
The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022 915

Text Mining Approaches for Dependent Bug

Report Assembly and Severity Prediction

Bancha Luaphol

Department of Digital Technology,

Kalasin University, Thailand

bancha.lu@ksu.ac.th

Jantima Polpinij

Department of Computer Science,

Mahasarakham University, Thailand

jantima.p@msu.ac.th

Manasawee Kaenampornpan

 Department of Computer Science,

Mahasarakham University, Thailand

manasawee.k@msu.ac.th

Abstract: In general, most existing bug report studies focus only on solving a single specific issue. Considering of multiple

issues at one is required for a more complete and comprehensive process of bug fixing. We took up this challenge and

proposed a method to analyze two issues of bug reports based on text mining techniques. Firstly, dependent bug reports are

assembled into an individual cluster and then the bug reports in each cluster are analyzed for their severity. The method of

dependent bug report assembly is experimented with threshold-based similarity analysis. Cosine similarity and BM25 are

compared with term frequency (tf) weighting to obtain the most appropriate method. Meanwhile, four classification algorithms

namely Random Forest (RF), Support Vector Machines (SVM) with the RBF kernel function, Multinomial Naïve Bayes (MNB),

and k-Nearest Neighbor (k-NN) are utilized to model the bug severity predictor with four term weighting schemes, i.e., tf, term

frequency-inverse document frequency (tf-idf), term frequency-inverse class frequency (tf-icf), and term frequency-inverse

gravity moment (tf-igm). After the experimentation process, BM25 was found to be the most appropriate for dependent bug

report assemblage, while for severity prediction using tf-icf weighting on the RF method yielded the best performance value.

Keywords: Bug report, dependent bug report assembly, bug severity prediction, threshold-based similarity analysis, cosine

similarity, BM25, term weighting, classification algorithm.

Received April 28, 2020; accepted February 13, 2022

https://doi.org/10.34028/iajit/19/6/9

1. Introduction

Detecting and identifying bugs or defects in large

software systems such as open source is never

straightforward and easy. A solution that can help to

fix software bugs is to gather bug report data from end-

users worldwide because bug reports can detail the

occurrence of defects or problems with specific

formats. For more convenient gathering of bug reports,

various Bug Tracking Systems (BTS) such as Jira,

ClickUp, Mantis, Bugzilla, and eTraxis have been

proposed [1, 8, 45]. The number of bug reports has

been steadily increasing. It also enormously increases

the size of bug report repositories, necessitating

automatic identification of significant necessitating

automatic identification of significant information

hidden in bug reports to be utilized for software bug

fixing.

In general, there are three primary studies for bug

report [45]. Firstly, bug report optimization enhances

report quality and reduces inaccurate information.

Three important tasks are optimization of bug report

content [5, 6], misclassification [14, 28, 32] and

severity prediction [31, 40]. Secondly, bug report

triage aims to screen and prioritize bug reports to

ensure that all issues can be appropriately managed.

This involves [13, 16, 24, 40], prioritization [18], and

suitable developer assignment tasks [7, 25]. Finally,

bug fixing concerns finding a solution to quickly fix

the software bugs. For bug fixing study, there are three

major tasks as localization of bug [2], recovery of links

between bug reports because of files changing [39],

and predicting time of bug fixing [8, 30].

Although many tasks related to bug reports have

been studied and proposed, misclassification and

severity prediction issues have attracted the most

interest because the performance of software bug

fixing relies on the quality and accuracy of the bug

reports. Misclassification between bug and non-bug

reports provides low quality or incorrect information to

developer teams that cannot be utilized for software

bug fixing, while severity prediction aims to predict

the severity level of a bug report to determine which

bug should be fixed first.

However, other bug report studies have addressed

how the “bug dependence issue” impacts software bug

fixing [29]. If bug “x” and bug “y” are related, bug “y”

will continue to exist despite being addressed because

bug “x” has not yet been entirely fixed. This issue has

been mentioned in many studies but it has not yet been

seriously addressed. This is because misclassification

and severity prediction continue to be studied by many

researchers, where performance improvements of bug

report misclassification and severity prediction still

remain unresolved.

In general, most existing bug report studies focus

only on a specific single issue. However, to obtain a

more complete bug fixing process, it might be better if

https://doi.org/10.34028/iajit/19/6/9

916 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

considering multiple simultaneously. For example, if

dependent bug reports can be recognized and analyzed

together with bug severity level, this would import

significant information for the appropriate assignation

of software issues to developers and may help to fix

bugs completely. This challenge was addressed here by

presenting a method to study the two separate issues of

bug report dependency and bug severity level

concurrently. Bug report dependency analysis assists in

acknowledging the relationships between bugs [8],

while bug severity level analysis identifies and

recognizes bugs with higher severity [22, 23]. Bugs

with the highest severity level, called severe level,

should be fixed first.

This paper is organized as follows. In section 2, it

reviews the related works and the datasets is detailed in

section 3, while the research method is described in

section 4. The experimental results are shown in

section 5. Finally, section 6 is to conclude this study.

2. Related Work

Software containing defects or bugs can produce

erroneous or unexpected results [11, 41]. Identifying

bugs in small software systems is not difficult. By

contrast, bugs in larger open source software systems

may be hidden and require more complex remediation

methods [20]. If the software development team cannot

identify all the defects or bugs in an open source,

global end-users can assist by providing important

bug-related information, called bug reports.

Many systems for tracking bug reports (e.g., Mantis,

Jira, Bugzilla, Trace, etc.,) have been developed and

proposed to facilitate gathering bug reports [1, 8, 45].

Consequently, many bug reports are generated and

submitted daily to those systems by software end-users

[37]. With a continual increase in the size of bug report

repositories, manual analysis becomes a time-

consuming and expensive process, with the essential

for automatic data management and analysis.

There are three significant areas for bug report

studies. Firstly, bug report optimization enhances

report quality and reduces inaccurate information. This

study can be divided into three major tasks as

misclassification [14, 28, 32], content optimization [5,

6] and severity prediction [31, 40]. Misclassification is

the most important task in this area. This is because if

outlier or inappropriate bug reports are not removed,

the next stage of bug report analysis can be a time-

consuming process.

The second study area is called bug report triage. It

consists of three main tasks namely duplicated bug

detection [13, 16, 24, 41], prioritization [18] and

assigning bug reports to suitable software developers

[25]. Duplicated bug detection automatically identifies

and removes duplications from the bug report to reduce

the analysis time of further processing. Bug report

prioritization identifies bug reports that should be fixed

first, while the last study area of bug report triage

assigns the bug reports to the most appropriate

software developers.

For bug fixing area, it consists of three main tasks as

localization of bug [2, 46], recovering links between

bug reports when files are changed [39] and predicting

time of software bug fixing [8, 30]. Localization of bug

is to automatically find the position of the bugs in a

software code, while recovering links between bug

reports when files are changed aims to utilize logs of

software correction history for analyzing a change in

files. Finally, predicting time of software bug fixing is

to estimate time of resolving the issue.

Besides these aforementioned tasks, another bug

report topic has an impact on the bug-fixing process.

This is called the “bug dependency issue” [29]. Many

researchers have been mentioned this topic but not

studied in detail. The bug dependency issue should be

considered simultaneously with the other mentioned

issues for accomplishing the process of bug fixing.

Previous bug reports studies only focused on only

single issue. Considering multiple bug report issues at

the same time may help to facilitate a method of bug

fixing to be more complete and comprehensive. For

example, recognizing and analyzing dependent bug

reports together with bug severity level would render

significant information for the appropriate assignation

of software issues to developers and help to completely

eradicate the bugs. Therefore, this issue is taken up as a

challenge in this study.

3. Datasets

A bug report generally comprises of three main

components. They are the summary or title, the

description as the bug report detail and the discussion

as comments on that bug report. The summary part of

bug reports is widely used on the most previous works

studies because this part contains less outlier or noise

[46]. A bug report example is shown as Figure 1.

This study used a dataset relating to Mozilla Firefox

were gathered from Bugzilla and they were

downloaded between 1 October and 31 December

2019. The bug reports with ‘verified’ and ‘closed’

statuses are used for this study. This is because these

bug reports have been confirmed by bug triagers and

development teams that they are ‘real-bug’ reports.

In general, there are six levels of bug severity. They

are ‘blocker’, ‘critical’ and ‘major’, ‘normal’, ‘minor’,

and ‘trivial’. In this study, real-bug reports labeled as

the first three severity levels were assigned to the

severe class, while real-bug reports labeled as the

remaining three severity levels were assigned to the

non-severe class.

In this dataset, 512 bug reports were considered as

meta-bugs by bug triagers, and 21,488 bug reports

were considered as bug dependency in those meta-bug

reports. Mata-bug report is the first or main bug report

Text Mining Approaches for Dependent Bug Report Assembly and Severity Prediction 917

of a specific software problem domain. However, it

ispossible that a bug report can be both a dependent

bug report and a meta-bug report at the same time.

To reduce the impact of imbalanced data resulting

from the severely skewed class distribution, we used

5,000 bug reports per class for the first stage, called

modeling for software bug report severity predictor. It

is performed with a practice based on 10-fold cross

validation.

Figure 1. A bug report example.

The remaining bug reports were used in an

experiment for assembling of dependent bug reports

together and identifying of the severity of each case.

Two hundred meta-bug reports were also utilized as

the center point (or centroid) for assembling the

dependent bug reports.

4. The Proposed Method

The methodology for the study is described in this

section. The first stage is a preliminary for bug severity

predictor modeling described in section 4.1, while the

second stage is the proposed method of assembling

dependent bug reports followed by identifying bug

severity level described in sections 4.2.

4.1. Preliminary: Modeling of Bug Severity

Predictor

This section explains the process of generating the

severity predictor used to predict severity levels for

bug reports after they have been automatically

assigned into appropriate clusters.

4.1.1. Pre-Processing of Bug Reports

This stage commences with the step of preparing bug

report data by splitting the text into tokens [42], which

are referred to as “words” in this study. In this study,

the two features of bug reports namely Unigram and

CamelCase are utilized here. Unigram is a single word,

while CamelCase [2, 28, 46] is the practice of writing

many words together without punctuation or

intervening spaces. Some examples of CamelCase are

‘ToolBar’ and ‘userInterface’.

CamelCase and unigram are widely employed in

many previous bug report studies. This is because

CamelCase is capable of revealing software specificity,

while a unigram (or single word) is easier to leverage

from a bug report. However, before using the

CamelCase words, they are generally separated into

single words. As this, it may help to expand the bug

report features. Therefore, ‘ToolBar’ and

‘userInterface’ can be broken as ‘Tool’, ‘Bar’ and

‘user’, ‘Interface’, respectively.

After bug reports are tokenized into words, the 178

stop words listed by the Natural Language Toolkit

(NLTK) library are removed. For the stemming

process, the Snowball stemmer is performed to reduce

the inflectional forms from each word to a common

base or root form, called ‘stem’ [43].

4.1.2. Representation of Bug Reports

After pre-processing of bug reports is done, those are

formatted as the Vector Space Model (VSM) [36]. This

format represents each bug report as an N-dimensional

vector, where N is the number of distinct terms (or

words) found in the bug reports. The i-th term of a

vector contains the weight score, called the term

weight. In this study, four term weighting schemes (i.e.

tf, tf-idf, tf-igm and tf-icf) are compared as described

below.

Term Frequency (tf) is the simplest term weighting

method. It is often used in bug report studies and

returns satisfactory results [27, 31]. The formula of ft,d

with logarithmically scaled frequency can be written as

Equation (1).

, ,(1)t d t dtf log f 

Where ft,d is frequency of term (or word) t appearing in

the document d.

Term frequency-inverse document frequency (tf-idf)

[4] can be defined as Equation (2).

(1)

918 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

, logt t d

t

N
tf idf tf

df

 
    

 

Where tft,d is the frequency of term t appearing in a

document d. The idft, is calculated by the

logarithmically scaled number of the total number of

documents in a collection (N) that is divided by the

total number of documents containing the term t (dft).

Term frequency-inverse gravity moment (tf-igm) is

a Supervised Term Weighting (STW) scheme [10]. It

can provide a term’s class distinguishing power using

the igm measure. The tf-igm formula can be written as

Equation (3).

, . (1 ())t d t d ktf igm f igm t    

Where ft,d is defined as the frequency of term t that

appears in a document d. Meanwhile, λ is an adjustable

coefficient parameter which is utilized to maintain the

relative balance between two weight scores (global and

local weights). The value of λ should be between 5.0 to

9.0. The igm is employed to measure a term’s inter-

class distribution concentration, and it can be defined

as Equation (4).

1

1

() k

k m

kr

r

f
igm t

f r






Where fkr is the frequency of term tk that occurs in

different classes, and r=1, 2, ..., m. The classes are

listed in descending order, with the rank denoted by r.

Meanwhile, fkr is the frequency of class-specific

document (dfkr), where dfkr is the number of documents

in the r-th class containing the term tk.

Lastly, the term frequency-inverse class frequency

(tf-icf) is also a STW scheme proposed by Lertnattee

and Theeramunkong [26]. tf is the number of term t

that occurs in document d, while icf is the global term

weight based on counting the total number of classes in

the collection (N) that is divided by the total number of

classes containing the term t (nt). The formula of tf-icf

can be written as Equation (5).

, , 2(1)t d t d

t

N
tf icf log f log

n

 
     

 

4.1.3. Modeling of Bug Severity Predictor

To model the bug report severity predictors, suppose D

is a training set of bug reports and d is a bug report,

denoted as D=d1, d2, ..., di. A set of classes (C) can be

denoted as C={non-severe, severe}. Four machine

learning algorithms were also compared in this study,

with each briefly described as follows.

K-Nearest Neighbor (K-NN) [17] is a

nonparametric-based technique that has been employed

in numerous academic disciplines for text classification

applications. This algorithm determines the k nearest

neighbors among training documents and weights the

class candidates based on the classes of the closest k

neighbors. The similarity scores are utilized to assign

the candidate to the class with the highest score from

the unknown label class of document x. The k-NN rule

can be defined as Equation (6).

() arg max (,) (,) (,)
i

j i i j

d KNN

f x S x C sim x d y d C


  

Where S denotes the score with respect to S(x, Cj) as

the score of candidate i to the class of j, and the f(x)

output is a label for the document being analyzed.

Multinomial Naïve Bayes (MNB) [21] is a very

well-known probabilistic algorithm for text or

document classification tasks. The MNB algorithm can

be defined as Equation (7).

() (|)
(|)

()

wdn

w d
P c P d c

P c d
P d




Where nwd is the number of word w appearing in the

document and P(w|c) is the probability of word w

appearing in a given class c. P(w|c) can be calculated

as Equation (8).

''

1
(|) c

c

wdd D

w dw d D

n
P w c

k n












 

Support Vector Machines (SVM) [38, 40] is a popular

algorithm widely used as an automated process of text

classification into predefined classes. Let x1, x2, ..., xl

be training examples belonging to one class C, where

C is a compact subset of RN. The SVM classifier can be

built using Equation (9).

2

1

1 1
min

2

l

i

i

w
vl

 


 

Subject to Equation (10):

(()) 1,2,..., 0i iw x l       

By using w and  , the SVM algorithm can develop

the decision function by Equation (11).

() ((()))if x sign w x   

In this investigation, the Radial Basis Function (RBF)

kernel function is employed with SVM parameters as

cost and gamma 100.0 and 0.001, respectively.

Random Forest (RF) introduced by Ho [15] and

Singh and Verma [38] in 1995, is a machine learning

based on ensemble method for text classification. It

was modified in 1999 by Breiman [9]. The basic

concept of RF is to create multiple decision trees. This

algorithm employs bagging and feature randomness

when building each individual tree to build an

uncorrelated forest of trees. Using multiple trees for

class prediction is more accurate than that of any single

tree. This study generated 100 decision trees for our

forest.

After evaluating all bug severity predictors via the

Area Under The Curve (AUC), the results showed that

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Text Mining Approaches for Dependent Bug Report Assembly and Severity Prediction 919

the RF classifier with tf-icf weighting returned the most

satisfactory results. Therefore, this predictor was

selected for bug report severity analysis to identify the

severity of each case after performing the process of

assembling dependent bug reports.

4.2. Assembling Dependent Bug Reports

followed by Predicting Severity of Bug

Reports

This section commences with assembling dependent

bug reports, followed by identifying their severity. The

overview picture of this method can be seen as Figure

2. Details of each process in the method can be

explained as follows.

Figure 2. Overview of the method assembling dependent bug

reports followed by predicting severity of bug reports.

4.2.1. Assemblage of Dependent Bug Reports

Here, threshold-based similarity analysis is proposed as

a main method for assembling dependent bug reports

into an appropriate cluster. The center point (or

centroid) of a specific cluster is a meta-bug report

utilized as main factor to assemble a set of relevant bug

reports in the same cluster (or group). First, we

transformed all bug reports into a suitable format

driven on the processing steps discussed in sections

4.1.1 and 4.1.2, respectively. The pre-processed bug

reports were then automatically assembled as

dependent bug reports into a cluster. The Algorithm (1)

depicts the pseudocode for assemblage of dependent

bug reports.

In this study, the thresholds were determined as

similarity score criteria. Our thresholds are from 0 to 1

with a step of 0.1. This concept was similar to the

method used by [13, 33, 34]. If the similarity score

between a bug report and a meta-bug report exceeds or

equals the threshold, that bug report should be assigned

to the cluster with that meta-bug report as the centroid

because they may be related. To get the most suitable

similarity analysis technique for assemblage of

dependent bug reports, two similarity techniques (i.e.,

cosine similarity and BM25) were compared. The

formulas of each similarity analysis technique are

explained below.
Algorithm 1: Assemblage of dependent bug reports

 Input: A collection of meta-bugs, denoted as A

 Input: A collection of bug reports, denoted as D

 Input: A set of thresholds, {0.1, 0.2, …, 1.0}

 Output: Cluster that has a meta-bug as a centroid and its

dependent bug reports

 Parameter: X //A ∪ D

 Parameter: mbi //current meta-bug

 Parameter: bri //current bug report

 Parameter: similar //similarity function

 Parameter: clustermi //cluster of mbi

1 Let X be A ∪ D

2 while not the end of A do

3 mbi  A //read the next mbi

4 while not the end of X do

5 bri  X //read the next bri

6 if ri ≠ mbi then

7 similarity_score  sim(mbi, bri);

8 if similarity_score ≥ threshold then

9 assign bri into clustermi ;

10 end-if

11 end-if

12 end-while

13 end-while

Cosine Similarity (CS) is a simple similarity technique.

Its formula is defined as Equation (12).

1 2
cos() 1 2

1 2

(,)
x x

sim X X
x x






Where X1 and X2 are the vectors of words found in bug

reports in the collection and the particular meta-bug. If

both reports are relevant and similar, the similarity

score should be close to 1.

Best Match 25 (BM25) [44] is a similarity ranking

function that calculates and ranks a set of documents

utilizing the query terms (or words) found in each

document. The BM25 formula can be written as

Equation (13).

| | (,) (1)
125(,) ()

| |
1 (,) (1)

1

Q tf q d k
iBM Q D idf q

i D
q tf q d k b b

i DL
avg

 
 

  
   

      
 
 

Where tf(qi,d) is the times of occurrences that the q-th

term of query (Q) occur in bug report d, while DLavg is

the mean length of all documents in the collection. |D|

is the word count of bug report D. k1 and b are free

parameters used to balance the weight scores between

the term frequency and the normalized bug report

length. The value of k1 should generally be in the range

[1.2, 2.0] and the value of b should generally be in the

range [0.5, 0.8] [44]. However, in our experiment, the

values of k1 and b parameters were set as 2.0 and 0.8,

respectively because these values are the common

values used in many previous studies [44].
The idf(qi) in BM25 is defined as the inverse

document frequency and can be computed by Equation

(14).

() 0.5
()

() 0.5

i

i

i

N df q
idf q log

df q

  
  

 

(12)

(13)

(14)

920 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

Where N is denoted as the total number of bug reports

in the collection, and df(qi) is denoted as the total

number of bug reports containing the q-th term of Q.

Generally, the similarity score should be in the

range [0, 1] but the similarity score generated by the

BM25 can be greater than 1. Therefore, the data

normalization technique is required, with Equation

(15) applied to normalize the similarity score of BM25

in the range [0, 1] [3].

_
(_)

1 _

sim score
f sim score

sim score




Where sim_score is the score of similarity generated

by the BM25.

Many previous studies confirmed that BM25

provided the most satisfactory results for analyzing

bug reports based on similarity measurements.

Therefore, BM25 was also utilized in our study.

4.2.2. Severity Prediction of Bug Reports

After assembling of dependent bug reports, the bug

severity predictor described in section 4.1 is performed

to identify the severity level of each bug. The overview

picture of this process can be presented as Figure 3.

Figure 3. Process of identify bug severity.

5. The Experimental Results

In this study, F1, True Positive Rate (TPR), True

Negative Rate (TNR), False Positive Rate (FPR or 1-

TNR), Receiver Operating Characteristic (ROC) curve,

and the AUC are metrics to evaluate the performance

of assembling dependent bug reports and predicting

bug severity [12].

TPR (or recall) calculates the proportion of true

positives that are correctly identified, and TNR

calculates the proportion of true negatives that are

correctly identified. F1 score is the harmonic mean of

precision and recall. Then, precision is calculated by

dividing the number of true positives by the total

number of true positive and false positive. The ROC

chooses the most appropriate cut-off value for a test.

The optimal cut-off has the highest TPR together with

the lowest FPR, while the AUC is used to distinguish

the quality of a prediction. In general, the AUC value

lies between 0.5 and 1, where 0.5 denotes a bad

prediction and 1 denotes an excellent prediction.

5.1. Evaluation for Severity Predictor Models

In this section, bug report severity predictors with k-

NN, MNB, SVM, and Random Forest (RF) algorithms

are evaluated in order to obtain the most appropriate

predictors, the measure used in this evaluation is AUC,

because if there are multiple predictors, the AUC is

widely used to estimate the predictive accuracy of

distributional predictors.

The bug report severity predictors with k-NN,

MNB, SVM, and RF were evaluated and their

experimental results can be shown in Table 1 and

Figure 4.

Table 1. The evaluation of severity predictor models by AUC.

Algorithm
Term weighting schemes

tf tf-idf tf-igm tf-icf

k-NN 0.67 0.63 0.70 0.59

MNB 0.77 0.75 0.72 0.68

RF 0.74 0.74 0.74 0.97

SVM 0.77 0.76 0.83 0.72

Table 1 showed that the RF predictors with a tf-icf

weighting scheme returned the most promising results.

This is because RF predictors are based on a bagging

algorithm and use ensemble learning techniques. RF

creates many trees on the data subset and combines the

output of all the trees. This ameliorates the overfitting

problem in decision trees and also reduces the

variance, there by improving the accuracy.

For other predictors, the k-NN may have two

problems. Firstly, it is difficult to define the value of k.

If the value of k is inappropriate, this may lead to

misclassification. If the value of k is small, then noise

interference will have a higher influence on the result,

while if the value of k is large the cost of computation

increases. Here, we selected the value of k as 3. Our

results were reasonably good but less than the results

of the RF predictors. Secondly, the main concept of k-

NN is to find the nearest neighbor that delegates equal

weight to each feature. This may cause confusion when

there are many irrelevant features in the document and

lead to poor predictive accuracy. The performance of

the k-NN predictor using tf-igm weighting yielded the

best value with its AUC score at 0.70.

The concept behind MNB is class-conditional

independence and this holds if the features of the

category members are statistically independent given

the true class. Therefore, if the features are co-related,

MNB may return unsatisfactory results. MNB also

requires a lot of features to accurately learn the

predictors. Therefore, if the features in the BOW

model are insufficient, the predicted results may also

be poor.

(15)

Text Mining Approaches for Dependent Bug Report Assembly and Severity Prediction 921

a) ROC curve of the model using tf as term weighting schem. b) ROC curve of the model using tf-idf as term weighting schem.

 c) ROC curve of the model using tf-igm as term weighting schem. d) ROC curve of the model using tf-icf as term weighting schem.

Figure 4. Comparison of each supervised learning algorithm used for modeling bug severity predictors with particular weighting schemes.

In Figure 4-a), the performance of the MNB

predictor using tf weighting yielded the best value with

its AUC score at 0.77. This result was better than the

k-NN predictors. However, in Figure 4-b), the

performance of the SVM predictor using tf-idf

weighting yielded the best value with its AUC score at

0.76. Meanwhile, consider Figure 4-c). It can be seen

that the SVM predictors also returned poorer

performance than the RF predictors, possibly because

the data used had more noise. Many features of bug

reports may have overlapping classes and then the

SVM predictors will return inappropriate results. Here,

the SVM predictor with tf-igm weighting returns the

AUC score at 0.83 that is better than the results of k-

NN and MNB predictors. Lastly, in Figure 4-d), using

the RF algorithm with tf-icf weighting scheme to model

bug severity predictors returned the most satisfactory

results with the AUC score at 0.97.

Both the tf-igm and tf-icf weighting schemes can

return good prediction results because a ‘word (or

feature)’ can be discoverable in many classes.

However, the same ‘word’ found in different classes

may indicate disparate importance. Therefore, when

using tf-igm or tf-icf as the weighting scheme, it may be

possible to present the particular importance of that

‘word’ in an explicit way.

5.2. Evaluation for Assembling Dependent Bug

Reports

In Table 2, it can be seen that the most appropriate

technique should be BM25, Especially, when using the

threshold as 0.5, it can return the most appropriate

scores of TPR, TNR, and F1 at 0.78, 0.94, and 0.86

respectively. Then, Figure 5 presents the ROC curves

that are used to show the connection between TPR and

FPR (1-TNR) for every possible cut-off for a test. As

the results, the technique used for assembling

dependent bug reports should be BM25 with the

threshold as 0.5.

5.3. Evaluation for Bug Report Severity

Prediction after Assembling Dependent

Bug Reports

After the process of assembling dependent bug report

was performed, it returned the TPR score at 0.78. This

score indicated the ability of assembling an individual

correctly and meant that 3,578 from 4,581 bug reports

were correctly identified. The computational time of

this process was about 9 minutes.

Table 2. The evaluation of the threshold-based similarity analysis
methods.

Threshold
Cosine similarity BM25

TPR TNR F1 TPR TNR F1

0.1 0.73 0.92 0.81 0.80 0.93 0.86

0.2 0.53 0.98 0.69 0.80 0.93 0.86

0.3 0.36 0.99 0.53 0.80 0.93 0.86

0.4 0.24 1.00 0.39 0.80 0.93 0.86

0.5 0.16 1.00 0.28 0.78 0.94 0.86

0.6 0.06 1.00 0.11 0.71 0.98 0.83

0.7 0.03 1.00 0.06 0.56 0.99 0.72

0.8 0.01 1.00 0.02 0.35 1.00 0.52

0.9 0.00 1.00 0.00 0.04 1.00 0.08

1.0 0.00 1.00 0.00 0.00 1.00 0.00

922 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

Figure 5. Comparison ROC curve of cosine similarity and BM25.

The 3,578 bug reports that were assembled into

individual clusters were then assessed for severity

analysis. Score of AUC is 0.89 with computational

time of testing process at about 1 minute. Compared to

the previous studies such as [35], these results would

be acceptable because the results for using the same

dataset (Mozilla) of [35] are between 0.798 and 0.924.

If comparing to hand-crafted analysis, previous

researchers estimated that out of 350 bug reports

submitted daily to Mozilla BTS [37] and bug triagers

were only able to manually task and prioritize 300. Bug

triagers spent at least 30 minutes to analyze and

recognize all the issues in each bug report. Therefore,

our proposal may help to reduce analysis time since

five bug reports could be analyzed in less than one

second.

6. Conclusions

Most previous bug report studies have addressed only

one issue. Bug report fixing studies should focus

concurrently on multiple issues for a complete and

comprehensive analysis. Therefore, this study presents

a method of bug report analysis that addresses two

points of the problem concurrently. The proposed

method consists of two study stages. Firstly, the

dependent bug reports are grouped into clusters and

then the bug reports in each cluster are analyzed for

their severity. Our experimental results determined that

the processes of assembling dependent bug reports and

identifying their severity were satisfactory.

Furthermore, we also compared our proposed method

of bug severity analysis with a baseline [19] using the

same our dataset. Our method was slightly better than

the baseline. This is because, by using CamelCase

words together with single words and supervised term

weighting (i.e., tf-igm and tf-icf), this may help to

increase class distinguishing power and indicate the

specificity of problem domains.

However, bug report assembly analysis cannot be

compared because no prior works on this issue are

available. Also, when considering computational time,

we found that time of analysis for each bug report

based on our proposal was less than analysis time by

bug triagers. Using our system for direct corrective

maintenance activity may help to reduce the cost of

maintenance activities that account for over two-thirds

of software life cycle costs.

Acknowledgement

This research project was financially supported by

Mahasarakham University.

References

[1] Aggarwal K., Timbers F., Rutgers T., Hindle A.,

Stroulia E., and Greiner R., “Detecting Duplicate

Bug Reports with Software Engineering Domain

Knowledge,” Journal of Software: Evolution and

Process, vol. 29, no. 3, pp. e1821, 2017.

[2] Almhana R., Mkaouer W., Kessentini M., and

Ouni A., “Recommending Relevant Classes for

Bug Reports using Multi-Objective Search,” in

Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering,

Singapore, pp. 286-295, 2016.

[3] Amati G. and Van Rijsbergen C., “Probabilistic

Models of Information Retrieval Based on

Measuring the Divergence from Randomness,”

ACM Transactions on Information Systems, vol.

20, no. 4, pp. 357-389, 2002.

[4] Baeza-Yates R. and Ribeiro-Neto B., Modern

Information Retrieval, Addison Wesley, 1999.

[5] Bettenburg N., Just S., Schröter A., Weiß C.,

Premraj R., and Zimmermann T., “Quality of bug

reports in Eclipse,” in Proceedings of the

OOPSLA Workshop on Eclipse Technology Ex-

Change, Montreal, pp. 21-25, 2007.

[6] Bettenburg N., Just S., Schröter A., Weiss C.,

Premraj R., and Zimmermann T., “What Makes A

Good Bug Report?,” in Proceedings of the 16th

ACM SIGSOFT International Symposium on

Found-Ations of Software Engineering, Atlanta,

pp. 308-318, 2008.

[7] Bhattacharya P. and Neamtiu I., “Fine-Grained

Incremental Learning and Multi-Feature Tossing

Graphs to Improve Bug Triaging,” in

Proceedings of IEEE Inter-National Conference

on Software Main-Tenance, Timisoara, pp. 1-10,

2010.

[8] Bhattacharya P. and Neamtiu I., “Bug-Fix Time

Prediction Models: Can We Do Better?,” in

Proceedings of the 8th Working Conference on

Mining Software Repositories, New York, pp.

207-210, 2011.

[9] Breiman L., “Random Forests,” Machine

Learning, vol. 45, no. 1, pp. 5-32, 2001.

[10] Chen K., Zhang Z., Long J., and Zhang H.,

“Turning From TF-IDF to TF-IGM For Term

Weighting in Text Classification,” Expert

Systems with Applications, vol. 66, no. 30 pp.

245-260, 2016.

[11] Ferreira I., Cirilo E., Vieira V., and Mourao F.,

Text Mining Approaches for Dependent Bug Report Assembly and Severity Prediction 923

“Bug Report Summarization: An Evaluation of

Ranking Techniques,” in Proceedings of X

Brazilian Symposium on Software Components,

Architectures and Reuse, Maringá, pp. 101-110,

2016.

[12] Gomes L., Torres R., and Côrtes M., “Bug Report

Severity Level Prediction in Open Source

Software: A Survey and Research Oppor-

Tunities,” Information and Software Tech-nology,

vol. 115, pp. 58-78, 2019.

[13] Gopalan R. and Krishna A., “Duplicate Bug

Report Detection Using Clustering,” in

Proceedings of 23rd Australian Software

Engineering Conference, Milsons Point, pp. 104-

109, 2014.

[14] Herzig K., Just S., and Zeller A., “It's Not A Bug,

It's A Feature: How Misclassification Impacts

Bug Prediction,” in Proceedings of 35th

International Conference on Software

Engineering, San Francisco, pp. 392-401, 2013.

[15] Ho T., “Random Decision Forests,” in

Proceedings of 3rd International Conference on

Document Analysis and Recognition, Montreal

pp. 278-282, 1995.

[16] Jalbert N. and Weimer W., “Automated Duplicate

Detection for Bug Tracking Systems,” in

Proceedings of IEEE International Conference on

Dependable Systems and Networks with FTCS

and DCC, Anchorage, pp. 52-61, 2008.

[17] Jiang S., Pang G., Wu M., and Kuang L., “An

Improved K-Nearest-Neighbor Algorithm for

Text Categorization,” Expert Systems with

Applications, vol. 39, no. 1, pp. 1503-1509, 2012.

[18] Kanwal J. and Maqbool O., “Bug Prioritization to

Facilitate Bug Report Triage,” Journal of

Computer Science and Technology, vol. 27, no. 2,

pp. 397-412, 2012.

[19] Kaur S. and Dutta M., “Improved Framework for

Bug Severity Classification using N-gram

Features with Convolution Neural Network,”

International Journal of Recent Technology and

Engineering, vol. 8, no. 3, pp. 1190-1196, 2019.

[20] Kim M., Kim Y., and Kim H., “A Comparative

Study of Software Model Checkers as Unit

Testing Tools: an Industrial Case Study,” IEEE

Transactions on Software Engineering, vol. 37,

no. 2, pp. 146-160, 2010.

[21] Kowsari K., Jafari Meimandi K., Heidarysafa M.,

Mendu S., Barnes L., and Brown D., “Text

Classification Algorithms: A Survey,”

Information, vol. 10, no. 4, pp. 150, 2019.

[22] Lamkanfi A., Demeyer S., Giger E., and Goethals

B., “Predicting The Severity of A Reported Bug,”

in Proceedings of 7th IEEE Working Conference

on Mining Software Repositories, Cape Town, pp.

1-10, 2010.

[23] Lamkanfi A., Demeyer S., Soetens Q., and

Verdonck T., “Comparing Mining Algorithms for

Predicting the Severity of A Reported Bug,” in

Proceedings of 15th European Conference on

Software Main-tenance and Reengineering,
Oldenburg, pp. 249-258, 2011.

[24] Lee C., Hu D., Feng Z., and Yang C., “Mining

Temporal Information to Improve Duplication

Detection on Bug Reports,” in Proceedings of

IIAI 4th International Congress on Advanced

Applied Informatics, Okayama, pp. 551-555,

2015.

[25] Lee J., Kim D., and Jung W., “Cost-Aware

Clustering of Bug Reports by Using a Genetic

Algorithm,” Journal of Information Science and

Engineering, vol. 35, no. 1, pp. 175-200, 2019.

[26] Lertnattee V. and Theeramunkong T., “Analysis

of Inverse Class Frequency in Centroid-Based

Text Classification,” in Proceedings of IEEE

International Symposium on Communications

and Information Technology, Sapporo, pp. 1171-

1176, 2004.

[27] Limsettho N., Hata H., Monden A., and

Matsumoto K., “Automatic Unsupervised Bug

Report Cate-Gorization,” in Proceedings of 6th

International Workshop on Empirical Software

Engineering in Practice, Osaka, pp. 7-12, 2014.

[28] Luaphol B., Srikudkao B., Kachai T.,

Srikanjanapert N., Polpinij J., and Bheganan P.,

“Feature Comparison for Automatic Bug Report

Classification,” in Proceedings of International

Conference on Com-puting and Information

Technology, Bangkok, pp. 69-78, 2019.

[29] Luaphol B., Polpinij J., and Kaenampornpan M.,

“Automatic Dependent Bug Reports Assembly

for Bug Tracking Systems by Threshold-Based

Similarity,” Indonesian Journal of Electrical

Engi-neering and Computer Science, vol. 23, no.

pp. 1620-1633, 2021.

[30] Ohira M., Hassan A., Osawa N., and Matsumoto

K., “The Impact of Bug Management Patterns on

Bug Fixing: A Case Study of Eclipse Projects,” in

Proceedings of 28th IEEE International

Conference on Software Maintenance, Trento,

pp. 264-273, 2012.

[31] Otoom A., Al-Shdaifat D., Hammad M., and

Abdallah E., “Severity Prediction of Software

Bugs,” in Proceedings of 7th International

Conference on Information and Communication

Systems, Irbid, pp. 92-95, 2016.

[32] Pandey N., Hudait A., Sanyal D., and Sen A.,

Automated Classification of Issue Reports from

A Software Issue Tracker,” in Proceedings of

Progress in Intelligent Computing Techniques:

Theory, Practice, and Applications, pp. 423-430,

2018.

[33] Rocha H., Oliveira G., Maques-Neto H., and

Valente M., “Nextbug: A Tool for

Recommending Similar Bugs in Open-Source

Systems,” in Proceedings of V Brazilian

924 The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022

Conference on Software: Theory and Practice-

Tools Track (CBSoft Tools) SBC, Maceio, pp. 53-

60, 2014.

[34] Rocha H., De Oliveira G., Marques-Neto H., and

Valente M., “Nextbug: A Bugzilla Extension For

Recommending Similar Bugs,” Journal of

Software Engineering Research and

Development, vol. 3, no. 1, pp. 1-14, 2015.

[35] Roy N. and Rossi B., “Towards An Improvement

Of Bug Severity Classification,” in Proceedings

of 40th EUROMICRO Conference on Software

Engi-Neering and Advanced Applications,

Verona, pp. 269-276, 2014.

[36] Salton G., Wong A., and Yang C., “A Vector

Space Model for Automatic Indexing,” Commu-

Nications of the ACM, vol. 18, no. 11, pp. 613-

620, 1975.

[37] Shokripour R., Anvik J., Kasirun Z., and Zamani

S., “Why So Complicated? Simple Term Filtering

and Weighting for Location-Based Bug Report

Assignment Recommendation,” in Proceedings of

10th Working Conference on Mining Software

Repo-Sitories, San Francisco, pp. 2-11, 2013.

[38] Singh P. and Verma S., “Multi-Classifier Model

for Software Fault Prediction,” The International

Arab Journal of Information Technology, vol. 15,

no. 5, pp. 912-919, 2018.

[39] Śliwerski J., Zimmermann T., and Zeller A.,

“When do Changes Induce Fixes?,” ACM Sigsoft

Software Engineering Notes, vol. 30, no. 4, pp. 1-

5, 2005.

[40] Tian Y., Lo D., and Sun C., “Information

Retrieval Based Nearest Neighbor Classification

for Fine-Grained Bug Severity Prediction,” in

Proceedings of 19th Working Conference on

Reverse Engineering, Kingston, pp. 215-224,

2012.

[41] Tian Y., Sun C., and Lo D., “Improved Duplicate

Bug Report Identification,” in Proceedings of 16th

European Conference on Software Maintenance

and Re-Engineering, Szeged, pp. 385-390, 2012.

[42] Verma T., Renu R., and Gaur D., “Tokenization

and Filtering Process in Rapidminer,”

International Journal of Applied Information

Systems, vol. 7, no. 2, pp. 16-18, 2014.

[43] Willett P., “The Porter Stemming Algorithm:

Then and Now,” Program, vol. 40, no, 3, pp. 219-

223, 2006.

[44] Yang C., Du H., Wu S., and Chen X.,

“Duplication Detection for Software Bug Reports

Based on Bm25 Term Weighting,” in

Proceedings of Conference on Technologies and

Applications of Artificial Intelligence, Tainan, pp.

33-38, 2012.

[45] Zhang J., Wang X., Hao D., Xie B., Zhang L.,

and Mei H., “A Survey on Bug-Report Analysis,”

Science China Information Sciences, vol. 58, no.

2, pp. 1-24, 2015.

[46] Zhou Y., Tong Y., Gu R., and Gall H.,

“Combining Text Mining and Data Mining for

Bug Report Classification,” Journal of Software:

Evolution and Process, vol. 28, no. 3, pp. 150-

176, 2016.

Bancha Luaphol received Ph.D.

degree in Computer Science from

Mahasarakham University. He

currently works for Department of

Digital Technology, Faculty of

Administrative Science, Kalasin

University, Thailand. He is currently

engaged in the study of applications of natural

language processing, and machine learning and deep

learning approach.

Jantima Polpinij received Ph.D.

degree in Computer Science from

University of Wollongong,

Australia. She is an associate

professor of computer science at

Mahasarakham University, Thailand.

Her research interest includes data

science, natural language processing, text mining, and

machine learning and deep learning approach.

Manasawee Kaenampornpan
received Ph.D. degree in Computer

Science from University of Bath,

UK. She is an assistant professor of

computer science at Mahasarakham

University, Thailand. Her research

interests are user experience design,

context awareness, mobile and ubiquitous computing.

