage of smart 

phones/tablets varies from user to user. So the averages 

of cold launch and hot launch are taken for the 

applications. From Figure 6, it is obvious that the cold 

launch delay is greater than the hot-launch or re-

launches delay, since resuming the applications takes 

lesser time. The app sequence identified by the 

application tracker for the applications listed in Table 

1, are given in Figures 7, 8, 9, and 10. Length of app 

sequence taken is 20, since only a small number of 

different apps (approximately 10 to 15 apps) are used 

by each user. Two locations as Home and Office and 

time as Day and Night were taken. 

 

 

Figure 5. Android app tracker-app sequence. 
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Table 1. Average cold and hot launch delay of the applications. 

Application 

Name 

Cold-launch Delay 

(ms) 

Hot-launch Delay 

(ms) 

Adobe reader 1281 890 

Amazon 1948 1230 

Angry birds 3564 2623 

Browser 1598 829 

Calculator 945 753 

Contacts 632 387 

Facebook 2450 1542 

File manager 895 654 

Flipkart 1831 1132 

Gallery 991 683 

Gmail 1040 703 

Google Drive 1002 678 

Music 664 402 

Olive office premium 978 870 

Phone 656 358 

PhonePe 2067 1432 

Temple Run 3895 2550 

WhatsApp 1802 1024 

Youtube 1654 897 

 

 
Figure 6. Cold launch Vs hot launch. 

For app sequence given in Figure 7, during day time 

in Home location, Flipkart appeared in 1, 10 positions. 

Then the average launch distance of Amazon relative 

to Flipkart is computed using Equation (8). Let A= 

Amazon and B= Flipkart. Total number of occurrences 

for Flipkart is 2, So |SFlipkart|=|SB|= 2. The app sequence 

length is 20, i.e., n= 20. Amazon is appeared in 2, 11 

positions i.e., immediately after Flipkart. Hence the 

launch distance of Amazon relative to Flipkart is 1 in 

both cases, i.e., D1(Amazon)=1 and D10(Amazon)=1. 

 

Davg(A|B)=
∑ n− 𝐷𝑖(A) i∈SB

|SB|
 

 
Davg(Amazon|Flipkart) =(20-D1(Amazon))+(20-D10(Amazon))/|SFlipkart| 

 = (19 + 19) / 2 = 19  
Similarly, 

Davg(Flipkart |Amazon) = (20- D2(Flipkart))+(20- D11(Flipkart))/|SAmazon| 

 = (19 + 19) / 2 = 19 

Similarly for all pair (X, Y) in Ds,app affinity is 

computed, where Ds= set of distinct apps in app usage 

pattern shown in Figure 7. The results are tabulated in 

Table 2. The high affinity value indicates that the 

apps are strongly related apps and they are pre-

launched together. In this case, the pair of apps 

(Flipkart, Amazon) and (Browser, Music) has high 

affinity values, i.e. the apps Flipkart and Amazon are 

strongly related apps. They are almost launched 

together by the user. Similarly the user launches 

Browser and Music almost together of his/her usage. 

So these applications have to pre-launch. 

Table 2. Launch time improvement. 

Time / Location Launch Time improvement (%) 

Day / Home 40.65 

Night / Home 38.56 

Day / Office 36.89 

Night / Office 41.95 

 

App usage pattern identified for context (Night, 

Home), (Day, Office) and (Night, Office) are shown in 

Figures 8, 9, and 10 respectively. The app affinity 

values for context (Night, Home), (Day, Office) and 

(Night, Office) are computed as explained in section 

3.4. In the context (Night, Home), the pair of apps 

(Angry Birds, Temple Run), (Browser, Music) and 

(Facebook, Youtube) are strongly related apps, since 

they have high affinity values. They are almost 

launched together by the user. So these applications 

have to pre-launch during (Night, Home).  
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Figure 7. App usage pattern (Day, Home). 

 

Figure 8. App usage pattern (Night, Home). 

 

Figure 9. App usage pattern (Day, Office). 

 

Figure 10. App usage pattern (Night, Office). 

During Day time in Office, the apps (Facebook, 

Youtube) and (Gmail, Google Drive) are identified as 

strongly related apps through affinity value. During 

(Night, Office) context, the apps (Facebook, 

WhatsApp) and (Browser, Music) are identified as 

strongly related apps through affinity value. So these 

applications have to pre-launch.  
 

 
Figure 11. Launch time improvements (Context wise). 

From the Table 2 and Figure 11, it is evident that 

CAMP model improves launch time in four contexts. 

As an average, CAMP model improves launch time by 

40%. In this paper the statistical t-test analysis of 

CAMP model was done [4]. The t-value and p-value 

are 2.0959 and 0.021592 respectively. The result is 

significant at p< .05. 

4.1. Comparison with Existing Methods 

Chung et al. [3] proposed Energy Aware Stack 

Regulator using Poisson predictor (EASR) to reduce 

the application launch delay for multimedia 

applications. EASR improves launch time by 18%. The 

proposed strategies are best suitable for multimedia 

applications. Zhong et al. [21] proposed NVM-Swap to 

build high-performance smart phones which replace 

the part of the DRAM with NVM, and use it as a swap 

area. NVM-Swap is used to reduce launch time and 

maintain good user experience. NVM-Swap improves 

launch time by 21%. The CAMP model proposed in 

this paper improves launch time by 40%. From Figure 

12, it is evident that the proposed CAMP model 

performs better than existing techniques. 

 
Figure 12. Comparison with existing methods. 

4.2. Applying KNN Classifier Algorithm for 

Decision Making 

The collected information are stored in the database 

and given as an input to the Decision Engine which 

makes a decision to pre-launch or remove application 

from cache. We extract features from the collected 

information. So the raw values are replaced for all 

attributes in the data set with the modes and means 

from the training data. We extracted five features 

Launch Delay, Power Consumption, Time, Location 

and App affinity. 

Feature scaling is different from feature extraction. 

It creates new features by combining the original 

feature. It eliminates the irrelevant and redundant 

features. So, the learning procedure takes less time to 

learn the features. Learning algorithms focus only on 
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the essential features because it operates without 

intervention of irrelevant and noisy features. 

Various machine learning algorithms are applied on 

the pre-processed information. Based on the rules in 

the rule set described in section 4 the decision engine 

makes decision whether to pre-launch or remove the 

application to or from cache. Machine learning 

algorithms such as KNN, Decision Tree, Bayes Net, 

Naïve Bayes and Random Tree applied on the dataset 

[5]. Among the all applied algorithms KNN produces 

better results such as 92% accuracy. Because KNN 

algorithm is automatically non-linear, and it can handle 

large number of data points. The tree algorithms like 

Decision tree and Random tree performs well in very 

low dimensional space. In our framework we have 

high dimensional space and large number of data 

points which are heterogeneously distributed. Hence, 

we are proceeding with KNN classifier algorithm in 

our framework for making decisions. 

5. Conclusions and Future Work 

In this paper, a CAMP Model with a new eviction 

policy called LACE is proposed for minimizing the 

application launch delay. First an application tracker 

is introduced and this identifies app usage pattern by 

collecting usage information about apps including 

apps used based on context (location, time), the start 

and end of each app use, cold launch and hot launch 

delay of the every application. From the data set 

provided by the application tracker, App Affinity 

computation Engine identifies related apps i.e., the 

apps that are launched together at most by the user 

and pre-launch them to improve launch time. The 

LACE policy reduces restart count when compared to 

LRU since it gives priority to related apps. The 

CAMP model proposed in this paper improves the 

launch time by 40%. And various machine learning 

algorithms are applied on that information to increase 

the prediction accuracy. The experimental results 

shows that KNN classifier machine learning 

algorithm gives the better accuracy (92.3) when 

compared with the other machine learning algorithms 

as shown in Figure 13. 

 
Figure 13. Comparison of Machine learning algorithms accuracy. 

Currently, we designed our frame work based on the 

android architecture and it works only for android 

devices. In future we will be extended to iOS and black 

berry smart phones and hardware optimization, Power 

management can also be done to improve the launch 

time. 
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