
372 The International Arab Journal of Information Technology, Vol. 14, No. 3, May 2017

Skyline Recommendation in Distributed Networks

Zhenhua Huang
1
, Jiawen Zhang

1
, Zheng Liu

1
, Bo Zhang

2
, and Dong Wang

3

1
School of Electronics and Information, Tongji University, China

2
College of Information Mechanical and Electrical Engineering, Shanghai Normal University, China

3
College of Computer Science and Information Engineering, Shanghai Institute of Technology, China

Abstract: Skyline recommendation technology has recently received a lot of attention in the database community. However,

the existing works mostly focus on how to obtain skyline objects from fine-grained data in centralized environments. And the

time cost of skyline recommendation will increase exponentially as the number of data and skyline recommendation

instructions increases, which will seriously influence the recommendation efficiency. Motivated by the above fact, this paper

proposes an efficient algorithm Skyline Recommendation Algorithm in Distributed Networks (SRADN) in Super-Peer

Architecture (SPA) distributed networks to handle multiple subspace skyline recommendations by prestoring the set of skyline

snapshots under the cost constraint of maintenance and communication. The proposed SRADN algorithm fully considers the

characteristic of storage and communication of SPA networks, and uses the map/reduce distributed computation model. The

SRADN algorithm can quickly produce the optimal set of skyline snapshots through the following two phases: Heuristically

constructing the initial set of snapshots, and adjusting the set of snapshots based on the genetic algorithm. The detailed

theoretical analyses and extensive experiments demonstrate that the proposed SRADN algorithm is both efficient and effective.

Keywords: Skyline recommendation, distributed networks, map/reduce, genetic algorithm.

Received August 30, 2014; accepted December 16, 2014

1. Introduction

Skyline recommendation technolgy has attracted much

attention recently since it is used in many applications,

such as big data analysis, high-dimensional data

visualization, and multi-criteria decision making [21].

Given a set of objects = {p1, …, pn}, each object pi

(i [0, n]) has m dimensions F={d1, …, dm}, the skyline

recommendation over subspace UF is to return the

objects that are not dominated by any other objects

restricted to U. In fact, the preference function

“dominate” can be defined in any way as long as it is

monotone on U [14]. It is not difficult to see that for a

set of objects including m dimensions, it has at most 2
m
-

1 different subpace skyline recommendations [10].

Recently, various techniques have been proposed for

processing the skyline recommendation. Literature [2]

first presented the concept of skyline recommendation,

and proposed two feasible recommendation algorithms:

Block Nested Loop (BNL) and Divide and Conquer

(DC). BNL essentially compares each object in the

database with all the other objects, and outputs the one

only if it is not dominated in any case. DC divides the

dataset into several partitions that could fit in memory.

The skyline objects in all partitions are computed

separately using a main-memory algorithm, and then

merged to produce the final result. Based on BNL,

Literature [5] designed the Sort First Skyline (SFS)

algorithm which sorts the input data according to a

preference function, after which the skyline object

could be found in another pass over the sorted list.

Literature [8] theoretically gived the time cost of the

algorithms BNL, DC and SFS under the assumption of

independent distribution, and proposed an External-

Sort Algorithm (ESA) to improve the recommendation

efficiency. Specially, ESA could reduce the time

complexity of skyline recommendation to

O(||log||+m||). Literature [11] integrated k-means

clustering into skyline recommendation, and returns k

“representative” and “diverse” skyline objects to users.

Literature [15] was based on the model of possible

world instances [16] and proposed two efficient

algorithms Bottom-Up Agorithm (BUA) and Top-

Down Agorithm (TDA) to process the skyline

recommendation on uncertain data. BUA utilized the

R-tree index structure [12], and returned all skyline

objects whose probabilities are greater than the

threshold  by three phases: bounding, pruning and

refining. While TDA organized all uncertain data

objects as a partition tree [22], and used three effective

properties of partition tree to decrease the comparison

number between objects.

As the wide use of distributed networks, Literature

[19] first considered processing skyline

recommendation in Super-Peer Architecture (SPA)

[23] distributed networks, and proposed the concept of

extended skyline set to reduce the cost of data

transmission. Based on literature [19], literature [6]

presented the Multidimensional Routing Indices (MRI)

index structure to decrease the number of network

nodes which take part in the skyline recommendation.

The MRI index structure could further reduce the cost

of data transmission. Literature [13] identified the

drawbacks of the methods in literatures [19], and

Skyline Recommendation in Distributed Networks 373

proposed an efficient algorithm to improve the skyline

recommendation performance in SPA distributed

networks. The algorithm used bloom filter [7] to reduce

the cost of data transmission, and utilized the regular

grid index [17] to organize the data objects and thus

could remarkably improve the computation efficiency

for skyline recommendation. Literature [18] introduced

the concept of Vertical Partition Skyline (VPS) in SPA

distributed networks. VPS was an algorithmic

framework that includes two phases. In the first phase,

VPS searched for an anchor point panc which dominates,

and hence eliminates, a large number of objects. And in

the second phase, starting with panc, VPS constructed

incrementally a pruning area using an interesting union-

intersection property of dominance regions. The

network nodes did not transmit those objects falling

within the pruning area in their local subspace, which

could evidently improve the skyline recommendation
performance.

To the best of our knowledge, the existing skyline

recommendation algorithms in SPA distributed

networks use fine-grain basic data as the input

parameter. Hence, as the data volume and

dimensionality increase, network communication cost

and CPU cost will exponentially increase. Accordingly,

it will seriously influence the skyline recommendation

efficiency. Due to the appearance of high-capacity

cheap disks, we can prestore w skyline snapshots

SN={s1,…, sw} in SPA distributed networks to

efficiently process u subspace skyline

recommendations SR={sr1,…, sru}. On the other hand,

when basic data is changed, the w prestoring skyline

snapshots need to be periodically updated, which will

need extra maintenance cost for these skyline snapshots.

And transferring the skyline snapshots from storage

nodes to computation nodes needs extra network

communication cost.

Based on the above facts, in this paper, we propose

Skyline Recommendation Algorithm in Distributed

Networks (SRADN), an efficient algorithm in SPA

distributed networks to process u subspace skyline

recommendations SR= {sr1, …, sru} by prestoring w

skyline snapshots SN= {s1, …, sw} under the cost

constraint of maintenance and communication. Our

SRADN algorithm utilizes the map/reduce distributed

computation model [1] and can quickly produce the

optimal set of skyline snapshots through the following

two phases: heuristically constructing the initial set of

snapshots, and adjusting the set of snapshots based on

the genetic algorithm. The detailed theoretical analyses

and extensive experiments demonstrate that our

SRADN algorithm is both efficient and effective.

The rest of the paper is organized as follows: Section

2 gives the problem description of our work. Section 3

presents the approach for exact selection of optimal

prestoring skyline snapshots. In section 4, we propose

the SRADN algorithm to fast produce the optimal set of

skyline snapshots using the map/reduce distributed

computation model. We present the experimental

study in section 5. Finally, section 6 concludes the

paper with directions for future work.

2. Problem Description

Without loss of generality, we let the SPA distributed

network  include  storage nodes Ng
(1)

, …, Ng
()

, and

the computation node in  be Nc. Assume that u

subspace skyline recommendations SR={sr1,…, sru}

are submitted on Nc, and candidate skyline snapshots

CSN= {s1, …, s} are distributedly stored on Ng
(1)

, …,

Ng
()

.

First of all, we give three cost models for skyline

recommendation in SPA distributed networks.

1. Computation Cost Model: the time cost of

obtaining the result of subspace skyline

recommendation sr from skyline snapshot s, is

denoted as s
srt .It includes two parts: the I/O cost of

transferring s from the disk to memory, denoted as

ts; and the CPU cost of obtaining the result of sr

from s, denoted as tssr.

The I/O cost ts can be easily obtained and is expressed

below Equation 1:

/

()

_

block

s I O

size s
t t

block size
 

Where size(s) is the size of s, block_size is the block

size, and block
O/It is the time cost of transferring a block.

We then give the CPU cost tssr as follows [3].

Without loss of generality, we assume that the subpace

of sr is V, and let v=|V|.

 Theorem 1. Assume that s satisfies the joint

distribution function F(x) and the joint density

function f(x) on V, where x = (x1, …, xv). Then the

expected value E(s, v) of objects returned by sr can

be denoted as Equation 2:

| | 1
| | [0,1] ()(1 ())

v s
s f x F x dx


 

 Theorem 2. Assume that s satisfies the joint

distribution function F(x) and the joint density

function f(x) on V, where x = (x1, …, xv). Then the

CPU cost tssr can be denoted as Equation 3:

 | |

2 (1,) (1, 1) 1
s

x E x v E x v x     

2. Maintenance Cost Model: the time cost of updating

s when the basic data  changed. We let the

subspace of s be V, and assume s is stored on the

storage node Ng
(i)

 (1 i ) which also stores 

skyline snapshots s
(1)

, …, s
()

. According to the

literature [9], we can know that only those skyline

snapshots whose subspaces include V can be used

to update s. We select s_min, the skyline snapshot

which needs the minimal time cost to update s. It is

(1)

(2)

(3)

374 The International Arab Journal of Information Technology, Vol. 14, No. 3, May 2017

not difficult to see that the time cost of using s_min

to update s equals the one of obtaining the result of s

from s_min, i.e., min_s
st (see the Equations 1, 2, 3).

3. Communication Cost Model: the time cost of

transferring s from the storage node Ng
(i)

 (1 i ) to

the computation node Nc, is denoted as nts. The

communication cost can be expressed below

Equation 4:

()

()

s

i
N Ng c

size s
nt

TS




Where
c

)i(
g NN

TS


is the network bandwidth between

Ng
(i)

and Nc.

Based on the computation cost model, we can select

and prestore w (w<) skyline snapshots SN={s1, …, sw}

from candidate ones, and the time cost of processing u

subspace skyline recommendations SR= {sr1,…, sru}

can be expressed as Equation 5:

comCost(SR)= 1 _ min

u

i sr sri i
t 



Where sri_min belongs to SN and needs the minimal

time cost to obtain the result of sri.

On the other hand, based on the maintenance cost

and the communication cost, the time cost of

maintaining and transferring SN can be expressed as

Equation 6:

mtCost(SN)=
_ min

1 ()
sw i

i s si i
t nt 

 Problem Definition: In this paper, given u subspace

skyline recommendations SR={sr1,…, sru} and the

user threshold of maintenance and communication

cost userCost, our goal is to select and prestore the

optimal w (w<) skyline snapshots SN={s1,…, sw}

from  candidate ones such that

mtCost(SN)userCost and comCost(SR) is minimal.

3. Exact Selection of Optimal Prestoring

Skyline Snapshots

Given the user threshold userCost, in order to exactly

select the optimal w skyline snapshots, we need

traverse the exponential combinations of skyline

snapshots. And hence it is an NP-hard problem, which

can be proved in Theorem 3.

 Theorem 3. Assume there exists u subspace skyline

recommendations SR={sr1,…, sru} and  candidate

skyline snapshots CSN={s1,…, s} in the SPA

distributed network. Given the user threshold of

maintenance and communication cost userCost, it is

an NP-hard problem to select w (w<) skyline

snapshots SN={s1,…, sw} from CSN such that

comCost(SR) is minimal.

 Proof. The time cost of obtaining SN is mainly

determined by the search process of combinations

of skyline snapshots. It is not difficult to see that

each combination of skyline snapshots needs the

capability to handle all u subsapce skyline

recommendations. In the following part, we

determine the time complexity of exactly obtaining

SN by analyzing the number of combinations of

skyline snapshots.

 For w=1, the number of combinations of skyline

snapshots Equation 7:

 INS(1)=
1 u

u
C C


 =

 For w=2, the number of combinations of skyline

snapshots (Equation 8):

 INS(2)=
2 1 1

(... ...)
i u

u u u
C C C C




     =

2
(2 2)

u
C


 

 For w=t, the number of combinations of skyline

snapshots (Equation 9):

 INS(t)=
1 1 1 1 1 2

1 1 1 1
{(...

n tt

u u u t u u u t
C C C C C C C





     
     

1 2 1 1 1 1 1

1 2 3 1 1
...) ... (...

u t i

u u t t u u i u t
C C C C C C C C

 

     
       

1 2 1 1 1

1 2 3 1
...)

i u t i u i t

u u i u t u u i t t
C C C C C C C C

   

     
       

1 1 1 1 1

1 2 3 1
... ... }

u t

u t t t
C C C C C

 

  
      = ()

t u
C t t


 

 …

So, the time complexity O(γ, u) of exactly obtaining

SN is INS
(1)

+… +INS
(γ)

 1 ()i u

i C i i

   . From O(γ, u),

we can know that exactly obtaining SN needs

exponential time complexity, which belongs to NP

problem. On the other hand, for a given combination

of skyline snapshots IRS including  skyline

snapshots {s1, …, s} CSN, deciding whether if IRS

is optimal can be reduce to the minimum cover

problem of weighted directed bipartite graph G(IRS,

SR, W) [20], where W is the computation cost from

IRS to SR. According to the graph theory [4], we can

know that the minimum cover problem of weighted

directed bipartite graph is an NP-hard problem. And

hence exactly obtaining SN is an NP-hard problem.

From Theorem 3, we can see that exactly obtaining

optimal w skyline snapshots needs massive CPU time

cost. Hence, in the next section, we propose an

efficient algorithm SRADN to fast achieve the

approximate optimal solution.

4. The SRADN Algorithm

The core idea of SRADN is to use the map/reduce

distributed computation model and fast produce the

approximate optimal set of skyline snapshots through

two phases: Heuristically constructing the initial set of

snapshots, and adjusting the set of snapshots based on

the genetic algorithm.

The implementation process of SRADN can be

shown in Algorithm 1.

(4)

(5)

(4)

(6)

(7)

(8)

(9)

Skyline Recommendation in Distributed Networks 375

Algorithm 1: SRADN.

Input: candidate skyline snapshots CSN={s1,…, s}, subspace

skyline recommendations SR={sr1,…, sru}, the user threshold

userCost;

Output: the approximate optimal solution ASN.

Begin

 1. Construct CSN’s corresponding key-value set

 KY
(CSN)

={<‘s’+i, si>|i[1,]};

 2. Construct SR’s corresponding key-value set

 KY
(SR)

={<‘sr’+j, srj>|j[1,u]};

 3. Divide KY
(CSN)

 into m parts KY
(CSN)

1,…, KY
(CSN)

m;

 /* m is the user parameter */

 4. Divide KY
(SR)

 into m parts KY
(SR)

1,…, KY
(SR)

m;

 5. For =1 to m Do

 6. SIKY
(CSN)

KY
(SR)

;

 7. {<s, sr>|sKY
(CSN)

srKY
(SR)

}map(SI);

 /* sKY
(CSN)

, srKY
(SR)

 and can be processed

 by s */

 8. Let the partition function f equal (i mod n);

 /* n is the number of computers used to execute

the reduce function */

 9. ASN;

10. For x=1 to n Do /* parallel processing */

11. {<s’, SR’>}reduce({<s, sr>});

 /* s’KY
(CSN)

x, SR’KY
(SR)

x and includes all

subspace skyline recommendations processed

by s’ */

12. ASNASN{s’|SR’};

13. Return ASN.

End

In Algorithm 1, SRADN first constructs two key-value

sets KY
(CSN)

 and KY
(SR)

. In KY
(CSN)

, each pair of key-

value consists of a skyline snapshot ID and its

corresponding entity; while in KY
(SR)

, each pair of key-

value consists of a subspace skyline recommendation

ID and its corresponding entity (Lines 1 and 2). Then

based on the user parameter m, SRADN divides KY
(CSN)

into m parts KY
(CSN)

1,…, KY
(CSN)

m, and also divides

KY
(SR)

 into m parts KY
(SR)

1,…, KY
(SR)

m (Lines 3 and 4).

The map function (Line 7) takes KY
(CSN)

KY
(SR)

 as the

input parameter, and returns the intermediary key-value

set {<s, sr>} through two-phase optimization process,

where s is the skyline snapshot in KY
(CSN)

 and sr is the

subspace skyline recommendation in KY
(SR)

 whose

result can be obtained from s. The reduce function

(Line 11) classifies the intermediary key-value set {<s,

sr>}, and for each skyline snapshot s, outputs all

subspace skyline recommendations whose results can

be obtained from s. Finally, SRADN filters those

skyline snapshots which are not used to handle any

subspace skyline recommendations, and returns the

remaining ones to users (Lines 12 and 13).

The map and reduce functions can be shown in

Algorihms 2 and 3.

Algorithm 2: The map function.

Input: the key-value set KY
(CSN)

={<skyline snapshot ID, skyline

snapshot entity>}, the key-value set KY
(SR)

= {<subspace skyline

recommendation ID, subspace skyline recommendation

entity>};

Output: the intermediary key-value set KY
(int)

.

Begin

 1. KY
(int)
;

 2. mapCostuserCost/m;

 3. rootSthe root skyline snapshot which can process

 all subspace skyline recommendations in KY
(SR)

;

 4. If mtCost({rootS})>mapCost Then Return NULL;

 /* mtCost({rootS}) is the time cost of maintaining

 and transferring {rootS}, see Equation (6) */

 5. Else

 6. For <sr_id, sr_ent> KY
(SR)

 Do

 7. KY
(int)
KY

(int)
{<rootS, sr_ent>};

 8. KY
(int)

_ISRADN_I(KY
(int)

, KY
(CSN)

, KY
(SR)

);

 /* Phase 1: heuristically constructing the initial set

 of snapshots */

 9. KY
(int)

_IISRADN_II(KY
(int)

_I);

 /* Phase 2: adjusting the set of snapshots based on

 the genetic algorithm */

10. KY
(int)
KY

(int)
_II;

11. Return KY
(int)

.

End

Algorithm 3: the reduce function.

Input: the intermediary key-value set KY
(int)

={<skyline

snapshot entity, subspace skyline recommendation entity>};

Output: the key-value set KY.

Begin

 1. SNthe set of skyline snapshot entities in KY
(int)

;

 2. For sSN Do

 3. sr
(s)
;

 4. For <s, sr> KY
(int)

 Do

 5. sr
(s)
sr

(s)
{sr};

 6. KY;

 7. For sSN Do

 8. KYKY{<s, sr
(s)

>};

 9. Return KY.

End

In Algorithm 2, the map function has two tasks, i.e.,

two optimization phases: Heuristically constructing

the initial set of snapshots (Line 8), and adjusting the

set of snapshots based on the genetic algorithm (Line

9). And two optimization phases SRADN_I and

SRADN_II can be implemented as Algorithms 4 and 5.

Algorithm 4: SRADN_I.

Input: the key-value set KY
(int)

={<skyline snapshot entity,

subspace skyline recommendation entity>}, the key-value set

KY
(CSN)

={<skyline snapshot ID, skyline snapshot entity>}, the

key-value set KY
(SR)

={<subspace skyline recommendation ID,

subspace skyline recommendation entity>};

Output: the key-value set KY
(int)

_I.

Begin

 1. TempS{rootS};

 2. SNthe set of skyline snapshot entities in KY
(CSN)

;

 3. For <sr_id, sr_ent>KY
(SR)

 Do

 4. s s
ent_sr

SNs
tmin


;

 /* s
ent_srt is the time cost of obtaining the result

 of sr_ent from s, see Equations (1)-(3) */

 5. If mtCost(TempS{s})mapCost Then

 6. KY
(int)
KY

(int)
{<s, sr_ent>}

 -{<rootS, sr_ent>};

 7. TempSTempS{s};

376 The International Arab Journal of Information Technology, Vol. 14, No. 3, May 2017

 8. KY
(int)

_IKY
(int)

;

 9. Return KY
(int)

_I.

End

Algorithm 5: SRADN_II.

Input: the key-value set KY
(int)

_I={<skyline snapshot entity,

subspace skyline recommendation entity>}, the key-value set

KY
(CSN)

={<skyline snapshot ID, skyline snapshot entity>}, the

key-value set KY
(SR)

= {<subspace skyline recommendation ID,

subspace skyline recommendation entity>};

Output: the key-value set KY
(int)

_II.

Begin

 1. SNthe set of skyline snapshot entities in KY
(CSN)

;

 2. the number of subspace skyline

 recommendation entities in KY
(SR)

;

 3. VS;

 4. f(VS)0; /* initialize the fitness function */

 5. For sSN Do

 6. Construct the corresponding bit vector V
(s)

 of s

 whose length equals ;

 7. For x=1 to  Do

 8. srxthe x-th subspace skyline

 recommendation entity in KY
(SR)

;

 9. If <s, srx>KY
(int)

_I Then

10. V
(s)

[x]=1; f(VS)f(VS)+ s
srx

t ;

11. Else V
(s)

[x]=0;

12. VSVS{V
(s)

};

 /* crossover : Lines 13-23 */

13. For i=1 to |VS|/2 Do

14. VS VS;

15. V
(s)
the corresponding bit vector of i-th skyline

snapshot s;

16. V
(s’)
the corresponding bit vector of (i+1)-th

skyline snapshot s’;

17. Randomly select two exchange points a, b of V
(s)

and V
(s’)

;

18. Visit SN and obtain the first pairs (sn, sn’) of

skyline snapshots which satisfys:

V
(sn)

[a, b]V
(sn’)

[a, b]=V
(s)

[a, b]V
(s’)

[a, b];

/* V
(sn)

[a, b] is the bit vector between a and b of

V
(sn)

 */

19. Exchange between V
(s)

[a, b] and V
(sn)

[a, b];

20. Exchange between V
(s’)

[a, b] and V
(sn’)

[a, b];

21. SN’{s|sSNi, V
(s)

[i]=1};

22. If mtCost(SN’)mapCost and f(VS)<f(VS) Then

23. VSVS ;

/* mutation: Lines 24-39 */

24. For i=|VS|/2+1 to |VS| Do

25. V
(s)
the corresponding bit vector of i-th skyline

snapshot s;

26. Randomly select two exchange points a, b of V
(s)

;

27. For j=a to b Do

28. If V
(s)

[j]=0 Then

29. V
(s)

[j]=1;

30. Visit VS and obtain the first vector V
(sn)

whose j-th bit equals 1;

31. V
(sn)

[j]=0;

32. Else

33. V
(n)

[j]=0;

34. Visit SN and obtain the skyline snapshot sn

 which can process j-th subspace

 recommendation;

35. V
(sn)
 the corresponding bit vector of sn;

36. V
(sn)

[j]=1;

37. SN’{s|sSNi,V
(s)

[i]=1};

38. If mtCost(SN’)mapCost and f(VS)<f(VS) Then

39. VSVS ;

40. KY
(int)

_II;

41. For V
(s)
VS, xV

(s)
 Do

42. If V
(sn)

[x]=1 Then

43. srxthe x-th subspace skyline recommendation

entity in KY
(SR)

;

44. KY
(int)

_IIKY
(int)

_II{<s, srx>};

45. Return KY
(int)

_II.

End

In Algorithm 4, for each subspace skyline

recommendation entity sr_ent, SRADN_I first

computes the time cost of obtaining the result of

sr_ent from every skyline snapshot, and chooses the

one (denoted as s) with minimal time cost (Lines 3

and 4). Further, under the cost constraint of

maintenance and communication, SRADN_I updates

sr_ent’s corresponding skyline snapshot from rootS to

s (Lines 5, 6, 7).

We can see from Algorithm 4 that SRADN_I is

based on the time cost model, and can preliminarily

optimize the set of skyline snapshots.

In Algorithm 5, in order to utilize the core idera of

genetic algorithm, SRADN_II constructs a bit vector

V
(s)

 for each skyline snapshot s. The length of V
(s)

 is

the number of subspace skyline recommendation

entities in KY
(SR)

. And for each bit x in V
(s)

, if the x-th

subspace skyline recommendation entities processed

by s, then V
(s)

[x] equals 1, otherwise equals 0. (Lines

5-11)

In the algorithm, the fitness function f(VS)

evaluates the computation cost of obtaining subspace

skyline recommendation from skyline snapshot (Line

10). It is not difficult to see that for a skyline snapshot

s, the smaller the value of fitness function, the stronger

its adaptability. That is, s is more excellent.

In Lines 13-23, SRADN_II obtains the new

excellent generation set of skyline snapshots by two-

point crossover of VS . While in Lines 24-39,

SRADN_II obtains the new excellent generation set of

skyline snapshots by two-point mutation of VS .

Note that for guaranteeing the correctness of the

algorithm; in the processes of two-point crossover and

two-point mutation, we always let a subspace skyline

recommendation only be associated with one skyline

snapshot. This can be seen in Line 18 and Lines 27-

36, respectively.

It is not difficult to see that SRADN has the

polynomial time complexity, which is shown in the

following theorem.

 Theorem 4. Assume there exists u subspace skyline

recommendations SR={sr1,…, sru} and  candidate

skyline snapshots CSN={s1,…, s} in the SPA

distributed network. Given the user threshold of

Skyline Recommendation in Distributed Networks 377

maintenance and communication cost userCost, and

the partition parameter m, the time complexity of

SRADN equals (Equation 10):

3

2 3
()

2

u
O u

m m

 
   

 Proof. The time cost of SRADN mainly includes six

parts:

1. O(γ, u): the time cost of constructing KY
(CSN)

 and

KY
(SR)

 in Algorithm 1.

2. O(γ/m×u/m)=O(γ×u /m
2
): in Algorithm 4, for each

subspace skyline recommendation, the time cost of

obtaining the skyline snapshot with minimal

computation cost.

3. O(γ/m×u/m)=O(γ×u /m
2
): the time cost of

constructing bit vectors in Algorithm 5.

4. O(γ/2m×(γ/m)
2
)=O(γ

3
/2m

3
): the time cost of two-

point crossover in Algorithm 5.

5. O(γ/2m×γ/m)=O(γ
2
/2m

2
): the time cost of two-point

mutation in Algorithm 5.

6. O(γ/n+u/n+γ/n)=O((2γ+u)/n): the time cost of

executing the reduce function in Algorithm 1, where

n is the number of computers used to execute the

reduce function.

Hence, the time complexity of SRADN equals

(Equation 11):

 cost(SRADN)= + O(γ× u/m2)+ O(γ× u/m2)+ O(γ3/2m3)+

 O(γ2/2m2) + O((2γ+u)/n)+ O((2γ+u)/n) =

 O(γ+u+γu/m2+γ3/2m3)

5. Experimental Evaluation

5.1. Experimental Setting

In our experiments, experimental environment is a

three-layer SPA distributed network, which consists of

30 PC. And each PC has a quad-core i5-3450 CPU, 4G

memory, 500G hard drive, and CentOS Linux 6.4

operating system.

The computation node contains a cluster consisting

of 10 PC, in which a PC is selected as the control

computer (Master). These 10 PC constitutes a Hadoop

platform whose version number is 1.0.3. The remaining

two layers include 20 distributed storage nodes, and

each node has one PC. In our experiments, we produce

200 subspace skyline recommendations on the

computation node, and 100 skyline snapshots on each

storage node. Then we totally have 2000 candidate

skyline snapshots in the SPA distributed network.

There are three algorithms compared with SRADN:

1. OPTIMAL, the algorithm traverses exponential

combinations of skyline snapshots to obtain the

exact optimal solution.

2. SRADN_I, the algorithm obtains the solution only

through the first phase of SRADN.

3. SRADN_II, the algorithm obtains the solution

through the second phase of SRADN. Each class of

experiments is divided into two groups: the number

of subspace skyline recommendations on the

computation node is fixed to 100, and the number

of skyline snapshots on each storage node varies in

the range [20, 100]; and the number of skyline

snapshots on each storage node is fixed to 50, and

the number of subspace skyline recommendations

on the computation node varies in the range [40,

200].

5.2. Performance Evaluation for SRADN

In this subsection, we experimentally evaluate the

optimization ratio of SRADN. Figures 1-a and 1-b

rspetively show the results of experiments for these

four algorithms.

a) The first group of experiments.

b) The second group of experiments.

Figure 1. Performance evaluation for four algorithms.

In Figure 1, we take OPTIMAL as the baseline

since the set of skyline snapshots produced by

OPTIMAL is exactly optimal. And we let the

optimization ratio of OPTIMAL equal 100%. From

Figure 1, we can observe that the optimization ratio of

SRADN approaches the one of OPTIMAL, and the

optimization ratios of SRADN_I and SRADN_II are

smaller than the one of SRADN. This is mainly

because SRADN_I and SRADN_II easily fall into the

problem of local optimum, and can not obtain the

better set of skyline snapshots. Moreover, we can

observe that SRADN_I is the worst one among these

four algorithms on optimization ratio. For instance, in

Figure 1-a, when the number of skyline snapshots on

each storage node equals 100, the optimization ratio of

SRADN is equal to 93.6%, while the optimization

ratios of SRADN_I and SRADN_II are only 37.5%

and 74.1% respectively. And in Figure 1-b, when the

number of subspace skyline recommendations on the

(11)

(10)

378 The International Arab Journal of Information Technology, Vol. 14, No. 3, May 2017

computation node equals 80, the optimization ratio of

SRADN is equal to 95.6%, while the optimization

ratios of SRADN_I and SRADN_II are only 68.3% and

72.6% respectively.

5.3. Runtime Evaluation for SRADN

In this subsection, we experimentally evaluate the

runtime of SRADN. Figures 2-a and b respectively

show the results of experiments for these four

algorithms.

a) The first group of experiments.

b) The second group of experiments.

Figure 2. Runtime evaluation for four algorithms.

Although, in Figure 1, the optimization ratio of

OPTIMAL is slightly higher than the one of SRADN.

While in Figure 2, we can see that the runtime of

OPTIMAL is huge in each experimental setting. The

main reason is:

1. In order to exactly obtain the optimal set of skyline

snapshots, OPTIMAL must traverse all possible

combinations of skyline snapshots, and has

exponential time cost.

2. While SRADN does not need to traverse all possible

combinations of skyline snapshots, and only has

polynomial time cost to return approximate optimal

solution. Moreover, from Figure 2, we can also see

that the runtime of SRADN is slight longer than the

ones of SRADN_I and SRADN_II, and the runtime

of SRADN_I is the shortest among these four

algorithms. For instance, in Figure 2-a, when the

number of skyline snapshots on each storage node

equals 100, the runtime of OPTIMAL equals

79824.6 seconds, while the ones of SRADN,

SRADN_I and SRADN_II only is 198.5 seconds,

35.9 seconds and 155.4 seconds respectively. And in

Figure 2-b, when the number of subspace skyline

recommendations on the computation node equals

200, the runtime of OPTIMAL equals 49652.5

seconds, while the ones of SRADN, SRADN_I and

SRADN_II only is 147.8 seconds, 20.4 seconds and

110.4 seconds respectively.

Hence, from the experimental evaluation in Figures 1

and 2, we can get the conclusion that SRADN can

efficiently balance the optimization ratio and runtime,

and has good extendibility.

7. Conclusions and Future Works

It is very meaningful to research and implement

subspace skyline recommendations in SPA distributed

networks under the cost constraint of maintenance and

communication. In this paper, we analyze the main

performance drawbacks of existing works, and

propose an efficient algorithm SRADN to efficiently

process subspace skyline recommendations in SPA

distributed networks. The SRADN algorithm does not

need to use fine-grain basic data as the input

parameter, and just utilizes prestoring optimal set of

skyline snapshots to efficiently process multiple

subspace recommendations. Our SRADN algorithm

utilizes the map/reduce distributed computation model

and can fast produce the optimal set of skyline

snapshots through the following two phases:

Heuristically constructing the initial set of snapshots,

and adjusting the set of snapshots based on the genetic

algorithm. The detailed theoretical analyses and

extensive experiments demonstrate that our SRADN

algorithm is both efficient and effective.

Future work will focus on designing more exact

cost evaluation model, improving the processes of

two-point crossover and mutation in Algorithm 5, and

on more experimentation.

Acknowledgments

This work is supported by the National Natural

Science Foundation of China (No. 61272268,

61103069), the Program for New Century Excellent

Talents in University (NCET-12-0413), the Fok Ying-

Tong Education Foundation (142002).

References

[1] Afrati F. and Ullman J., “Optimizing Multiway

Joins in a Map-Reduce Environment,” IEEE

Transactions on Knowledge and Data

Engineering, vol. 23, no. 9, pp. 1282-1298, 2011.

[2] Borzsonyi S., Kossmann D., and Stocker K.,

“The Skyline Operator,” in Proceeding of 17
th

International Conference on Data Engineering,

Heidelberg, pp. 421-430, 2001.

[3] Chaudhuri S., Dalvi N., and Kaushik R., “Robust

Cardinality and Cost Estimation for Skyline

Operator,” in Proceeding of 22
th
 International

Conference on Data Engineering, Atlanta, pp. 1-

Skyline Recommendation in Distributed Networks 379

10, 2006.

[4] Chen Q., Zhang Q., and Niu Z., “A Graph Theory

based Opportunistic Link Scheduling for Wireless

Ad-Hoc Networks,” IEEE Transactions on

Wireless Communications, vol. 8, no. 10, pp.

5075-5085, 2009.

[5] Chomicki J., Godfrey P., Gryz J., and Liang D.,

“Skyline with Presorting: Theory and

Optimization,” in Proceeding of 14
th
 International

Conference on Intelligent Information System,

Oslo, pp. 593-602, 2005.

[6] Doulkeridis C., Vlachou A., Nørvåg K., Kotidis

Y., and Vazirgiannis M., “Multidimensional

Routing Indices for Efficient Distributed Query

Processing,” in Proceeding of 18
th
 ACM

Conference on Information and Knowledge

Management, Hong Kong, pp. 1489-1492, 2009.

[7] Gasse M., Aussem A., and Elghazel H., “A hybrid

Algorithm for Bayesian Network Structure

Learning with Application to Multi-Label

Learning,” Expert Systems with Applications, vol.

41, no. 15, pp. 6755-6772, 2014.

[8] Godfrey P., Skyline Cardinality for Relational

Processing, Springer Berlin Heidelberg, 2004.

[9] Huang Z., Guo J., Sun S., and Wang W.,

“Efficient Optimization of Multiple Subspace

Skyline Queries,” Journal of Computer Science

and Technology, vol. 23, no. 1, pp. 103-111, 2008.

[10] Huang Z., Sun S., and Wang W., “Efficient

mining of Skyline Objects in Subspaces Over

Data Streams,” Knowledge and Information

Systems, vol. 22, no. 2, pp. 159-183, 2010.

[11] Huang Z., Xiang Y., Sun S., and Chen Q.,

“Optimizing Skyline Queries in SPA Distributed

Networks,” Chinese Journal of Electronics, vol.

41, no. 8, pp. 1515-1520, 2013.

[12] Huang Z., Xiang Y., Zhang B., and Liu X., “A

Clustering based Approach for Skyline

Diversity,” Expert Systems with Applications, vol.

38, no. 7, pp. 7984-7993, 2011.

[13] Hu H., Xu J., Xu X., Pei K., Choi B., and Zhou S.,

“Private Search on Key-Value Stores with

Hierarchical Indexes,” in Proceeding of 30
th
 IEEE

International Conference on Data Engineering,
Chicago, pp. 628-639, 2014.

[14] Itmazi J. and Megías M., “Using

Recommendation Systems in Course

Management Systems to Recommend Learning

Objects,” The International Arab Journal for

Information Technology, vol. 5, no. 3, pp. 234-

240, 2008.

[15] Pei J., Jiang B., Lin X., and Yuan Y.,

“Probabilistic Skylines on Uncertain Data,” in

Proceeding of 33
rd

 International Conference on

Very Large Data Bases, Vienna, pp. 15-26, 2007.

[16] Pospiech S., Mielke S., Mertens R., Pelke M.,

Jagannath K., and Stadler M., “Exploration and

Analysis of Undocumented Processes using

Heterogeneous and Unstructured Business

Data,” in Proceeding of International

Conference on Semantic Computing, Newport

Beach, pp. 191-198, 2014.

[17] Rodrigo C., Gaspar F., and Lisbona F.,

“Multigrid Methods on Semi-Structured Grids,”

Archives of Computational Methods in

Engineering, vol. 19, no. 4, pp. 499-538, 2012.

[18] Trimponias G., Bartolini I., Papadias D., and

Yang Y., “Skyline Processing on Distributed

Vertical Decompositions,” IEEE Transactions

on Knowledge and Data Engineering, vol. 25, no.

4, pp. 850-862, 2013.

[19] Vlachou A., Doulkeridis C., Kotidis Y., and

Vazirgiannis M., “SKYPEER: Efficient

Subspace Skyline Computation over Distributed

Data,” in Proceeding of 23
th
 International

Conference on Data Engineering, Istanbul, pp.

416-425, 2007.

[20] Xu X. and Song M., “Restricted Coverage in

Wireless Networks,” in Proceeding of
International Conference on Computer

Communications, London, pp. 558-564, 2014.

[21] Zhang N., Li C., Hassan N., Rajasekaran S., and

Das G., “On Skyline Groups,” IEEE

Transactions on Knowledge and Data

Engineering, vol. 26, no. 4, pp. 942-956, 2014.

[22] Zhang Q., Fu H., and Qiu G., “Tree Partition

Voting Min-Hash for Partial Duplicate Image

Discovery,” in Proceeding of International

Conference on Multimedia and Expo, San Jose,

pp. 1-6, 2013.

[23] Zhang W., Zhang S., Qi F., and Cai M., “Self-

Organized P2P Approach to Manufacturing

Service Discovery for Cross-Enterprise

Collaboration,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 44, no. 3,

pp. 263-276, 2014.

Zhenhua Huang is currently an

associate professor at the School of

Electronics and Information, Tongji

University. He received his PhD.

degree in computer science from

Fudan University. His research

interests include information

service, data mining and knowledge discovery. He has

published over 50 papers in various journals and

conference proceedings.

Jiawen Zhang received her BSc

degree in computer science from

Tongji University. She is currently a

MSc student at Tongji University.

She has authored a number of

journal and conference papers in the

fields of data mining, query

optimization and information recommendation.

http://www.ejournal.org.cn/

