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1. Introduction 

Several efficient quantum algorithms [10, 11, 12, 15] 

appear in the literatures outperform the classical 

algorithms. Shor [15] proposes quantum polynomial-

time algorithms to factor large integers and solves the 

problem of discrete logarithms over cyclic groups, on 

which the security of most of the existing public key 

cryptographic systems is based. Grover’s [11, 12] 

quantum algorithms show that searching an unsorted 

database can be done faster than other classical 

algorithms. Shor’s algorithm and Grover’s algorithm 

impose serious threats on classical cryptographic 

systems.  

Therefore, tremendous efforts have been made on 

the classical schemes that remain secure against a 

quantum adversary, which is called post-quantum 

cryptosystems. Random oracle models are often used 

to prove the security against adversaries with classical 

queries. In order to allow adversaries to interact with 

the oracle by superposition, the quantum random 

oracle model has been defined recently.  

Boneh et al. [6] propose a two-party protocol (called 

IS* protocol) that is secure against classical and 

quantum adversaries in the classical random oracle 

model, but insecure once quantum adversaries are 

allowed to make quantum queries in the quantum 

random oracle model.  

1.1. Contributions 

First, we introduce an improved identification protocol. 

Second, success probabilities of an adversary are 

derived for the improved protocol in the classical and 

quantum random oracle models. In the meantime, this 

work finds the secure lower bound on this variable, 

which guarantees the security in both models. 

Additionally, several other possible approaches are 

introduced. 

1.2. Previous Work 

Quantum random oracles have been used in several 

prior works. For example, Bennett et al. [3] prove 

several quantum complexity results relative to a 

random oracle. The quantum random oracle has also 

been used to construct quantum money by Aaronson 

[1]. Brassard and Salvail [7] and Brassard et al. [9] 

employ this model to construct quantum analogues of 

Merkle’s Puzzles. Zhandry [17] give the first proof of 

security for an identity-based encryption scheme with 

no additional assumptions in the model.  

Zhandry [16] prove that standard constructions of 

pseudorandom functions from pseudorandom 

generators or pseudorandom synthesizers are secure in 

the quantum oracle model, and present the poof of 

security for a direct construction on lattices. Boneh and 

Zhandry [5] construct the first existentially unforgeable 

message authentication codes against quantum chosen 

message attacks.  

2. Preliminaries 

2.1. Notations 

Functions are denoted by capital letters (such as F), 

and sets by capital script letters (such as ). A symbol 

like    represents a set in which elements are in  

but not in . Pr[ ]event  stands for the probability of an 

event. The expression A(𝑥, 𝑦, 𝑧) → 𝑣 denotes an 

algorithm that  inputs ( , , )x y z  and outputs v. 
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( , , )v x y z means that v is generated by the 

algorithm  with input (x, y, z). 

A cryptographic scheme always incorporates a 

security parameter which is an integer n. When honest 

parties initialize the scheme (e.g., when they generate 

keys), they choose some value n for the security 

parameter; this value is assumed to be known to any 

adversary attacking the scheme. The running time of 

the adversary (and the running time of the honest 

parties) as well as success probability of an adversary 

are all viewed as functions of n. We denote any 

polynomial quantity of n as poly(n). 

A function F(n) is negligible if it is non-negative 

and smaller than any inverse polynomial. That is, for 

any polynomial poly(n), there exists an N such that for 

all integers n>N, it holds that F(n)<1/poly(n). 

A probabilistic polynomial-time (PPT) algorithm is 

a classical randomized algorithm that runs in time 

polynomial in the size of its input. We also call such 

algorithms efficient. 

2.2. Quantum Random Oracle Model 

In the classical random oracle model, an adversary is 

allowed to make classical queries to a random oracle. 

If the random oracle is denoted by O, an adversary 

learns a value from O(x) at the classical state x by each 

query, and then use the information obtained to attack 

the system. A suitable hash function H is included in 

the specification when it is implemented and thus 

enables a quantum adversary to evaluate this hash 

function on a quantum superposition of inputs.  

Any hash function that can be evaluated by a 

quantum adversary on quantum states is a quantum-

accessible hash function. As in the classical random 

oracle model, quantum oracles that can be accessed by 

a quantum adversary are introduced in the quantum 

world. Similarly, a quantum adversary makes quantum 

queries to a quantum random oracle. In order to allow 

a quantum adversary to interact with the quantum 

oracle by superposition, a new security model is 

required to allow a quantum adversary to make 

quantum queries to the quantum random oracle, and 

thus this new model is called the quantum random 

oracle model.  

Note that the quantum random oracle is replaced by 

a quantum-accessible hash function when implemented. 

The classical hash function H should be transformed 

into a quantum-accessible hash function HQ.  

2.3. Identification Scheme 
 

A standard identification scheme consists of three 

efficient algorithms, ( . , , ).IS IS KGen   The algorithm 

IS.KGen returns a key pair ( , )sk pk  on input 1
n
. The 

joint execution of ( , )sk pk  and ( )pk  defines an 

interactive protocol between the prover  and the 

verifier . The verifier  finally outputs a decision bit 

{0,1}b  . It is assumed that for any honest prover the 

verifier accepts the interaction with output b=1. 

The security of a standard identification scheme is 

usually defined by an adversary  that first interacts 

with the honest prover to obtain some information 

about the secret key and then plays the role of the 

prover and makes a verifier accept the interaction.  

An identification scheme is secure if the adversary 

convinces the verifier with a negligible probability. A 

identification scheme is quantum-immune if the 

underlying problem has so far remained immune to 

quantum attacks, or some evidence suggests that it may 

be hard for quantum computers.  

2.4. Collision-Resistant Hash Function 

A hash function H consists of two efficient algorithms, 

H=(H.KGen, H.Eval). H.KGen is a key generation 

algorithm, inputs 1
n
 and returns a key k. H.Eval is a 

deterministic algorithm, inputs k and {0,1}M


 , and 

outputs a digest H.Eval (k, M).  

Let x be a string of length n, then the leading l bits of 

the string x is denoted as x|l where l is a constant 

integer and 1≤ l≤ n. For any efficient algorithm ,   

k←H.KGen(1
n
), a hash function is near-collision-

resistant if the probability we have M≠M' but H.Eval 

(k, M)|l= H.Eval (k, M')|l is negligible for (M, 

M')←(k, l).  

Classically, the upper bound on near-collision-

resistance of any hash function is given by the birthday 

attack. This attack shows that, for any hash function 

with n bits outputs, an adversary can find a collision 

with probability of about 1/2 by examining 2
n/2

 distinct 

and random inputs. This attack is optimal for random 

oracles. 

3. Research Methodology 

This section describes the research method. Three 

methods are mainly used in our study, Grover’s 

quantum search algorithm, Chernoff bounds, and time 

assumptions. As Grover’s algorithm has advantages in 

searching an unstructured database over classical 

algorithms, it is applied to solve the problem of 

collision. We use Chernoff bounds to determine the 

success probability of an adversary in the security 

argument for the improved protocol. Additionally, time 

assumptions are employed to ensure a reasonable and 

logical security argument for our protocol.  

Chernoff bounds give exponentially decreasing 

bounds on the tail distribution. Two theorems about 

Chernoff bounds are given for a sum of Poisson trials 

and the deviation. Refer to [13] for further information.  
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 Theorem 1. Let X1, …, Xn be independent Poisson 

trials such that Pr(Xi)=pi. Let 
1

n

ii
X X


 and 

μ=E(X). Then the following Chernoff bounds hold: 

1. For any δ>0, 
(1 )

Pr( (1 ) )
(1 )

e
X




 

 

 
    

 
. 

2. For 0< δ≤ 1, Pr(X ≥(1+ δ )μ)≤ 
2/3e .  

 Theorem 2. Let X1, …, Xn be independent Poisson 

trials such that Pr(Xi)= pi. Let 
1

n

ii
X X


 and 

μ=E(X).  Then for 0< δ< 1: 

1.  
(1 )

Pr( (1 ) )
(1 )

e
X




 







 
    

 
. 

2. 
2/2Pr( (1 ) ) eX      . 

The optimal traditional algorithm for searching an 

unstructured database with N elements requires O(N) 

steps. A more efficient algorithm is a quantum search 

algorithm proposed by Grover [11], which is called 

Grover’s algorithm. Grover’s algorithm operates such 

a search in a period of time ( )O N  by using 

superposition to probe all entries “simultaneously” [11, 

15]. Subsequently, Brassard et al. [8] show that, after 

only 3
( / )O N r  expected evaluations of the function, a 

quantum algorithm can find collisions in arbitrary r-to-

one functions, where N is the cardinality of the domain 

of the function.  

 Supposing the function is given by a black box, the 

quantum algorithm is more efficient than traditional 

methods. We assume a hash function is H:{0, 1}
*
→{0, 

1}
n
, Grover’s algorithm can be applied to solve the 

problem of collision. One first picks a subset  from 

the domain {0, 1}
*
 and then applies Grover’s algorithm 

on an indicator function. The indicator examines if 

there exists an '   such that H( )=H( ') holds 

for {0,1}* \  . The algorithm finds a collision with a 

probability of at least 1/2 after 
3

( 2 )
n

O  evaluations of 

H, where 3| | 2n . 

For logical presentations about the security 

argument of our protocol, we formalize assumptions 

about the computational power of the adversary and 

the time it takes on quantum and classical computers. 

Similar to the situation in the real world, a concrete 

and finite amount of equipments can be used to make a 

progress in performance. Hence, the speed-up of a 

computer can be acquired by employing a parallel one 

with many processors. We apply three assumptions in 

[6].  

First, let T(C) denotes the required time to solve a 

problem C on a classical computer, and TP(C) is the 

required time that elapses on a parallel system. Then 

there exists a constant α≥ 1, for any problem C it holds 

that TP(C)≥ T(C)/α. Second, for any hash function H 

and input message M, the evaluation of H(M) requires 

a constant time T(H(M))=TP(H(M))=TQ(H(MQ)), where 

TQ denotes the time that elapses on a quantum 

computer, MQ represents quantum state inputs. Third, 

we assume it does not take any extra time to send and 

receive messages or to any computation except for 

evaluating a hash function.  

The third assumption implicitly states that, 

compared to the costs of a hash evaluation, the 

computation that quantum algorithms may create to 

obtain a speed-up is negligible. This might be too 

optimistic in the near future, just as Bernstein [4] 

shows that the total costs of a quantum computation 

can be higher than that of massive parallel computation. 

Nevertheless, we study conceptual issues that arise 

when efficient quantum computers exist, this 

assumption is still available in our protocol. Refer the 

reader to [6] for more details. 

4. Description of the Improved Protocol  

Figure 1 describes the improved identification protocol 

between a prover (denote as *) and a verifier (denote 

as *). This protocol adds a collision-finding stage to a 

standard quantum-immune identification scheme. In 

this stage, * checks whether * finds enough 

collisions for a hash function during a specific time 

period. Then two parties run the standard quantum-

immune identification scheme. *accepts if * finds 

enough collisions in the collision-finding stage or 

identifies correctly in the identification stage. 

Verifier *                                                      Prover *  

pk, log( )n l n  , collCount =0                                 (sk, pk)  IS.KGen(1n) 

collision-finding stage (repeat  

for 1,2, ,i r  ): 

. (1 )n

ik H KGen  

compute  1H.Eval                  ik                       search for l-near  

                                                                                      collision on ( , )iH k   

compute  2H.Eval   

                                                
',i iM M  

compute  H.Eval c  

stop if 
3

2lc  
 

 or  

'. ( , ) | . ( , ) |i l i lH Eval k M H Eval k M  

 

if collision was found,  

set collCount : = collCount +1 

 

quantum-immune 

identification stage: 

                                                       

decision bit b                           
( , ), ( )sk pk pk




 

accept if b =1 

or collCount > s 

Figure 1. The improved IS* protocol. 

Assume that IS= (IS.KGen, , ) is a standard 

quantum-immune identification scheme, and 

H=(H.KGen, H.Eval) is a hash function. The IS* 
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protocol is denoted by IS*=(IS.KGen*(1
n
), *, *). 

IS.KGen*(1
n
) is the key generation algorithm that, for 

some constant l and log(n)≤ l≤ n, runs 

IS.KGen*(1
n
)→(sk, pk) and returns sk and (pk, l). 

Boneh et al. [6] show the security of this protocol 

for s = r/4. They prove that it is secure in the classical 

random oracle model, but is insecure in the quantum 

random oracle model. 

We propose that this protocol can be modified to be 

secure in the quantum random oracle model. In the 

next section, we analyze the choice of the variable s. 

As different choices of the variable lead to different 

security, we find the expression of the success 

probability of an adversary for different choices and 

the secure lower bound on the variable in the classical 

and quantum settings. 

5. Security Argument 

An identification protocol is secure if an adversary  

can not impersonate an honest prover * to convince 

*. The security of the above protocol in the classical 

random oracle model and in the quantum random 

oracle model is researched in this section. First, we 

study its security in the classical random oracle model.  

Assume that * accepts an adversary with 

outputting a decision bit b
*
=1 after interacting with the 

adversary , two parties are both given (pk, l) as input. 

According to the above protocol, *
 
accepts with b=1 

or * finds at least s near-collisions. In view of the 

independence of two stages in the protocol, 

Pr[“breaks”IS*]≤Pr[collCount>s]+ Pr[“breaks”IS]. 

Supposing the underlying IS is secure, the success 

probability Pr[“breaks”IS] is negligible.  

An adversary , with access to a random oracle H, 

has a negligible probability in finding s near-collisions 

on H(ki, ·) for given ki in time 3
( 2 )lO . The birthday 

attack states that at least one collision can be found 

with probability ≥1/2 after 2l  random input 

evaluations. If we take the parallel power of the 

adversary into account,  is allowed to make at most 

3
2l  queries for some constant α≥1. Since l >6log(α), 

we can get 3
2 2l l  . Bellare et al. [2] show that the 

upper bound on the birthday attack for q queries is q(q-

1)/(2N), where N is the range size of a function. 

Therefore, the success probability of an adversary with 

at most 3
2lq   queries to a random oracle with a 

range {0,1}
l
 is denoted as Pr[Coll], that is,

32 2 3Pr[ ] / (2 2 ) / (2 ),lColl n   log(n)≤ l≤ n. The 

verifier *
 
transmits a new “ki” in each round, the 

adversary can not use the previously obtained 

information and has to resume the search for a new key 

in each round. Hence, the success probability of an 

adversary for finding one collision is at most Pr[Coll] 

in each round.   

 Theorem 3. Let r=polly(n), and Pr[Coll]=p is the 

success probability of an adversary for finding one 

collision in the collision-finding stage. The success 

probability of an adversary of the IS* protocol in the 

random oracle model is:  

  
2( )

[ ]
3

s pr
Pr collCount s exp

pr

 
   

 
 

Where pr< s≤ 2pr. If the success probability of the 

adversary in each round is 2 3Pr[ ] / (2 ),Coll n  then: 

         
2 23

2 3

2 2
[ ] [ ]

3 36

s n r s
Pr collCount s exp

r n





 
      

 
 

Where 2 23 3/ (2 ) / ( ),r n s r n   and thus the total 

success probability of an adversary  is negligible in 

the classical random oracle when 2 3/ (2 )s r n in 

secure parameter n for a constant α. 

 Proof. Chernoff-bounds are employed to find the 

success probability of a classical adversary in 

finding at least s collisions in r independent rounds.  

As δ>0 and s=(1+δ)μ=(1+δ)pr in the first entry of 

Theorem 1, δ=s/pr-1. Hence, the success probability of 

the adversary can be obtained:  

                   Pr[collCount>s]≤ es-pr (pr)s/ (ss), s> pr 

As 0< δ≤ 1 and s=(1+δ)μ=(1+δ)pr in the second entry 

of Theorem 1, μ< s≤ 2μ. That is, pr< s≤ 2pr. The 

success probability of the classical adversary can be 

obtained:  

       
2( )

[ ]
3

s pr
Pr collCount s exp

pr

 
   

 
, pr< s≤ 2pr 

A classical adversary, making at most 3 l2q   queries 

to a random oracle with a range {0, 1}
l
 , has a success 

probability of 32 2 3/ (2 2 ) / (2 ).lp n    We just 

consider the case when 2 3Pr( ) / (2 ),
i i

X p n   and thus 
2 23 3/ (2 ) / ( ).r n s r n   The success probability of the 

classical adversary for finding at least s collisions in r 

independent rounds can be obtained: 

 
2 23

2 3

2 2
Pr[ ] exp[ ]

3 36

s n r s
collCount s

r n





 
      

 
 

Where 2 23 3/ (2 ) / ( )r n s r n   . It is negligible when 
2 3/s r n in secure parameter n for a constant  due 

to its decrease with s. Therefore, the total success 

probability of a classical adversary  is negligible in 

the random oracle model. As a result, in classical 

(1) 

(2) 

(3) 

(4) 

(5) 
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settings, the classical adversary’s probability of 

success is negligible. 

Next, we discuss the security of the protocol against 

quantum adversaries in the classical random oracle 

model. By applying the Grover’s search algorithm, we 

obtain a speed-up by evaluating the indicator function 

on superposition of inputs. The indicator function is 

based on the random oracle H. As only classical 

queries can be made to the oracle in the classical 

random oracle model, the power of the quantum 

computer can not be employed. Hence, the success 

probability of a quantum adversary with classical 

queries, the same as the probability in the random 

oracle model, is bounded by the classical attack on 

collision-search.  

The security of the protocol against quantum 

adversaries in the quantum random oracle model is 

discussed as follows.   

The classical hash function H should be transformed 

into a quantum-accessible function (denoted as HQ) at 

first. The security is studied when we instantiate the 

quantum random oracle by the function HQ. The 

function HQ allows quantum queries, which is called a 

quantum-accessible function. Here, we obey the fact 

[14] that all the classical computations running on a 

classical computer can also be operated on a quantum 

machine. Due to the quantum-accessible function HQ is 

allowed to be queried, the evaluation of this function 

can be applied to Grover’s algorithm directly. For each 

ki, the attacker Q operates Grover’s algorithm on an 

indicator function to check whether the equation 

HQ.Eval(ki, x')|l= HQ.Eval(ki, x')|l holds for distinct 

x≠x'. An algorithm proposed by Brassard et al. [8] tells 

us that it outputs a collision (Mi, M'i) with a 

probability of at least 1/2 after 3
2l  evaluations of HQ. 

The time assumptions in section 3 show that a 

quantum evaluation of HQ approximately elapses the 

same time as an evaluation of its corresponding 

classical function H does, and any other computation 

that does not require the evaluation costs zero time. As 

Grover’s algorithm only requires quantum-accessible 

black-box access to the hash function, the method 

described above applies directly to the quantum-

accessible random oracle model. 

 Theorem 4. Let r=poly(n), pQ denotes the success 

probability of a quantum adversary for finding one 

collision in the collision-finding stage. The success 

probability of a quantum adversary in the quantum 

random oracle model of the IS* protocol is (pQ≥ 

1/2): 

                Pr[collCount> s]< exp(-r /4 -s2 /r +s), 0< s< pQr 
 

            Pr[collCount> s]≤ exp[-(s- pQr)2 /(3 pQr)] , pQr < s≤ r 

 Proof. In each round of the collision-finding stage, 

the adversary Q finds a collision with a probability 

pQ≥1/2, and thus the expectation for finding 

collisions in r independent rounds is E(Xi)=μ=pQr. 

For 0< s< pQr =μ and s=(1-δ)μ, then 0< δ< 1. By 

applying the second entry of Theorem 2, the 

probability of a quantum adversary for finding 

collisions that are less than s collisions is obtained as:  

                Pr[collCount< s]< exp(s -r /4 -s2 /r), 0< s< pQr 

For pQr≤ s≤ r, since μ<(1+δ)μ≤ 2μ where 0< δ≤ 1, we 

can get pQr< s≤ 2 pQr. Only the case pQr< s≤ r is 

studied due to pQ≥ 1/2. According to the second entry 

of Theorem 1, the following success probability of a 

quantum adversary can be obtained: 

                  Pr[collCount> s]≤ exp[-(s -pQr)2 /(3 pQr)] 

6. Research Data 

The research data is outlined in this section. According 

to the proof of Theorem 1, a classical adversary has the 

same probability of success with a quantum adversary 

in the classical random oracle model. Table 1 shows 

success probabilities of an adversary in the classical 

random oracle model; Table 2 provides success 

probabilities of a quantum adversary in the quantum 

random oracle model.  

Table 1. Security in the random oracle model (r=poly(n)). 

s r/4 2r/5 r/8 3r/5 3r/4 

Success probability 

3

2
exp

32

r n



 
   

 
 

3

2
exp

25

r n



 
   

 
 

3

2
exp

128

r n



 
   

 
 

3

2

18
exp

75

r n



 
   

 
 

3

2

9
exp

32

r n



 
   

 

 

security secure secure secure secure secure 

Table 2. Security in the quantum random oracle model (r=poly(n)). 

s r/4 2r/5 r/8 3r/5 3r/4 

Success probability > 1 exp( )
16

r
   > 1 exp( )

100

r
   >

9
1 exp( )

64

r
   <

2(3 5 )
exp

75

Q

Q

p r

p

  
 
 
 

 

2(3 4 )
exp

48

Q

Q

p r

p

  
  

 
 

 

security insecure insecure insecure secure secure 

From the research data in Table 1, we can get the 

conclusion that, in the classical random oracle model, 

the success probabilities of an adversary are negligible. 

It is difficult to find collisions for a classical or 

quantum adversary. 

However, in the quantum random oracle model, let 

s=wr, where pQ≤ w≤ 1. Hence, if (w-pQ) is positive and 

non-negligible, thus (w-pQ)
2
r/(3pQ) is very large due to 

(6) 

(6) 

(7) 

(8) 

(9) 
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r=poly(n). Hence, exp[-(w-pQ)
2
r/(3pQ)] is exponentially 

small. As Table 2 shows, if (pQ-3/5) is non-negligible 

and the parameter s>3r/5, this protocol is secure in the 

quantum random oracle model. 

7. Results Analysis 

We analyze our results in this section, and find the 

lower bound on this parameter. Additionally, some 

other optional approaches are given to make the 

identification protocol secure in the quantum random 

oracle model. 

7.1. Lower Bound 

The lower bounds of the variable s are explored to 

guarantee the security of the IS* protocol in the 

classical and quantum random oracle models. 

 Theorem 5. Assuming that the security parameter is 

n, p (pQ, respectively) denotes the success 

probability of collision-finding in each round of the 

protocol in the classical (quantum, respectively) 

random oracle model. Then, the lower bound of the 

variable s against a quantum adversary have the 

same expression with a classical adversary as: 

3 ln2
l

s pr npr   . 

 Proof. In the random oracle model, according to 

Theorem 3, the success probability of an adversary 

with classical queries is: 

                      Pr[collCount> s]≤ es-pr (pr)s/(ss), s>pr 

Detailed, Pr[collCount> s]≤ exp[-(s -pr)
2
 /(3pr)] where 

pr< s≤ 2pr, and Pr[collCount≥ s]≤ 2
-s
, s≥ 6pr. It is 

apparent that the probability decreases with s, and thus 

the lower bound of s is pr< sl≤ 2pr since the success 

probability is negligible when [s/(pr)-1] is non-

negligible. Since the security parameter is n, we can 

get 3 ln2
l

s pr npr   . 

In the quantum random oracle model, the success 

probability of a quantum adversary of the protocol is: 

                      Pr[collCount< s]≤ exp[-(pQr)2/(2pQr)] 

 Where 0< s< pQr, and 

                    Pr[collCount> s]≤ exp[-(pQr-s)2/(3pQr)] 

Where pQr< s≤ r. We can also get the secure lower 

bound of the parameter 3 2
l Q Q

s p r np r ln   . 

7.2. Other Approaches 

Assume that the prover fails to pass the identification 

stage and the decision bit b=0, the identification of IS* 

protocol totally depends on the collision-finding stage. 

We present several approaches that can be considered 

to modify the protocol to be secure even in the 

quantum random oracle model. 

● Let the parameter 3 2
Q Q

s p r np r ln   , the protocol 

will be secure in the quantum random oracle model. 

● Reducing the number of evaluations to 3
2l 

 
, the 

probability of finding a collision in each round is 

negligible as the case in the random oracle model. 

● The collision-search stage of the protocol is 

encouraged to transform into other quantum-secure 

primitives. 

8. Conclusions 

An improved protocol is introduced to modify the 

security of the IS* protocol proposed by Boneh et al. 

[6]. The improved protocol is not only secure in the 

classical random oracle model, but is also secure in the 

quantum random oracle model. Success probabilities 

of an adversary are studied in all cases instead of just 

in the setting where s = r/4 in the original protocol. Our 

results give the lower bound on the quantum research 

of the near-collision-resistant hash function, and thus it 

can be used even if the conclusion of the problem of 

collision is changed. Furthermore, the secure lower 

bound is given on the variable s in the IS* protocol.  

Although some other approaches are introduced, 

further study is needed. Quantum algorithms that 

accelerating the classical methods significantly, like 

Grover’s and Shor’s algorithms, and other quantum 

secure primitives in the quantum random oracle model 

need to be explored. 
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