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1. Introduction 

Skyline recommendation technolgy has attracted much 

attention recently since it is used in many applications, 

such as big data analysis, high-dimensional data 

visualization, and multi-criteria decision making [21]. 

Given a set of objects = {p1, …, pn}, each object pi 

(i [0, n]) has m dimensions F={d1, …, dm}, the skyline 

recommendation over subspace UF is to return the 

objects that are not dominated by any other objects 

restricted to U. In fact, the preference function 

“dominate” can be defined in any way as long as it is 

monotone on U [14]. It is not difficult to see that for a 

set of objects including m dimensions, it has at most 2
m
-

1 different subpace skyline recommendations [10]. 

Recently, various techniques have been proposed for 

processing the skyline recommendation. Literature [2] 

first presented the concept of skyline recommendation, 

and proposed two feasible recommendation algorithms: 

Block Nested Loop (BNL) and Divide and Conquer 

(DC). BNL essentially compares each object in the 

database with all the other objects, and outputs the one 

only if it is not dominated in any case. DC divides the 

dataset into several partitions that could fit in memory. 

The skyline objects in all partitions are computed 

separately using a main-memory algorithm, and then 

merged to produce the final result. Based on BNL, 

Literature [5] designed the Sort First Skyline (SFS) 

algorithm which sorts the input data according to a 

preference function, after which the skyline object 

could be found in another pass over the sorted list. 

Literature [8] theoretically gived the time cost of the 

algorithms BNL, DC and SFS under the assumption of 

independent distribution, and proposed an External-

Sort Algorithm (ESA) to improve the recommendation 

efficiency. Specially, ESA could reduce the time 

complexity of skyline recommendation to 

O(||log||+m||). Literature [11] integrated k-means 

clustering into skyline recommendation, and returns k 

“representative” and “diverse” skyline objects to users. 

Literature [15] was based on the model of possible 

world instances [16] and proposed two efficient 

algorithms Bottom-Up Agorithm (BUA) and Top-

Down Agorithm (TDA) to process the skyline 

recommendation on uncertain data. BUA utilized the 

R-tree index structure [12], and returned all skyline 

objects whose probabilities are greater than the 

threshold  by three phases: bounding, pruning and 

refining. While TDA organized all uncertain data 

objects as a partition tree [22], and used three effective 

properties of partition tree to decrease the comparison 

number between objects.  

As the wide use of distributed networks, Literature 

[19] first considered processing skyline 

recommendation in Super-Peer Architecture (SPA) 

[23] distributed networks, and proposed the concept of 

extended skyline set to reduce the cost of data 

transmission. Based on literature [19], literature [6] 

presented the Multidimensional Routing Indices (MRI) 

index structure to decrease the number of network 

nodes which take part in the skyline recommendation. 

The MRI index structure could further reduce the cost 

of data transmission. Literature [13] identified the 

drawbacks of the methods in literatures [19], and 
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proposed an efficient algorithm to improve the skyline 

recommendation performance in SPA distributed 

networks. The algorithm used bloom filter [7] to reduce 

the cost of data transmission, and utilized the regular 

grid index [17] to organize the data objects and thus 

could remarkably improve the computation efficiency 

for skyline recommendation. Literature [18] introduced 

the concept of Vertical Partition Skyline (VPS) in SPA 

distributed networks. VPS was an algorithmic 

framework that includes two phases. In the first phase, 

VPS searched for an anchor point panc which dominates, 

and hence eliminates, a large number of objects. And in 

the second phase, starting with panc, VPS constructed 

incrementally a pruning area using an interesting union-

intersection property of dominance regions. The 

network nodes did not transmit those objects falling 

within the pruning area in their local subspace, which 

could evidently improve the skyline recommendation 
performance. 

To the best of our knowledge, the existing skyline 

recommendation algorithms in SPA distributed 

networks use fine-grain basic data as the input 

parameter. Hence, as the data volume and 

dimensionality increase, network communication cost 

and CPU cost will exponentially increase. Accordingly, 

it will seriously influence the skyline recommendation 

efficiency. Due to the appearance of high-capacity 

cheap disks, we can prestore w skyline snapshots 

SN={s1,…, sw} in SPA distributed networks to 

efficiently process u subspace skyline 

recommendations SR={sr1,…, sru}. On the other hand, 

when basic data is changed, the w prestoring skyline 

snapshots need to be periodically updated, which will 

need extra maintenance cost for these skyline snapshots. 

And transferring the skyline snapshots from storage 

nodes to computation nodes needs extra network 

communication cost. 

Based on the above facts, in this paper, we propose 

Skyline Recommendation Algorithm in Distributed 

Networks (SRADN), an efficient algorithm in SPA 

distributed networks to process u subspace skyline 

recommendations SR= {sr1, …, sru} by prestoring w 

skyline snapshots SN= {s1, …, sw} under the cost 

constraint of maintenance and communication. Our 

SRADN algorithm utilizes the map/reduce distributed 

computation model [1] and can quickly produce the 

optimal set of skyline snapshots through the following 

two phases: heuristically constructing the initial set of 

snapshots, and adjusting the set of snapshots based on 

the genetic algorithm. The detailed theoretical analyses 

and extensive experiments demonstrate that our 

SRADN algorithm is both efficient and effective.  

The rest of the paper is organized as follows: Section 

2 gives the problem description of our work. Section 3 

presents the approach for exact selection of optimal 

prestoring skyline snapshots. In section 4, we propose 

the SRADN algorithm to fast produce the optimal set of 

skyline snapshots using the map/reduce distributed 

computation model. We present the experimental 

study in section 5. Finally, section 6 concludes the 

paper with directions for future work. 

2. Problem Description 

Without loss of generality, we let the SPA distributed 

network  include  storage nodes Ng
(1)

, …, Ng
()

, and 

the computation node in  be Nc. Assume that u 

subspace skyline recommendations SR={sr1,…, sru} 

are submitted on Nc, and candidate skyline snapshots 

CSN= {s1, …, s} are distributedly stored on Ng
(1)

, …, 

Ng
()

.  

First of all, we give three cost models for skyline 

recommendation in SPA distributed networks. 

1. Computation Cost Model: the time cost of 

obtaining the result of subspace skyline 

recommendation sr from skyline snapshot s, is 

denoted as s
srt .It includes two parts: the I/O cost of 

transferring s from the disk to memory, denoted as 

ts; and the CPU cost of obtaining the result of sr 

from s, denoted as tssr.  

The I/O cost ts can be easily obtained and is expressed 

below Equation 1: 

/

( )

_

block

s I O

size s
t t

block size
   

Where size(s) is the size of s, block_size is the block 

size, and block
O/It  is the time cost of transferring a block. 

We then give the CPU cost tssr as follows [3]. 

Without loss of generality, we assume that the subpace 

of sr is V, and let v=|V|.  

 Theorem 1. Assume that s satisfies the joint 

distribution function F( x ) and the joint density 

function f( x ) on V, where x = (x1, …, xv). Then the 

expected value E(s, v) of objects returned by sr can 

be denoted as  Equation 2: 

| | 1
| | [0,1] ( )(1 ( ))

v s
s f x F x dx


   

 Theorem 2. Assume that s satisfies the joint 

distribution function F( x ) and the joint density 

function f( x ) on V, where x = (x1, …, xv). Then the 

CPU cost tssr can be denoted as Equation 3: 

  | |

2 ( 1, ) ( 1, 1) 1
s

x E x v E x v x       

2. Maintenance Cost Model: the time cost of updating 

s when the basic data  changed. We let the 

subspace of s be V, and assume s is stored on the 

storage node Ng
(i)

 (1 i ) which also stores  

skyline snapshots s
(1)

, …, s
()

. According to the 

literature [9], we can know that only those skyline 

snapshots whose subspaces include V can be used 

to update s. We select s_min, the skyline snapshot 

which needs the minimal time cost to update s. It is 

(1) 

(2) 

(3) 
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not difficult to see that the time cost of using s_min 

to update s equals the one of obtaining the result of s 

from s_min, i.e., min_s
st  (see the Equations 1, 2, 3). 

3. Communication Cost Model: the time cost of 

transferring s from the storage node Ng
(i)

 (1 i ) to 

the computation node Nc, is denoted as nts. The 

communication cost can be expressed below 

Equation 4: 

                               
( )

( )

s

i
N Ng c

size s
nt

TS


  

Where 
c

)i(
g NN

TS


is the network bandwidth between 

Ng
(i) 

and Nc. 

Based on the computation cost model, we can select 

and prestore w (w<) skyline snapshots SN={s1, …, sw} 

from candidate ones, and the time cost of processing u 

subspace skyline recommendations SR= {sr1,…, sru} 

can be expressed as Equation 5: 

comCost(SR)= 1 _ min

u

i sr sri i
t 

   

Where sri_min belongs to SN and needs the minimal 

time cost to obtain the result of sri. 

On the other hand, based on the maintenance cost 

and the communication cost, the time cost of 

maintaining and transferring SN can be expressed as 

Equation 6: 

mtCost(SN)=
_ min

1 ( )
sw i

i s si i
t nt   

 Problem Definition: In this paper, given u subspace 

skyline recommendations SR={sr1,…, sru} and the 

user threshold of maintenance and communication 

cost userCost, our goal is to select and prestore the 

optimal w (w<) skyline snapshots SN={s1,…, sw} 

from  candidate ones such that 

mtCost(SN)userCost and comCost(SR) is minimal. 

3. Exact Selection of Optimal Prestoring 

Skyline Snapshots 

Given the user threshold userCost, in order to exactly 

select the optimal w skyline snapshots, we need 

traverse the exponential combinations of skyline 

snapshots. And hence it is an NP-hard problem, which 

can be proved in Theorem 3. 

 Theorem 3. Assume there exists u subspace skyline 

recommendations SR={sr1,…, sru} and  candidate 

skyline snapshots CSN={s1,…, s} in the SPA 

distributed network. Given the user threshold of 

maintenance and communication cost userCost, it is 

an NP-hard problem to select w (w<) skyline 

snapshots SN={s1,…, sw} from CSN such that 

comCost(SR) is minimal. 

 Proof. The time cost of obtaining SN is mainly 

determined by the search process of combinations 

of skyline snapshots. It is not difficult to see that 

each combination of skyline snapshots needs the 

capability to handle all u subsapce skyline 

recommendations. In the following part, we 

determine the time complexity of exactly obtaining 

SN by analyzing the number of combinations of 

skyline snapshots. 

 For w=1, the number of combinations of skyline 

snapshots  Equation 7:  

                                        INS(1)=
1 u

u
C C


 = 

 For w=2, the number of combinations of skyline 

snapshots (Equation 8):  

           INS(2)=
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u
C


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 For w=t, the number of combinations of skyline 

snapshots (Equation 9): 
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 

  
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  … 

So, the time complexity O(γ, u) of exactly obtaining 

SN is INS
(1)

+… +INS
(γ)

 1 ( )i u

i C i i

   . From O(γ, u), 

we can know that exactly obtaining SN needs 

exponential time complexity, which belongs to NP 

problem. On the other hand, for a given combination 

of skyline snapshots IRS including  skyline 

snapshots {s1, …, s} CSN, deciding whether if IRS 

is optimal can be reduce to the minimum cover 

problem of weighted directed bipartite graph G(IRS, 

SR, W) [20], where W is the computation cost from 

IRS to SR. According to the graph theory [4], we can 

know that the minimum cover problem of weighted 

directed bipartite graph is an NP-hard problem. And 

hence exactly obtaining SN is an NP-hard problem. 

From Theorem 3, we can see that exactly obtaining 

optimal w skyline snapshots needs massive CPU time 

cost. Hence, in the next section, we propose an 

efficient algorithm SRADN to fast achieve the 

approximate optimal solution. 

4. The SRADN Algorithm 

The core idea of SRADN is to use the map/reduce 

distributed computation model and fast produce the 

approximate optimal set of skyline snapshots through 

two phases: Heuristically constructing the initial set of 

snapshots, and adjusting the set of snapshots based on 

the genetic algorithm.  

The implementation process of SRADN can be 

shown in Algorithm 1. 

(4) 

(5) 

(4) 

(6) 

(7) 

(8) 

(9) 
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Algorithm 1: SRADN. 

Input: candidate skyline snapshots CSN={s1,…, s}, subspace 

skyline recommendations SR={sr1,…, sru}, the user threshold 

userCost; 

Output: the approximate optimal solution ASN. 

Begin 

 1. Construct CSN’s corresponding key-value set  

 KY
(CSN)

={<‘s’+i, si>|i[1,]};  

 2. Construct SR’s corresponding key-value set  

 KY
(SR)

={<‘sr’+j, srj>|j[1,u]};  

 3. Divide KY
(CSN)

 into m parts KY
(CSN)

1,…, KY
(CSN)

m; 

 /* m is the user parameter */ 

 4. Divide KY
(SR)

 into m parts KY
(SR)

1,…, KY
(SR)

m; 

 5. For =1 to m Do  

 6. SIKY
(CSN)

KY
(SR)

; 

 7. {<s, sr>|sKY
(CSN)

srKY
(SR)

}map(SI); 

 /* sKY
(CSN)

, srKY
(SR)

 and can be processed 

 by s */ 

 8. Let the partition function f  equal (i mod n);  

 /* n is the number of computers used to execute  

the reduce function */ 

 9. ASN; 

10. For x=1 to n Do /* parallel processing */ 

11. {<s’, SR’>}reduce({<s, sr>}); 

 /* s’KY
(CSN)

x, SR’KY
(SR)

x and includes all  

subspace skyline recommendations processed  

by s’ */ 

12. ASNASN{s’|SR’}; 

13. Return ASN. 

End 

In Algorithm 1, SRADN first constructs two key-value 

sets KY
(CSN)

 and KY
(SR)

. In KY
(CSN)

, each pair of key-

value consists of a skyline snapshot ID and its 

corresponding entity; while in KY
(SR)

, each pair of key-

value consists of a subspace skyline recommendation 

ID and its corresponding entity (Lines 1 and 2). Then 

based on the user parameter m, SRADN divides KY
(CSN)

 

into m parts KY
(CSN)

1,…, KY
(CSN)

m, and also divides 

KY
(SR)

 into m parts KY
(SR)

1,…, KY
(SR)

m (Lines 3 and 4). 

The map function (Line 7) takes KY
(CSN)

KY
(SR)

 as the 

input parameter, and returns the intermediary key-value 

set {<s, sr>} through two-phase optimization process, 

where s is the skyline snapshot in KY
(CSN)

 and sr is the 

subspace skyline recommendation in KY
(SR)

 whose 

result can be obtained from s. The reduce function 

(Line 11) classifies the intermediary key-value set {<s, 

sr>}, and for each skyline snapshot s, outputs all 

subspace skyline recommendations whose results can 

be obtained from s. Finally, SRADN filters those 

skyline snapshots which are not used to handle any 

subspace skyline recommendations, and returns the 

remaining ones to users (Lines 12 and 13). 

The map and reduce functions can be shown in 

Algorihms 2 and 3.  

Algorithm 2: The map function. 

Input: the key-value set KY
(CSN)

={<skyline snapshot ID, skyline 

snapshot entity>}, the key-value set KY
(SR)

= {<subspace skyline 

recommendation ID, subspace skyline recommendation 

entity>}; 

Output: the intermediary key-value set KY
(int)

. 

Begin 

 1. KY
(int)
; 

 2. mapCostuserCost/m;  

 3. rootSthe root skyline snapshot which can process 

 all subspace skyline recommendations in KY
(SR)

;  

 4. If mtCost({rootS})>mapCost Then Return NULL; 

 /* mtCost({rootS}) is the time cost of maintaining 

 and transferring {rootS}, see Equation (6) */ 

 5. Else 

 6. For <sr_id, sr_ent> KY
(SR)

 Do  

 7. KY
(int)
KY

(int)
{<rootS, sr_ent>}; 

 8. KY
(int)

_ISRADN_I(KY
(int)

, KY
(CSN)

, KY
(SR)

);  

 /* Phase 1: heuristically constructing the initial set 

 of snapshots */ 

 9. KY
(int)

_IISRADN_II(KY
(int)

_I);  

 /* Phase 2: adjusting the set of snapshots based on  

 the genetic algorithm */ 

10. KY
(int)
KY

(int)
_II; 

11. Return KY
(int)

. 

End 

Algorithm 3: the reduce function. 

Input: the intermediary key-value set KY
(int)

={<skyline 

snapshot entity, subspace skyline recommendation entity>}; 

Output: the key-value set KY. 

Begin 

 1. SNthe set of skyline snapshot entities in KY
(int)

; 

 2. For sSN Do  

 3. sr
(s)
; 

 4. For <s, sr> KY
(int)

 Do  

 5. sr
(s)
sr

(s)
{sr};  

 6. KY; 

 7. For sSN Do 

 8. KYKY{<s, sr
(s)

>}; 

 9. Return KY. 

End 

In Algorithm 2, the map function has two tasks, i.e., 

two optimization phases: Heuristically constructing 

the initial set of snapshots (Line 8), and adjusting the 

set of snapshots based on the genetic algorithm (Line 

9). And two optimization phases SRADN_I and 

SRADN_II can be implemented as Algorithms 4 and 5. 

Algorithm 4: SRADN_I. 

Input: the key-value set KY
(int)

={<skyline snapshot entity, 

subspace skyline recommendation entity>}, the key-value set 

KY
(CSN)

={<skyline snapshot ID, skyline snapshot entity>}, the 

key-value set KY
(SR)

={<subspace skyline recommendation ID, 

subspace skyline recommendation entity>}; 

Output: the key-value set KY
(int)

_I. 

Begin 

 1. TempS{rootS}; 

 2. SNthe set of skyline snapshot entities in KY
(CSN)

; 

 3. For <sr_id, sr_ent>KY
(SR)

 Do 

 4. s s
ent_sr

SNs
tmin


;  

 /* s
ent_srt  is the time cost of obtaining the result 

 of sr_ent from s, see Equations (1)-(3) */ 

 5. If mtCost(TempS{s})mapCost Then  

 6. KY
(int)
KY

(int)
{<s, sr_ent>} 

 -{<rootS, sr_ent>};  

 7. TempSTempS{s}; 
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 8. KY
(int)

_IKY
(int)

; 

 9. Return KY
(int)

_I. 

End 

Algorithm 5: SRADN_II. 

Input: the key-value set KY
(int)

_I={<skyline snapshot entity, 

subspace skyline recommendation entity>}, the key-value set 

KY
(CSN)

={<skyline snapshot ID, skyline snapshot entity>}, the 

key-value set KY
(SR)

= {<subspace skyline recommendation ID, 

subspace skyline recommendation entity>}; 

Output: the key-value set KY
(int)

_II. 

Begin 

 1. SNthe set of skyline snapshot entities in KY
(CSN)

; 

 2. the number of subspace skyline  

 recommendation entities in KY
(SR)

; 

 3. VS; 

 4. f(VS)0; /* initialize the fitness function */ 

 5. For sSN Do  

 6. Construct the corresponding bit vector V
(s)

 of s 

 whose length equals ; 

 7. For x=1 to  Do 

 8. srxthe x-th subspace skyline  

 recommendation entity in KY
(SR)

; 

 9. If <s, srx>KY
(int)

_I Then  

10. V
(s)

[x]=1; f(VS)f(VS)+ s
srx

t ;  

11. Else V
(s)

[x]=0; 

12. VSVS{V
(s)

}; 

 /* crossover : Lines 13-23 */ 

13. For i=1 to |VS|/2 Do 

14. VS VS;
 

15. V
(s)
the corresponding bit vector of i-th skyline 

snapshot s; 

16. V
(s’)
the corresponding bit vector of (i+1)-th  

skyline snapshot s’; 

17. Randomly select two exchange points a, b of V
(s)

  

and V
(s’)

; 

18. Visit SN and obtain the first pairs (sn, sn’) of  

skyline snapshots which satisfys:  

V
(sn)

[a, b]V
(sn’)

[a, b]=V
(s)

[a, b]V
(s’)

[a, b]; 

/* V
(sn)

[a, b] is the bit vector between a and b of  

V
(sn)

 */ 

19. Exchange between V
(s)

[a, b] and V
(sn)

[a, b]; 

20. Exchange between V
(s’)

[a, b] and V
(sn’)

[a, b]; 

21. SN’{s|sSNi, V
(s)

[i]=1}; 

22. If mtCost(SN’)mapCost and f(VS )<f(VS) Then 

23. VSVS ; 

/* mutation: Lines 24-39 */ 

24. For i=|VS|/2+1 to |VS| Do  

25. V
(s)
the corresponding bit vector of i-th skyline 

snapshot s; 

26. Randomly select two exchange points a, b of V
(s)

; 

27. For j=a to b Do 

28. If V
(s)

[j]=0 Then  

29. V
(s)

[j]=1;  

30. Visit VS  and obtain the first vector V
(sn)

  

whose j-th bit equals 1; 

31. V
(sn)

[j]=0; 

32. Else 

33. V
(n)

[j]=0; 

34. Visit SN and obtain the skyline snapshot sn  

 which can process j-th subspace  

 recommendation; 

35. V
(sn)
 the corresponding bit vector of sn; 

36. V
(sn)

[j]=1; 

37. SN’{s|sSNi,V
(s)

[i]=1}; 

38. If mtCost(SN’)mapCost and f(VS )<f(VS) Then  

39. VSVS ;  

40. KY
(int)

_II; 

41. For V
(s)
VS, xV

(s)
 Do  

42. If V
(sn)

[x]=1 Then  

43. srxthe x-th subspace skyline recommendation  

entity in KY
(SR)

; 

44. KY
(int)

_IIKY
(int)

_II{<s, srx>}; 

45. Return KY
(int)

_II. 

End 

In Algorithm 4, for each subspace skyline 

recommendation entity sr_ent, SRADN_I first 

computes the time cost of obtaining the result of 

sr_ent from every skyline snapshot, and chooses the 

one (denoted as s) with minimal time cost (Lines 3 

and 4). Further, under the cost constraint of 

maintenance and communication, SRADN_I updates 

sr_ent’s corresponding skyline snapshot from rootS to 

s (Lines 5, 6, 7).  

We can see from Algorithm 4 that SRADN_I is 

based on the time cost model, and can preliminarily 

optimize the set of skyline snapshots. 

In Algorithm 5, in order to utilize the core idera of 

genetic algorithm, SRADN_II constructs a bit vector 

V
(s)

 for each skyline snapshot s. The length of V
(s)

 is 

the number of subspace skyline recommendation 

entities in KY
(SR)

. And for each bit x in V
(s)

, if the x-th 

subspace skyline recommendation entities processed 

by s, then V
(s)

[x] equals 1, otherwise equals 0. (Lines 

5-11)  

In the algorithm, the fitness function f(VS ) 

evaluates the computation cost of obtaining subspace 

skyline recommendation from skyline snapshot (Line 

10). It is not difficult to see that for a skyline snapshot 

s, the smaller the value of fitness function, the stronger 

its adaptability. That is, s is more excellent.  

In Lines 13-23, SRADN_II obtains the new 

excellent generation set of skyline snapshots by two-

point crossover of VS . While in Lines 24-39, 

SRADN_II obtains the new excellent generation set of 

skyline snapshots by two-point mutation of VS . 

Note that for guaranteeing the correctness of the 

algorithm; in the processes of two-point crossover and 

two-point mutation, we always let a subspace skyline 

recommendation only be associated with one skyline 

snapshot. This can be seen in Line 18 and Lines 27-

36, respectively. 

It is not difficult to see that SRADN has the 

polynomial time complexity, which is shown in the 

following theorem. 

 Theorem 4. Assume there exists u subspace skyline 

recommendations SR={sr1,…, sru} and  candidate 

skyline snapshots CSN={s1,…, s} in the SPA 

distributed network. Given the user threshold of 
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maintenance and communication cost userCost, and 

the partition parameter m, the time complexity of 

SRADN equals (Equation 10): 

3

2 3
( )

2

u
O u

m m

 
     

 Proof. The time cost of SRADN mainly includes six 

parts:  

1. O(γ, u): the time cost of constructing KY
(CSN)

 and 

KY
(SR)

 in Algorithm 1. 

2. O(γ/m×u/m)=O(γ×u /m
2
): in Algorithm 4, for each 

subspace skyline recommendation, the time cost of 

obtaining the skyline snapshot with minimal 

computation cost. 

3. O(γ/m×u/m)=O(γ×u /m
2
): the time cost of 

constructing bit vectors in Algorithm 5. 

4. O(γ/2m×(γ/m)
2
)=O(γ

3
/2m

3
): the time cost of two-

point crossover in Algorithm 5. 

5. O(γ/2m×γ/m)=O(γ
2
/2m

2
): the time cost of two-point 

mutation in Algorithm 5. 

6. O(γ/n+u/n+γ/n)=O((2γ+u)/n): the time cost of 

executing the reduce function in Algorithm 1, where 

n is the number of computers used to execute the 

reduce function. 

Hence, the time complexity of SRADN equals 

(Equation 11): 

     cost(SRADN)= + O(γ× u/m2)+ O(γ× u/m2)+  O(γ3/2m3)+ 

                O(γ2/2m2) + O((2γ+u)/n)+ O((2γ+u)/n) = 

                          O(γ+u+γu/m2+γ3/2m3) 

5. Experimental Evaluation 

5.1. Experimental Setting 

In our experiments, experimental environment is a 

three-layer SPA distributed network, which consists of 

30 PC. And each PC has a quad-core i5-3450 CPU, 4G 

memory, 500G hard drive, and CentOS Linux 6.4 

operating system.  

The computation node contains a cluster consisting 

of 10 PC, in which a PC is selected as the control 

computer (Master). These 10 PC constitutes a Hadoop 

platform whose version number is 1.0.3. The remaining 

two layers include 20 distributed storage nodes, and 

each node has one PC. In our experiments, we produce 

200 subspace skyline recommendations on the 

computation node, and 100 skyline snapshots on each 

storage node. Then we totally have 2000 candidate 

skyline snapshots in the SPA distributed network. 

There are three algorithms compared with SRADN: 

1. OPTIMAL, the algorithm traverses exponential 

combinations of skyline snapshots to obtain the 

exact optimal solution. 

2. SRADN_I, the algorithm obtains the solution only 

through the first phase of SRADN. 

3. SRADN_II, the algorithm obtains the solution 

through the second phase of SRADN. Each class of 

experiments is divided into two groups: the number 

of subspace skyline recommendations on the 

computation node is fixed to 100, and the number 

of skyline snapshots on each storage node varies in 

the range [20, 100]; and the number of skyline 

snapshots on each storage node is fixed to 50, and 

the number of subspace skyline recommendations 

on the computation node varies in the range [40, 

200].  

5.2. Performance Evaluation for SRADN 

In this subsection, we experimentally evaluate the 

optimization ratio of SRADN. Figures 1-a and 1-b 

rspetively show the results of experiments for these 

four algorithms. 

 
a) The first group of experiments. 

 

b) The second group of experiments. 

Figure 1. Performance evaluation for four algorithms. 

In Figure 1, we take OPTIMAL as the baseline 

since the set of skyline snapshots produced by 

OPTIMAL is exactly optimal. And we let the 

optimization ratio of OPTIMAL equal 100%. From 

Figure 1, we can observe that the optimization ratio of 

SRADN approaches the one of OPTIMAL, and the 

optimization ratios of SRADN_I and SRADN_II are 

smaller than the one of SRADN. This is mainly 

because SRADN_I and SRADN_II easily fall into the 

problem of local optimum, and can not obtain the 

better set of skyline snapshots. Moreover, we can 

observe that SRADN_I is the worst one among these 

four algorithms on optimization ratio. For instance, in 

Figure 1-a, when the number of skyline snapshots on 

each storage node equals 100, the optimization ratio of 

SRADN is equal to 93.6%, while the optimization 

ratios of SRADN_I and SRADN_II are only 37.5% 

and 74.1% respectively. And in Figure 1-b, when the 

number of subspace skyline recommendations on the 

(11) 

(10) 
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computation node equals 80, the optimization ratio of 

SRADN is equal to 95.6%, while the optimization 

ratios of SRADN_I and SRADN_II are only 68.3% and 

72.6% respectively. 

5.3. Runtime Evaluation for SRADN 

In this subsection, we experimentally evaluate the 

runtime of SRADN. Figures 2-a and b respectively 

show the results of experiments for these four 

algorithms. 

 
a) The first group of experiments. 

 
b) The second group of experiments. 

Figure 2. Runtime evaluation for four algorithms. 

Although, in Figure 1, the optimization ratio of 

OPTIMAL is slightly higher than the one of SRADN. 

While in Figure 2, we can see that the runtime of 

OPTIMAL is huge in each experimental setting. The 

main reason is:  

1. In order to exactly obtain the optimal set of skyline 

snapshots, OPTIMAL must traverse all possible 

combinations of skyline snapshots, and has 

exponential time cost.  

2. While SRADN does not need to traverse all possible 

combinations of skyline snapshots, and only has 

polynomial time cost to return approximate optimal 

solution. Moreover, from Figure 2, we can also see 

that the runtime of SRADN is slight longer than the 

ones of SRADN_I and SRADN_II, and the runtime 

of SRADN_I is the shortest among these four 

algorithms. For instance, in Figure 2-a, when the 

number of skyline snapshots on each storage node 

equals 100, the runtime of OPTIMAL equals 

79824.6 seconds, while the ones of SRADN, 

SRADN_I and SRADN_II only is 198.5 seconds, 

35.9 seconds and 155.4 seconds respectively. And in 

Figure 2-b, when the number of subspace skyline 

recommendations on the computation node equals 

200, the runtime of OPTIMAL equals 49652.5 

seconds, while the ones of SRADN, SRADN_I and 

SRADN_II only is 147.8 seconds, 20.4 seconds and 

110.4 seconds respectively. 

Hence, from the experimental evaluation in Figures 1 

and 2, we can get the conclusion that SRADN can 

efficiently balance the optimization ratio and runtime, 

and has good extendibility. 

7. Conclusions and Future Works 

It is very meaningful to research and implement 

subspace skyline recommendations in SPA distributed 

networks under the cost constraint of maintenance and 

communication. In this paper, we analyze the main 

performance drawbacks of existing works, and 

propose an efficient algorithm SRADN to efficiently 

process subspace skyline recommendations in SPA 

distributed networks. The SRADN algorithm does not 

need to use fine-grain basic data as the input 

parameter, and just utilizes prestoring optimal set of 

skyline snapshots to efficiently process multiple 

subspace recommendations. Our SRADN algorithm 

utilizes the map/reduce distributed computation model 

and can fast produce the optimal set of skyline 

snapshots through the following two phases: 

Heuristically constructing the initial set of snapshots, 

and adjusting the set of snapshots based on the genetic 

algorithm. The detailed theoretical analyses and 

extensive experiments demonstrate that our SRADN 

algorithm is both efficient and effective. 

Future work will focus on designing more exact 

cost evaluation model, improving the processes of 

two-point crossover and mutation in Algorithm 5, and 

on more experimentation. 
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