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Abstract: In general, most existing bug report studies focus only on solving a single specific issue. Considering of multiple 

issues at one is required for a more complete and comprehensive process of bug fixing. We took up this challenge and 

proposed a method to analyze two issues of bug reports based on text mining techniques. Firstly, dependent bug reports are 

assembled into an individual cluster and then the bug reports in each cluster are analyzed for their severity. The method of 

dependent bug report assembly is experimented with threshold-based similarity analysis. Cosine similarity and BM25 are 

compared with term frequency (tf) weighting to obtain the most appropriate method. Meanwhile, four classification algorithms 

namely Random Forest (RF), Support Vector Machines (SVM) with the RBF kernel function, Multinomial Naïve Bayes (MNB), 

and k-Nearest Neighbor (k-NN) are utilized to model the bug severity predictor with four term weighting schemes, i.e., tf, term 

frequency-inverse document frequency (tf-idf), term frequency-inverse class frequency (tf-icf), and term frequency-inverse 

gravity moment (tf-igm). After the experimentation process, BM25 was found to be the most appropriate for dependent bug 

report assemblage, while for severity prediction using tf-icf weighting on the RF method yielded the best performance value. 
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1. Introduction 

Detecting and identifying bugs or defects in large 

software systems such as open source is never 

straightforward and easy. A solution that can help to 

fix software bugs is to gather bug report data from end-

users worldwide because bug reports can detail the 

occurrence of defects or problems with specific 

formats. For more convenient gathering of bug reports, 

various Bug Tracking Systems (BTS) such as Jira, 

ClickUp, Mantis, Bugzilla, and eTraxis have been 

proposed [1, 8, 45]. The number of bug reports has 

been steadily increasing. It also enormously increases 

the size of bug report repositories, necessitating 

automatic identification of significant necessitating 

automatic identification of significant information 

hidden in bug reports to be utilized for software bug 

fixing. 

In general, there are three primary studies for bug 

report [45]. Firstly, bug report optimization enhances 

report quality and reduces inaccurate information. 

Three important tasks are optimization of bug report 

content [5, 6], misclassification [14, 28, 32] and 

severity prediction [31, 40]. Secondly, bug report 

triage aims to screen and prioritize bug reports to 

ensure that all issues can be appropriately managed. 

This involves [13, 16, 24, 40], prioritization [18], and 

suitable developer assignment tasks [7, 25]. Finally, 

bug fixing concerns finding a solution to quickly fix  

 
the software bugs. For bug fixing study, there are three 

major tasks as localization of bug [2], recovery of links 

between bug reports because of files changing [39], 

and predicting time of bug fixing [8, 30]. 

Although many tasks related to bug reports have 

been studied and proposed, misclassification and 

severity prediction issues have attracted the most 

interest because the performance of software bug 

fixing relies on the quality and accuracy of the bug 

reports. Misclassification between bug and non-bug 

reports provides low quality or incorrect information to 

developer teams that cannot be utilized for software 

bug fixing, while severity prediction aims to predict 

the severity level of a bug report to determine which 

bug should be fixed first.  

However, other bug report studies have addressed 

how the “bug dependence issue” impacts software bug 

fixing [29]. If bug “x” and bug “y” are related, bug “y” 

will continue to exist despite being addressed because 

bug “x” has not yet been entirely fixed. This issue has 

been mentioned in many studies but it has not yet been 

seriously addressed. This is because misclassification 

and severity prediction continue to be studied by many 

researchers, where performance improvements of bug 

report misclassification and severity prediction still 

remain unresolved.  

In general, most existing bug report studies focus 

only on a specific single issue. However, to obtain a 

more complete bug fixing process, it might be better if 

https://doi.org/10.34028/iajit/19/6/9


916                                                   The International Arab Journal of Information Technology, Vol. 19, No. 6, November 2022 

considering multiple simultaneously. For example, if 

dependent bug reports can be recognized and analyzed 

together with bug severity level, this would import 

significant information for the appropriate assignation 

of software issues to developers and may help to fix 

bugs completely. This challenge was addressed here by 

presenting a method to study the two separate issues of 

bug report dependency and bug severity level 

concurrently. Bug report dependency analysis assists in 

acknowledging the relationships between bugs [8], 

while bug severity level analysis identifies and 

recognizes bugs with higher severity [22, 23]. Bugs 

with the highest severity level, called severe level, 

should be fixed first. 

This paper is organized as follows. In section 2, it 

reviews the related works and the datasets is detailed in 

section 3, while the research method is described in 

section 4. The experimental results are shown in 

section 5. Finally, section 6 is to conclude this study. 

2. Related Work 

Software containing defects or bugs can produce 

erroneous or unexpected results [11, 41]. Identifying 

bugs in small software systems is not difficult. By 

contrast, bugs in larger open source software systems 

may be hidden and require more complex remediation 

methods [20]. If the software development team cannot 

identify all the defects or bugs in an open source, 

global end-users can assist by providing important 

bug-related information, called bug reports. 

Many systems for tracking bug reports (e.g., Mantis, 

Jira, Bugzilla, Trace, etc.,) have been developed and 

proposed to facilitate gathering bug reports [1, 8, 45]. 

Consequently, many bug reports are generated and 

submitted daily to those systems by software end-users 

[37]. With a continual increase in the size of bug report 

repositories, manual analysis becomes a time-

consuming and expensive process, with the essential 

for automatic data management and analysis. 

There are three significant areas for bug report 

studies. Firstly, bug report optimization enhances 

report quality and reduces inaccurate information. This 

study can be divided into three major tasks as 

misclassification [14, 28, 32], content optimization [5, 

6] and severity prediction [31, 40]. Misclassification is 

the most important task in this area. This is because if 

outlier or inappropriate bug reports are not removed, 

the next stage of bug report analysis can be a time-

consuming process.  

The second study area is called bug report triage. It 

consists of three main tasks namely duplicated bug 

detection [13, 16, 24, 41], prioritization [18] and 

assigning bug reports to suitable software developers 

[25]. Duplicated bug detection automatically identifies 

and removes duplications from the bug report to reduce 

the analysis time of further processing. Bug report 

prioritization identifies bug reports that should be fixed 

first, while the last study area of bug report triage 

assigns the bug reports to the most appropriate 

software developers. 

For bug fixing area, it consists of three main tasks as 

localization of bug [2, 46], recovering links between 

bug reports when files are changed [39] and predicting 

time of software bug fixing [8, 30]. Localization of bug 

is to automatically find the position of the bugs in a 

software code, while recovering links between bug 

reports when files are changed aims to utilize logs of 

software correction history for analyzing a change in 

files. Finally, predicting time of software bug fixing is 

to estimate time of resolving the issue. 

Besides these aforementioned tasks, another bug 

report topic has an impact on the bug-fixing process. 

This is called the “bug dependency issue” [29]. Many 

researchers have been mentioned this topic but not 

studied in detail. The bug dependency issue should be 

considered simultaneously with the other mentioned 

issues for accomplishing the process of bug fixing. 

Previous bug reports studies only focused on only 

single issue. Considering multiple bug report issues at 

the same time may help to facilitate a method of bug 

fixing to be more complete and comprehensive. For 

example, recognizing and analyzing dependent bug 

reports together with bug severity level would render 

significant information for the appropriate assignation 

of software issues to developers and help to completely 

eradicate the bugs. Therefore, this issue is taken up as a 

challenge in this study. 

3. Datasets 

A bug report generally comprises of three main 

components. They are the summary or title, the 

description as the bug report detail and the discussion 

as comments on that bug report. The summary part of 

bug reports is widely used on the most previous works 

studies because this part contains less outlier or noise 

[46]. A bug report example is shown as Figure 1. 

This study used a dataset relating to Mozilla Firefox 

were gathered from Bugzilla and they were 

downloaded between 1 October and 31 December 

2019. The bug reports with ‘verified’ and ‘closed’ 

statuses are used for this study. This is because these 

bug reports have been confirmed by bug triagers and 

development teams that they are ‘real-bug’ reports.  

In general, there are six levels of bug severity. They 

are ‘blocker’, ‘critical’ and ‘major’, ‘normal’, ‘minor’, 

and ‘trivial’. In this study, real-bug reports labeled as 

the first three severity levels were assigned to the 

severe class, while real-bug reports labeled as the 

remaining three severity levels were assigned to the 

non-severe class.  

In this dataset, 512 bug reports were considered as 

meta-bugs by bug triagers, and 21,488 bug reports 

were considered as bug dependency in those meta-bug 

reports. Mata-bug report is the first or main bug report 
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of a specific software problem domain. However, it 

ispossible that a bug report can be both a dependent 

bug report and a meta-bug report at the same time. 

To reduce the impact of imbalanced data resulting 

from the severely skewed class distribution, we used 

5,000 bug reports per class for the first stage, called 

modeling for software bug report severity predictor. It 

is performed with a practice based on 10-fold cross 

validation.  

 

 

Figure 1. A bug report example. 

The remaining bug reports were used in an 

experiment for assembling of dependent bug reports 

together and identifying of the severity of each case. 

Two hundred meta-bug reports were also utilized as 

the center point (or centroid) for assembling the 

dependent bug reports. 

4. The Proposed Method 

The methodology for the study is described in this 

section. The first stage is a preliminary for bug severity 

predictor modeling described in section 4.1, while the 

second stage is the proposed method of assembling 

dependent bug reports followed by identifying bug 

severity level described in sections 4.2. 

4.1. Preliminary: Modeling of Bug Severity 

Predictor  

This section explains the process of generating the 

severity predictor used to predict severity levels for 

bug reports after they have been automatically 

assigned into appropriate clusters.  

4.1.1. Pre-Processing of Bug Reports  

This stage commences with the step of preparing bug 

report data by splitting the text into tokens [42], which 

are referred to as “words” in this study. In this study, 

the two features of bug reports namely Unigram and 

CamelCase are utilized here. Unigram is a single word, 

while CamelCase [2, 28, 46] is the practice of writing 

many words together without punctuation or 

intervening spaces. Some examples of CamelCase are 

‘ToolBar’ and ‘userInterface’. 

CamelCase and unigram are widely employed in 

many previous bug report studies. This is because 

CamelCase is capable of revealing software specificity, 

while a unigram (or single word) is easier to leverage 

from a bug report. However, before using the 

CamelCase words, they are generally separated into 

single words. As this, it may help to expand the bug 

report features. Therefore, ‘ToolBar’ and 

‘userInterface’ can be broken as ‘Tool’, ‘Bar’ and 

‘user’, ‘Interface’, respectively. 

After bug reports are tokenized into words, the 178 

stop words listed by the Natural Language Toolkit 

(NLTK) library are removed. For the stemming 

process, the Snowball stemmer is performed to reduce 

the inflectional forms from each word to a common 

base or root form, called ‘stem’ [43]. 

4.1.2. Representation of Bug Reports  

After pre-processing of bug reports is done, those are 

formatted as the Vector Space Model (VSM) [36]. This 

format represents each bug report as an N-dimensional 

vector, where N is the number of distinct terms (or 

words) found in the bug reports. The i-th term of a 

vector contains the weight score, called the term 

weight. In this study, four term weighting schemes (i.e. 

tf, tf-idf, tf-igm and tf-icf) are compared as described 

below. 

Term Frequency (tf) is the simplest term weighting 

method. It is often used in bug report studies and 

returns satisfactory results [27, 31]. The formula of ft,d 

with logarithmically scaled frequency can be written as 

Equation (1). 

, ,(1 )t d t dtf log f   

Where ft,d is frequency of term (or word) t appearing in 

the document d. 

Term frequency-inverse document frequency (tf-idf) 

[4] can be defined as Equation (2). 

(1) 
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, logt t d

t

N
tf idf tf

df

 
    

 

 

Where tft,d is the frequency of term t appearing in a 

document d. The idft, is calculated by the 

logarithmically scaled number of the total number of 

documents in a collection (N) that is divided by the 

total number of documents containing the term t (dft). 

Term frequency-inverse gravity moment (tf-igm) is 

a Supervised Term Weighting (STW) scheme [10]. It 

can provide a term’s class distinguishing power using 

the igm measure. The tf-igm formula can be written as 

Equation (3). 

, . (1 ( ))t d t d ktf igm f igm t      

Where ft,d is defined as the frequency of term t that 

appears in a document d. Meanwhile, λ is an adjustable 

coefficient parameter which is utilized to maintain the 

relative balance between two weight scores (global and 

local weights). The value of λ should be between 5.0 to 

9.0. The igm is employed to measure a term’s inter-

class distribution concentration, and it can be defined 

as Equation (4). 

1

1

( ) k

k m

kr

r

f
igm t

f r






 

Where fkr is the frequency of term tk that occurs in 

different classes, and r=1, 2, ..., m. The classes are 

listed in descending order, with the rank denoted by r. 

Meanwhile, fkr is the frequency of class-specific 

document (dfkr), where dfkr is the number of documents 

in the r-th class containing the term tk. 

Lastly, the term frequency-inverse class frequency 

(tf-icf) is also a STW scheme proposed by Lertnattee 

and Theeramunkong [26]. tf is the number of term t 

that occurs in document d, while icf is the global term 

weight based on counting the total number of classes in 

the collection (N) that is divided by the total number of 

classes containing the term t (nt). The formula of tf-icf 

can be written as Equation (5). 

, , 2(1 )t d t d

t

N
tf icf log f log

n

 
     

 
 

4.1.3. Modeling of Bug Severity Predictor  

To model the bug report severity predictors, suppose D 

is a training set of bug reports and d is a bug report, 

denoted as D=d1, d2, ..., di. A set of classes (C) can be 

denoted as C={non-severe, severe}. Four machine 

learning algorithms were also compared in this study, 

with each briefly described as follows. 

K-Nearest Neighbor (K-NN) [17] is a 

nonparametric-based technique that has been employed 

in numerous academic disciplines for text classification 

applications. This algorithm determines the k nearest 

neighbors among training documents and weights the 

class candidates based on the classes of the closest k 

neighbors. The similarity scores are utilized to assign 

the candidate to the class with the highest score from 

the unknown label class of document x. The k-NN rule 

can be defined as Equation (6). 

( ) arg max ( , ) ( , ) ( , )
i

j i i j

d KNN

f x S x C sim x d y d C


    

Where S denotes the score with respect to S(x, Cj) as 

the score of candidate i to the class of j, and the f(x) 

output is a label for the document being analyzed. 

Multinomial Naïve Bayes (MNB) [21] is a very 

well-known probabilistic algorithm for text or 

document classification tasks. The MNB algorithm can 

be defined as Equation (7). 

( ) ( | )
( | )

( )

wdn

w d
P c P d c

P c d
P d


  

Where nwd is the number of word w appearing in the 

document and P(w|c) is the probability of word w 

appearing in a given class c. P(w|c) can be calculated 

as Equation (8). 

''

1
( | ) c

c

wdd D

w dw d D

n
P w c

k n












 
 

Support Vector Machines (SVM) [38, 40] is a popular 

algorithm widely used as an automated process of text 

classification into predefined classes. Let x1, x2, ..., xl 

be training examples belonging to one class C, where 

C is a compact subset of RN. The SVM classifier can be 

built using Equation (9). 

2

1

1 1
min

2

l

i

i

w
vl

 


   

Subject to Equation (10): 

( ( )) 1,2,..., 0i iw x l         

By using w and  , the SVM algorithm can develop 

the decision function by Equation (11). 

( ) (( ( )) )if x sign w x     

In this investigation, the Radial Basis Function (RBF) 

kernel function is employed with SVM parameters as 

cost and gamma 100.0 and 0.001, respectively. 

Random Forest (RF) introduced by Ho [15] and 

Singh and Verma [38] in 1995, is a machine learning 

based on ensemble method for text classification. It 

was modified in 1999 by Breiman [9]. The basic 

concept of RF is to create multiple decision trees. This 

algorithm employs bagging and feature randomness 

when building each individual tree to build an 

uncorrelated forest of trees. Using multiple trees for 

class prediction is more accurate than that of any single 

tree. This study generated 100 decision trees for our 

forest. 

After evaluating all bug severity predictors via the 

Area Under The Curve (AUC), the results showed that 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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the RF classifier with tf-icf weighting returned the most 

satisfactory results. Therefore, this predictor was 

selected for bug report severity analysis to identify the 

severity of each case after performing the process of 

assembling dependent bug reports. 

4.2. Assembling Dependent Bug Reports 

followed by Predicting Severity of Bug 

Reports 

This section commences with assembling dependent 

bug reports, followed by identifying their severity. The 

overview picture of this method can be seen as Figure 

2. Details of each process in the method can be 

explained as follows. 

 

Figure 2. Overview of the method assembling dependent bug 

reports followed by predicting severity of bug reports. 

4.2.1. Assemblage of Dependent Bug Reports  

Here, threshold-based similarity analysis is proposed as 

a main method for assembling dependent bug reports 

into an appropriate cluster. The center point (or 

centroid) of a specific cluster is a meta-bug report 

utilized as main factor to assemble a set of relevant bug 

reports in the same cluster (or group). First, we 

transformed all bug reports into a suitable format 

driven on the processing steps discussed in sections 

4.1.1 and 4.1.2, respectively. The pre-processed bug 

reports were then automatically assembled as 

dependent bug reports into a cluster. The Algorithm (1) 

depicts the pseudocode for assemblage of dependent 

bug reports. 

In this study, the thresholds were determined as 

similarity score criteria. Our thresholds are from 0 to 1 

with a step of 0.1. This concept was similar to the 

method used by [13, 33, 34]. If the similarity score 

between a bug report and a meta-bug report exceeds or 

equals the threshold, that bug report should be assigned 

to the cluster with that meta-bug report as the centroid 

because they may be related. To get the most suitable 

similarity analysis technique for assemblage of 

dependent bug reports, two similarity techniques (i.e., 

cosine similarity and BM25) were compared. The 

formulas of each similarity analysis technique are 

explained below. 
Algorithm 1: Assemblage of dependent bug reports  

 Input: A collection of meta-bugs, denoted as A 

 Input: A collection of bug reports, denoted as D 

 Input: A set of thresholds, {0.1, 0.2, …, 1.0} 

 Output: Cluster that has a meta-bug as a centroid and its 

dependent bug reports 

 Parameter: X                      //A ∪ D 

 Parameter: mbi                             //current meta-bug 

 Parameter: bri                               //current bug report 

 Parameter: similar             //similarity function 

 Parameter: clustermi               //cluster of mbi 

1 Let X be A ∪ D 

2 while not the end of A do 

3      mbi  A                 //read the next mbi 

4      while not the end of X do 

5           bri  X             //read the next bri 

6           if ri ≠ mbi  then 

7                similarity_score  sim(mbi, bri); 

8                if similarity_score ≥ threshold then 

9                     assign bri into clustermi  ; 

10                end-if 

11           end-if  

12      end-while 

13 end-while 

Cosine Similarity (CS) is a simple similarity technique. 

Its formula is defined as Equation (12). 

1 2
cos( ) 1 2

1 2

( , )
x x

sim X X
x x




  

Where X1 and X2 are the vectors of words found in bug 

reports in the collection and the particular meta-bug. If 

both reports are relevant and similar, the similarity 

score should be close to 1. 

Best Match 25 (BM25) [44] is a similarity ranking 

function that calculates and ranks a set of documents 

utilizing the query terms (or words) found in each 

document. The BM25 formula can be written as 

Equation (13). 

| | ( , ) ( 1)
125( , ) ( )

| |
1 ( , ) (1 )

1

Q tf q d k
iBM Q D idf q

i D
q tf q d k b b

i DL
avg

 
 

  
   

      
 
 

 

Where tf(qi,d) is the times of occurrences that the q-th 

term of query (Q) occur in bug report d, while DLavg is 

the mean length of all documents in the collection. |D| 

is the word count of bug report D. k1 and b are free 

parameters used to balance the weight scores between 

the term frequency and the normalized bug report 

length. The value of k1 should generally be in the range 

[1.2, 2.0] and the value of b should generally be in the 

range [0.5, 0.8] [44]. However, in our experiment, the 

values of k1 and b parameters were set as 2.0 and 0.8, 

respectively because these values are the common 

values used in many previous studies [44]. 
The idf(qi) in BM25 is defined as the inverse 

document frequency and can be computed by Equation 

(14). 

( ) 0.5
( )

( ) 0.5

i

i

i

N df q
idf q log

df q

  
  

 

 

(12) 

(13) 

(14) 
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Where N is denoted as the total number of bug reports 

in the collection, and df(qi) is denoted as the total 

number of bug reports containing the q-th term of Q. 

Generally, the similarity score should be in the 

range [0, 1] but the similarity score generated by the 

BM25 can be greater than 1. Therefore, the data 

normalization technique is required, with Equation 

(15) applied to normalize the similarity score of BM25 

in the range [0, 1] [3]. 

_
( _ )

1 _

sim score
f sim score

sim score



 

Where sim_score is the score of similarity generated 

by the BM25. 

Many previous studies confirmed that BM25 

provided the most satisfactory results for analyzing 

bug reports based on similarity measurements. 

Therefore, BM25 was also utilized in our study. 

4.2.2. Severity Prediction of Bug Reports 

After assembling of dependent bug reports, the bug 

severity predictor described in section 4.1 is performed 

to identify the severity level of each bug. The overview 

picture of this process can be presented as Figure 3. 

 
Figure 3. Process of identify bug severity. 

5. The Experimental Results 

In this study, F1, True Positive Rate (TPR), True 

Negative Rate (TNR), False Positive Rate (FPR or 1-

TNR), Receiver Operating Characteristic (ROC) curve, 

and the AUC are metrics to evaluate the performance 

of assembling dependent bug reports and predicting 

bug severity [12].  

TPR (or recall) calculates the proportion of true 

positives that are correctly identified, and TNR 

calculates the proportion of true negatives that are 

correctly identified. F1 score is the harmonic mean of 

precision and recall. Then, precision is calculated by 

dividing the number of true positives by the total 

number of true positive and false positive. The ROC 

chooses the most appropriate cut-off value for a test. 

The optimal cut-off has the highest TPR together with 

the lowest FPR, while the AUC is used to distinguish 

the quality of a prediction. In general, the AUC value 

lies between 0.5 and 1, where 0.5 denotes a bad 

prediction and 1 denotes an excellent prediction.  

5.1. Evaluation for Severity Predictor Models 

In this section, bug report severity predictors with k-

NN, MNB, SVM, and Random Forest (RF) algorithms 

are evaluated in order to obtain the most appropriate 

predictors, the measure used in this evaluation is AUC, 

because if there are multiple predictors, the AUC is 

widely used to estimate the predictive accuracy of 

distributional predictors. 

The bug report severity predictors with k-NN, 

MNB, SVM, and RF were evaluated and their 

experimental results can be shown in Table 1 and 

Figure 4.  

Table 1. The evaluation of severity predictor models by AUC. 

Algorithm 
Term weighting schemes 

tf tf-idf tf-igm tf-icf 

k-NN 0.67 0.63 0.70 0.59 

MNB 0.77 0.75 0.72 0.68 

RF 0.74 0.74 0.74 0.97 

SVM 0.77 0.76 0.83 0.72 

Table 1 showed that the RF predictors with a tf-icf 

weighting scheme returned the most promising results. 

This is because RF predictors are based on a bagging 

algorithm and use ensemble learning techniques. RF 

creates many trees on the data subset and combines the 

output of all the trees. This ameliorates the overfitting 

problem in decision trees and also reduces the 

variance, there by improving the accuracy. 

For other predictors, the k-NN may have two 

problems. Firstly, it is difficult to define the value of k. 

If the value of k is inappropriate, this may lead to 

misclassification. If the value of k is small, then noise 

interference will have a higher influence on the result, 

while if the value of k is large the cost of computation 

increases. Here, we selected the value of k as 3. Our 

results were reasonably good but less than the results 

of the RF predictors. Secondly, the main concept of k-

NN is to find the nearest neighbor that delegates equal 

weight to each feature. This may cause confusion when 

there are many irrelevant features in the document and 

lead to poor predictive accuracy. The performance of 

the k-NN predictor using tf-igm weighting yielded the 

best value with its AUC score at 0.70.  

The concept behind MNB is class-conditional 

independence and this holds if the features of the 

category members are statistically independent given 

the true class. Therefore, if the features are co-related, 

MNB may return unsatisfactory results. MNB also 

requires a lot of features to accurately learn the 

predictors. Therefore, if the features in the BOW 

model are insufficient, the predicted results may also 

be poor. 

(15) 
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a) ROC curve of the model using tf as term weighting schem.                   b) ROC curve of the model using tf-idf as term weighting schem. 

 
        c) ROC curve of the model using tf-igm as term weighting schem.                      d) ROC curve of the model using tf-icf  as term weighting schem. 

Figure 4. Comparison of each supervised learning algorithm used for modeling bug severity predictors with particular weighting schemes.

In Figure 4-a), the performance of the MNB 

predictor using tf weighting yielded the best value with 

its AUC score at 0.77. This result was better than the 

k-NN predictors. However, in Figure 4-b), the 

performance of the SVM predictor using tf-idf 

weighting yielded the best value with its AUC score at 

0.76. Meanwhile, consider Figure 4-c). It can be seen 

that the SVM predictors also returned poorer 

performance than the RF predictors, possibly because 

the data used had more noise. Many features of bug 

reports may have overlapping classes and then the 

SVM predictors will return inappropriate results. Here, 

the SVM predictor with tf-igm weighting returns the 

AUC score at 0.83 that is better than the results of k-

NN and MNB predictors. Lastly, in Figure 4-d), using 

the RF algorithm with tf-icf weighting scheme to model 

bug severity predictors returned the most satisfactory 

results with the AUC score at 0.97.  

Both the tf-igm and tf-icf weighting schemes can 

return good prediction results because a ‘word (or 

feature)’ can be discoverable in many classes. 

However, the same ‘word’ found in different classes 

may indicate disparate importance. Therefore, when 

using tf-igm or tf-icf as the weighting scheme, it may be 

possible to present the particular importance of that 

‘word’ in an explicit way. 

5.2. Evaluation for Assembling Dependent Bug 

Reports  

In Table 2, it can be seen that the most appropriate 

technique should be BM25, Especially, when using the 

threshold as 0.5, it can return the most appropriate 

scores of TPR, TNR, and F1 at 0.78, 0.94, and 0.86 

respectively. Then, Figure 5 presents the ROC curves 

that are used to show the connection between TPR and 

FPR (1-TNR) for every possible cut-off for a test. As 

the results, the technique used for assembling 

dependent bug reports should be BM25 with the 

threshold as 0.5. 

5.3. Evaluation for Bug Report Severity 

Prediction after Assembling Dependent 

Bug Reports 

After the process of assembling dependent bug report 

was performed, it returned the TPR score at 0.78. This 

score indicated the ability of assembling an individual 

correctly and meant that 3,578 from 4,581 bug reports 

were correctly identified. The computational time of 

this process was about 9 minutes. 

Table 2. The evaluation of the threshold-based similarity analysis 
methods. 

Threshold 
Cosine similarity BM25 

TPR TNR F1 TPR TNR F1 

0.1 0.73 0.92 0.81 0.80 0.93 0.86 

0.2 0.53 0.98 0.69 0.80 0.93 0.86 

0.3 0.36 0.99 0.53 0.80 0.93 0.86 

0.4 0.24 1.00 0.39 0.80 0.93 0.86 

0.5 0.16 1.00 0.28 0.78 0.94 0.86 

0.6 0.06 1.00 0.11 0.71 0.98 0.83 

0.7 0.03 1.00 0.06 0.56 0.99 0.72 

0.8 0.01 1.00 0.02 0.35 1.00 0.52 

0.9 0.00 1.00 0.00 0.04 1.00 0.08 

1.0 0.00 1.00 0.00 0.00 1.00 0.00 
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Figure 5. Comparison ROC curve of cosine similarity and BM25. 

The 3,578 bug reports that were assembled into 

individual clusters were then assessed for severity 

analysis. Score of AUC is 0.89 with computational 

time of testing process at about 1 minute. Compared to 

the previous studies such as [35], these results would 

be acceptable because the results for using the same 

dataset (Mozilla) of [35] are between 0.798 and 0.924.  

If comparing to hand-crafted analysis, previous 

researchers estimated that out of 350 bug reports 

submitted daily to Mozilla BTS [37] and bug triagers 

were only able to manually task and prioritize 300. Bug 

triagers spent at least 30 minutes to analyze and 

recognize all the issues in each bug report. Therefore, 

our proposal may help to reduce analysis time since 

five bug reports could be analyzed in less than one 

second. 

6. Conclusions 

Most previous bug report studies have addressed only 

one issue. Bug report fixing studies should focus 

concurrently on multiple issues for a complete and 

comprehensive analysis. Therefore, this study presents 

a method of bug report analysis that addresses two 

points of the problem concurrently. The proposed 

method consists of two study stages. Firstly, the 

dependent bug reports are grouped into clusters and 

then the bug reports in each cluster are analyzed for 

their severity. Our experimental results determined that 

the processes of assembling dependent bug reports and 

identifying their severity were satisfactory. 

Furthermore, we also compared our proposed method 

of bug severity analysis with a baseline [19] using the 

same our dataset. Our method was slightly better than 

the baseline. This is because, by using CamelCase 

words together with single words and supervised term 

weighting (i.e., tf-igm and tf-icf), this may help to 

increase class distinguishing power and indicate the 

specificity of problem domains.  

However, bug report assembly analysis cannot be 

compared because no prior works on this issue are 

available. Also, when considering computational time, 

we found that time of analysis for each bug report 

based on our proposal was less than analysis time by 

bug triagers. Using our system for direct corrective 

maintenance activity may help to reduce the cost of 

maintenance activities that account for over two-thirds 

of software life cycle costs. 
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