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Abstract: With the advancement in wireless communication technology, the ease of accessibility and increasing coverage area 

is a major challenge for service providers. Network densification through Small cell Base Stations (SBS) integration in 

Heterogeneous Networks (HetNets) promises to improve network performance for cell edge users. Since providing wired 

backhaul for small cells is not cost effective or practical, the third-Generation Partnership Project (3GPP) has developed 

architecture for self-backhaul known as Integrated Access and Backhaul (IAB) for Fifth Generation (5G). This allows for Main 

Base Station (MBS) resources to be shared between SBS and MBS users. However, fair and efficient division of MBS resources 

remains a problem to be addressed. We develop a novel transmit antenna selection/partitioning technique for taking advantage 

of IAB 5G standard for Massive Multiple Input Multiple Output (MIMO) HetNets. Transmit antenna resources are divided 

among access for MBS users and for providing wireless backhaul for SBS. We develop A Genetic Algorithm (GA) based 

Transmit Antenna Selection (TAS) scheme and compare with random selection, eigenvalue-based selection and bandwidth 

portioning. Our analysis show that GA based TAS has the ability to converge to an optimum antenna subset providing better 

rate coverage. Furthermore, we also signify the performance of TAS based partitioning over bandwidth partitioning and also 

show user association can also be controlled using number of antennas reserved for access or backhaul. 
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1. Introduction 

In these past couple of decades, we have observed 

exponential growth in cellular network traffic. 

Evolution of smart handheld devices and applications 

demand high end data rates in wireless communication. 

Massive increase in number of mobile users and 

Internet of Things (IoT) will make existing cellular 

network overcrowded and under efficient. In this 

context, heterogeneous networks coupled with massive 

Multiple Input Multiple Output (MIMO) systems offer 

the opportunity to increase network coverage and 

capacity by incorporating small cells within macro base 

station coverage area [1].  

However, small cells require reliable backhaul in 

order to ensure user coverage. With the increase in 

number of Small cell Base Stations (SBS) in 

heterogeneous networks, it is becoming increasingly 

difficult to provide wired backhaul for them. Not only it 

is difficult to deploy SBS with wired backhaul but also 

cost of cable does not justify the expected benefits.  

With the emergence of 5G standard for Integrated 

Access and Backhaul (IAB) [23], wireless backhaul also 

known as self-backhaul, has become an emerging 

solution for this problem. The idea is that SBS will 

utilize spectrum resources of Macro Base Station (MBS) 

for establishing a wireless connection with the backhaul.  

 
In a way the MBS can offload some traffic to SBS 

without compromising on quality and promising better 

Quality of Service (QoS) for cell edge.  

Massive MIMO (M. MIMO) technology offers high 

spectral efficiency by using hundreds of antennas to 

serve multiple users simultaneously in time and 

frequency resources. Due to very selective and 

narrowband beamforming, massive MIMO is 

potentially capable of interference avoidance [3]. 

Antenna Selection (AS) technology for massive 

MIMO was introduced for reducing the hardware 

complexity and cost of the system. In AS, a subset of 

antennas is selected that is capable of providing best 

possible Signal to Interference and Noise Ratio (SINR) 

[8] with the objective of reducing the number of Radio 

Frequency (RF) chains and hence hardware cost. 

In this paper, we develop analytical framework for 

wireless self-backhaul using heuristic techniques which 

provides important insights for development of pre-

deployment analysis for IAB for 5G HetNets. 

1.1. Related Work 

Research regarding heterogeneous networks has gained 

pace with the realization of 5G technology. Resource 

allocation is one of the key issues in multi-tier 

heterogeneous networks. Gerasimenko et al. [10] study 
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heterogeneous cloud radio access network for cross cell 

resource management as well as coordination. Since the 

proposed work deals with transmit antenna selection-

based resource allocation for self-backhaul networks, 

hence, the literature survey presented here provides latest 

work being done in the said areas.  

In [22] a two-tier heterogeneous network is 

considered and a downlink resource allocation and user 

association algorithms are proposed keeping in view the 

energy efficiency of the network which is partially 

achieved by putting unused SBS in sleep mode.  

Like work done in [10], the Han et al. [11] also 

consider a mobile edge cloud to act as a central controller 

for intra-tier cooperation in heterogeneous networks. 

Probability of connectivity, load balancing and energy 

efficiency is optimized to improve network performance.  

Similar to previous work, Wang et al. [30] define a 

software defined controller for heterogeneous network 

for handover management considering aeronautical 

scenario.  

An energy efficient resource allocation scheme is 

presented in [28] for Non-Orthogonal Multiple Access 

(NOMA) HetNets. They develop power allocation 

scheme using bisection method for an imperfect CSI 

(Channel State Information).  

In [14] cognitive small cells are introduced to 

maximize throughput using fairness-based resource 

allocation scheme. They combine cognitive radio and 

small cell technology to improve throughput. 

Chai et al. [6] jointly discuss user association, cache 

portioning and content placement for Device To Device 

(D2D) heterogeneous networks. Their objective is to 

improve transmission performance where the sub 

problems are iteratively solved.  

Papazafeiropoulos et al. [21], study the impact of base 

station cooperation in two tier heterogeneous network 

with user association. They develop a Software Defined 

Network (SDN) for controlling various resource 

allocation and user association tasks.  

Zhou et al. [35] develop a delay-aware strategy for 

improving performance of services provided by 

heterogeneous network, while using Multi-access Edge 

Computing (MEC) for deciding user association.  

User scheduling and association is jointly addressed in 

[9]. They use alternating direction method multiplier to 

develop an algorithm for both user and base station side, 

where a user can associate with more than one base 

station. 

Sharma et al. [27] discusses full duplex self-backhaul 

for heterogeneous networks where coverage expressions 

are derived using stochastic geometry for downlink 

connections.  

Xu et al. [33] discuss the inter and intra-tier 

interference for self-backhaul heterogeneous network 

where regularized zero forcing precoding is used at 

downlink to avoid uplink interference. 

Nguyen et al. [20] the authors separate backhaul and 

access using time-spectrum transmission 

 accommodation and buffering protocol for improving 

small cell performance.  

Generally, antenna selection is employed in massive 

MIMO systems to reduce the overall requirement of RF 

chains. In this context, the Tang and Nie [29] study 

antenna selection while considering capacity 

maximization where rectangular maximum volume sub 

matrices are used for optimum selection.  

Single and multi cell cooperative massive MIMO 

antenna selection scheme is presented in [12] where 

antenna subsets are sequentially selected to find the 

ones that provide the most sum rate.  

Makki et al. [18] consider finite number of transmit 

and receive antennas for a massive MIMO network and 

develop antenna selection scheme using genetic 

algorithm.  

Taking inspiration from cognitive radio networks, 

[31, 33] perform resource allocation between main cell 

and small cells by allowing small cells to take 

advantage of bandwidth holes where no licensed user is 

connected in the main cell. In a way small cells 

opportunistically use the licensed spectrum in the 

absence of licensed users.  

In this paper we emphasize the fact that only 

increase in bandwidth does not guarantee a uniform 

increase in capacity, but in fact, the number of antennas 

plays an important role in keeping the Signal to Noise 

Ratio (SNR) consistent with increasing bandwidth as 

shown 2.5. We present a novel technique by using 

Transmit Antenna Selection (TAS) for maintaining an 

SINR threshold. This technique involves dividing total 

number of MBS antennas into two partitions. Where 

one partition is reserved for the user equipment 

associated with MBS and the second partition is 

reserved for providing wireless backhaul link for the 

SBS. The former link is generally referred to as access 

link while the later one is referred as backhaul link. We 

use nature inspired Genetic Algorithm (GA) as tool for 

antenna selection. GA is an optimization and search 

tools [25] based on principles of natural selection and 

genetics. GA has been used for various aspects of 

antenna designing [18] including transmit antenna 

selection where only the selected antennas are 

connected pre-selected number of RF chains to reduce 

the overall system cost. However, the related work of 

GA for antenna designing [5, 7, 13, 15, 17, 24, 26] does 

not take into account use of the entire spatial diversity 

and neither does any work take into account selection 

of antennas for controlling QoS like it is being done in 

the proposed work while [2] provides another novel 

application of GA for IoT (internet of things) however, 

the application does not target the problem under 

discussion.  

Marinello et al. [19] present a Particle swarm 

Optimization (PSO) based approach towards antenna 

selection for energy efficiency. Cai et al. [4] adopt a 

neural network based approach for optimizing antenna 

selection problem. Zhong et al. [34] propose a deep 
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learning-based antenna selection where antennas were 

trained for maximizing capacity. The authors present a 

bandwidth partitioning based scheme for antenna 

selection in [25]. Similar work is presented in [16] for 

software defined radio by selecting antenna for 

improving capacity.  

The literature surveyed highlights an important gap 

where the role of TAS for resource allocation with IAB 

has been overlooked. 

1.2. Contribution 

1.2.1. Model Development for IAB Enabled M. 

MIMO TAS 

In this paper we develop a scalable analytical 

framework for performance analysis of IAB enabled 

TAS for two tier HetNets. We consider a two-tier 

HetNet having MBS at the center and surrounded by 

SBS at the edge of MBS range boundary, hence, SBS 

are effectively expanding the range of MBS. Users are 

randomly located in two tiers in a single macro cell for 

developing clear understanding of the system, however 

the model can be extended to incorporate effect of 

multiple macro cells. It is assumed that MBS spatial 

resources, i.e., total number of transmit antennas are 

divided for access and backhaul link using random 

selection, equal selection and GA based selection. 

Moreover, we also show that user association can also 

be controlled by controlling the antenna densities (here 

we consider it equal to number of antennas) for either 

access or backhaul as it directly effects the data rate. 

1.2.2. Association and Rate Coverage Modelling  

Performance evaluation and comparisons between 

different strategies mentioned above are carried out 

using rate coverage which basically represents the 

maximum achievable data rate for access and backhaul 

and any selection mechanism. We also show how 

capacity and number of transmit antennas are related to 

each other in a massive MIMO system. Two important 

parameters namely user association and signal to SINR 

are also analysed for access and backhaul links. 

1.2.3. System Design Insights 

The related work in section 1.1 does not demonstrate use 

of TAS for efficiently managing access and backhaul 

rates or providing an architecture for enabling IAB. In 

this work we demonstrate the usability of TAS for IAB 

and provide comparison with similar techniques. 

Usability of proposed design is validated by providing 

rate coverage and mean rate analysis with respect to 

SINR and partitioning factor.  

The results demonstrate that the proposed TAS 

technique out performs the existing schemes including 

PSO scheme as presented in [12]. Moreover, it is also 

conclusively shown that TAS partitioning provides 

better rate coverage compared to bandwidth partitioning 

scheme of [13] with number of MBS antennas and 

mobile users. 

2. System Model  

2.1. Downlink Massive MIMO HetNet 

Topology 

We consider a two-tier heterogeneous cellular 

network, where each MBS is equipped with a massive 

number of antennas and associated circuitry. The 

users in each cell are categorized according to their 

location as follows: 

 Macro User Equipment (MUE): represents users 

associated with MBS only which cannot be 

offloaded to SBS. 

 Free User Equipment (FUE): represents users that 

can be associated with either MBS or SBS. These 

users can be offloaded to SBS for load balancing of 

MBS. 

 Small cell User Equipment (SUE): represents users 

that are associated with SBS only.  

Although we consider a single cell for analysis, but for 

the sake of clarity and reference for our future work, we 

consider that MBSs in each cell are distributed 

according to Homogeneous Poisson Point Process 

(HPPP) ∅𝑚 with density λm. Since, MBS is equipped 

with a massive number of antennas, so, here we define 

the density of MBS antennas in single cell for access 

and backhaul as λa and λb respectively. Where both the 

densities depend on the number (which is also a 

representation of gain, all antennas are equal gain) of 

antenna subset selected for access and backhaul.  

The SBS in second tier are spatially distributed 

according to HPPP ∅𝑠 with density λs. The transmit 

power of MBS is represented by P and each MBS is 

equipped with M antennas and serves N access and 

backhaul connections where 

𝑁 < 𝑀 

𝑁 =  𝑁𝑎 + 𝑁𝑏 

 The Macro User Equipment (MUE) in tier 1 and small 

Cell User Equipment (SUE) in tier 2 are distributed 

according to HPPP ∅1 and ∅2 respectively and with 

respective densities 𝜆1 and 𝜆2. Moreover, users in each 

tier and SBS have single antenna.  

The network is open access for FUE which can 

choose between connecting to MBS or SBS, hence, 

contributing largely to load balancing of MBS. Let Ma 

Ma represent the number of MBS antennas reserved for 

access communication i.e., Down Link (DL) of MUE 

and Mb represent the number of MBS antennas reserved 

for backhaul communication. Table 1 provides a 

summary of major notations used in this paper. 

 

 

(1) 

(2) 
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Table 1. Notation summary. 

Notation Description 

M Total number of MBS antennas 

𝑀𝑎 , 𝑀𝑏 Number of MBS antenna for access  

and backhaul 

𝜆𝑚, 𝜆𝑠 MBS and SBS BS densities 

𝜆𝑎 , 𝜆𝑏 MBS antenna subset density for access 

and backhaul 

𝛼 pathloss 

𝑃𝑚𝑎 , 𝑃𝑚𝑏 MBS transmit power for access 

and backhaul antenna subset 

𝑇𝑎 , 𝑇𝑏 Association weights for access and backhaul 

𝐼𝑖,𝑥𝑜, 𝐼𝑗,𝑎 , 𝐼𝑗,𝑏 , 𝐼𝑟,𝑠 Interference neighboring MBS, access and  

backhaul antenna and SBS 

𝛽𝑎, 𝛽𝑏 Access and backhaul link gains 

𝑊𝑎 , 𝑊𝑏 Access and backhaul bandwidth 

𝑁𝑜  Noise power 

𝐵𝑎 , 𝐵𝑏 Access and backhaul bias 

𝐶𝑥,𝑎 , 𝐶𝑥,𝑏 Association region for access and backhaul 

𝑅𝑎, 𝑅𝑏 Access and backhaul rate coverage 

𝑆𝐼𝑁𝑅𝑎 , 𝑆𝐼𝑁𝑅𝑏 , 𝑆𝐼𝑁𝑅𝑠𝑢 Access and backhaul link SINR(Signal to 
Interference plus Noise Ratio, SBS SINR 

𝑁𝑎 , 𝑁𝑏 Load on access and backhaul 

𝑃𝑎,𝑡𝑜𝑡𝑎𝑙 , 𝑃𝑏,𝑡𝑜𝑡𝑎𝑙 Total Transmit Power of access and backhaul 

𝐸𝐸𝑎 , 𝐸𝐸𝑏 Energy Efficiency of access and backhaul 

2.2. MBS and SBS User Association 

First, we find the user association probability for user in 

tier-2 as it will define the total load on access and 

backhaul communication on top of tier-1 and tier-2 users. 

We modify the user association in [15]. The FUE will be 

associated with either tier-1 or tier-2 if; 

𝑘 = 𝑎𝑟𝑔 max
𝑗∈𝑘

𝑃𝑗 𝐵𝑗𝑟𝑗
−𝛼  

Where k∈ {1,2} represent first and second tier. rj 

represents minimum distance from a user to its nearest 

Base Station (BS) in jth tier, where j represents either first 

or third tier, a>2 is the pathloss exponent.  

So, a typical FUE will be associated with either tier-1 

or tier-2 with the probability in Equations (4) and (5) 

derived from modification in [32] 

𝐴𝑎 =
𝜆𝑎𝑇𝑎

2/𝛼

𝜆𝑎𝑇𝑎
2/𝛼

+𝜆𝑏𝑇𝑏
2/𝛼 

𝐴𝑏 =
𝜆𝑏𝑇𝑏

2/𝛼

𝜆𝑎𝑇𝑎
2/𝛼

+𝜆𝑏𝑇𝑏
2/𝛼  

We will now update (3), (4), and (5) by incorporating 

association weights Ta, Tb for access and backhaul 

respectively. These weights are adjustable so that any 

network requirement can be met. Consider Za as the 

distance between a user and antenna subset Ma, hence, a 

user will be connected to access if; 

𝑘𝑎 = 𝑎𝑟𝑔 max
𝑀𝑎∈𝑀

𝑇𝑎𝑍𝑎
−𝛼  

𝑘𝑏 = 𝑎𝑟𝑔 max
𝑀𝑏∈𝑀

𝑇𝑏𝑍𝑏
−𝛼  

𝑖𝑓 𝑇𝑎 ≫ 𝑇𝑏  𝑚𝑜𝑟𝑒 𝑢𝑠𝑒𝑟𝑠 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑎𝑐𝑐𝑒𝑠𝑠 

𝑒𝑙𝑠𝑒 𝑇𝑏 ≫ 𝑇𝑎 𝑚𝑜𝑟𝑒 𝑢𝑠𝑒𝑟𝑠 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑆𝐵𝑆 

Let us consider the following three cases. 

 Case 1: Ta=Tb=1 then the user will be associated 

with the nearest of the two either Ma or Mb. 

 Case 2: Ta=PmaBa and Tb=PmbBb uses maximum bias 

power to association decision, it’s a typical 

technique used for cell range expansion. Here Ba, Bb 

represent bias for access and backhaul respectively.  

 Case 3: Ba=Bb=1 shows that user association is 

based on maximum receiver power. 

2.3. Association Region 

 Definition 1. Association region of subset of M is the 

region of the plane where all users are served by 

either Ma or Mb MBS antenna subset. Association 

regions for Ma and Mb located at xa and xb are given 

as: 

𝐶𝑥𝑎 = {𝑦𝑎 ∈ ℝ2: ‖𝑦𝑎 − 𝑥𝑎‖ ≤ (𝑇𝑎)1/𝛼‖𝑦𝑎 − 𝑋𝑎
∗(𝑦𝑎)‖𝛼 

Where 
 𝑋𝑎

∗(𝑦𝑎) = 𝑎𝑟𝑔 min
𝑥𝑎∈∅𝑚

‖𝑦𝑎 − 𝑥𝑎‖   

𝐶𝑥𝑏 = {𝑦𝑏 ∈ ℝ2: ‖𝑦𝑏 − 𝑥𝑏‖ ≤ (𝑇𝑏)1/𝛼‖𝑦𝑏 − 𝑋𝑏
∗(𝑦𝑏)‖𝛼  

Where 
𝑋𝑏

∗(𝑦𝑏) = 𝑎𝑟𝑔 min
𝑥𝑏∈∅𝑚

‖𝑦𝑏 − 𝑥𝑏‖ 

2.4. Access and Backhaul SINR 

We consider universal frequency reuse which means 

that a user will not only receive the desired signal but 

will also receive interfering signal from neighboring 

cells.  

We focus our analysis on FUE where the users have 

the option of either getting connected to SBS and be a 

part of backhaul communication or get connected to 

MBS and be part of the access communication. The 

Signal to Interference plus Noise Ratio (SINR) for both 

access and backhaul connections and also, SINR of 

user connect to SBS will also be calculated. 

The SINR of FUE served by MBS at 𝑥 is given by; 

Where neighboring MBS is located at xo  

𝑆𝐼𝑁𝑅𝑎 =

𝑃𝑚𝑎
𝑁𝑎

𝛽𝑎𝑥−𝛼

∑ 𝐼𝑖,𝑥𝑜
𝐿
𝑖=1 +∑ 𝐼𝑗,𝑏

𝑀𝑏
𝑗=1

+∑ 𝐼𝑟,𝑠
𝑆
𝑟=1 +𝑁𝑜𝑊𝑎

  

L is number of neighboring MBS and S is number of 

SBS. 

The SIR of FUE which is served by an SBS in tier-2 

at location z is given by; 

𝑆𝐼𝑁𝑅𝑠𝑢 =

𝑃𝑠
𝑁𝑠

𝛽𝑠𝑧−𝛼

∑ 𝐼𝑖,𝑥𝑜
𝐿
𝑖=1 +∑ 𝐼𝑗,𝑚

𝑀
𝑗=1 +∑ 𝐼𝑟,𝑠

𝑆
𝑟=1 +𝑁𝑜

  

The SIR between MBS to SBS DL in backhaul can be 

written as; 

𝑆𝐼𝑁𝑅𝑏 =

𝑃𝑚𝑏
𝑁𝑏

𝛽𝑏𝑦−𝛼

∑ 𝐼𝑖,𝑥𝑜
𝐿
𝑖=1 +∑ 𝐼𝑗,𝑎

𝑀𝑎
𝑗=1 +∑ 𝐼𝑟,𝑠

𝑆
𝑟=1 +𝑁𝑜𝑊𝑏

  

 

(3) 

(4) 

(5) 

(6) 

(7) 

(12) 

(13) 

(8) 

(9) 

(10) 

(11) 

(14) 
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2.5. Capacity Vs Number of Transmit Antennas 

A major selling point for future networks is higher 

bandwidth which is translated as higher capacity. 

However, this increase in capacity is not linear. Consider 

an Additive White Gaussian Noise (AWGN) 

communication system operating at W Hz with capacity 

given as: 

𝑅 =
𝑊

𝑁
log2(1 +

𝑃𝛽𝑀
𝑁𝑜𝑊⁄ )  

Where N is the number of users (load), P (watts) is 

transmit antenna power, β is the path gain and No is the 

Power Spectral Density (PSD) of noise. Generally, 
𝑃𝛽

𝑁𝑜𝑊
 

is referred to as SNR. From above equation, apparently 

increasing W should increase C but this increase in 

bandwidth will also increase noise i.e., the product NoW. 

Hence, in order to make capacity and bandwidth relation 

linear, the SNR must be kept constant. This is where 

massive MIMO systems showcase their advantage. In 

massive MIMO 𝛽=𝛽1M, where M is the number of 

transmit antennas. Hence, careful selection of number of 

transmit antennas can ensure a linear increase in capacity 

with increase in bandwidth. 

2.6. Rate Coverage  

 Definition 2. It is the maximum achievable data rate in 

the downlink between access link of MBS and its 

users Ra and MBS and SBS backhaul Rb which can 

mathematically be expressed as: 

𝑅𝑎 =
𝑊𝑎

𝑁𝑎
log2(1 + 𝑆𝐼𝑁𝑅𝑎𝑀𝑎)  

𝑅𝑏 =
𝑊𝑏

𝑁𝑏
log2(1 + 𝑆𝐼𝑁𝑅𝑏𝑀𝑏) 

Where Na and Nb represent the load (number of users) 

on access and backhaul links. Figure 1 shows the 

relationship between number of transmit antennas and 

data rate. 

 

Figure 1. Effect of number of transmit antennas on data rate. 

3. Resource Allocation Based on TAS  

Here we are going to present three novel TAS selection 

schemes for resource allocation in Self-Backhaul 

HetNets (SBH). 

3.1. Offload Favouring Random Selection  

In this case, we base TAS selection on the MBS and 

SBS antenna density such that more users are 

encouraged to associate with SBS and hence offload 

MBS. While density of SBS will remain constant after 

deployment unless one malfunctions or turns off 

temporarily, whereas, MBS antenna density within a 

cell can be varied for access and backhaul links by 

changing the number of MBS antennas associated 

with each of the above links. The antennas are divided 

based on their channel state where higher eigenvalues 

of the channel matrix correspond to antennas reserved 

for backhaul and vice versa.  

In order to encourage more backhaul links over 

access for MBS, we define the following condition for 

MBS antenna subsets; 
 

𝜆𝑏 > 𝜆𝑎 

𝑠. 𝑡. 𝑆𝐼𝑅𝑚𝑢 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

We are considering a user in tier-2 which is in the 

coverage area of both SBS and MBS. We are 

interested in offloading MBS to provide more 

resources for backhaul. For this purpose, greater 

number of MBS antenna subset will be assigned for 

backhaul communication to increase the channel gain 

between MBS and SBS for backhaul; i.e. 

𝑔𝑧,𝑏 > 𝑔𝑥,𝑎  

𝑀𝑏 > 𝑀𝑎  

Conventionally, user association with either MBS or 

SBS is based on maximum received power which is 

controlled using a bias value to encourage load 

balancing. Here, we are interested in associating a 

user with the BS offering greater channel gain which 

can be controlled using TAS. 

3.2. Equal Selection  

This is the simplest form of selection where equal 

number of MBS antennas are reserved for access and 

backhaul. The selection of antennas for the two links 

is randomly done unlike the eigenvalue-based 

selection of the previous case. The selection in this 

case can be simply represented as: 

𝑀𝑎 = 𝑀𝑏 = 𝑀
2⁄  

3.3. GA Based Selection  

Since antenna subset selection has an exponential 

number of solutions with respect to number of 

transmit antennas, thus making it an NP problem. We 

consider antenna subset selection optimization using 

Genetic Algorithm (GA). The flow chart of GA based 

antenna selection is shown in Figure 2 and the steps 

involved in GA based selection are as follows: 

1. Population: consider a total of M transmit antennas 

at MBS and Mb the total number of antennas 

selected for backhaul link, so there are 𝑀ℂ𝑀𝑏
 

(15) 

(16) 

(17) 

(18) 

(19) 
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possible combinations. Let Mbx be the number of all 

possible antenna subsets i.e., possible subset solutions 

known as chromosomes, then {Mb1,... ... Mbx} each 

represents a gene per chromosome. Population size of 

M is randomly generated and each chromosome is M-

bit long. The M -bit chromosome string consisting of 

0’s and 1’s (with 1’s representing selected antennas) 

will have a maximum of Ma 1’s in case population is 

generated for access link antenna selection and Mb 1’s 

in case of backhaul link. 

 Population={x1,x2,...xM} where each x (chromosome) 

represents an antenna subset. 

2. Fitness Function: calculate the fitness function f(x) for 

each chromosome in the population based on 

randomly assigned SINR to each link. 
 

𝑓(𝑥) = 𝑊
𝑁⁄ log2(1 + 𝑆𝐼𝑁𝑅(𝑥)) 

3. Selecting Parents: select fittest individuals by 

choosing the pair with highest fitness function to let 

them pass their genes to the next generation. It means 

selecting antenna subsets from the random population 

that give best fitness values.  

4. Making a Crossover: from selected pair of 

chromosomes a new population of M elements is 

generated. Here, the selected subsets of antennas are 

used for generating a new population.  

5. Making a Mutation: mutate some bits in chromosomes 

at random in new population.  

6. Replace current population with new population. 

7. Stopping criteria: maximum number of iterations. Go 

to step 2. 

 
Figure 2. Flow Chart of GA based antenna selection. 

4. Performance Metrics  

4.1. Rate Coverage Probability  

 Definition 3. It is defined as the probability that the 

maximum achievable data rate Ra and Rb of access 

and backhaul links, respectively, exceeds a certain 

threshold rate of 𝜌. 

Generally, coverage probability can be represented for 

a user as [32] which is modified below for proposed 

scenario; 

𝑝𝑐𝑎 = ℙ(𝑅𝑎 > 𝜌𝑎) 

𝑝𝑐𝑏 = ℙ(𝑅𝑏 > 𝜌𝑎) 

Similarly, outage probability is given as: 

𝑝𝑜𝑢𝑡𝑎 = 1 − 𝑝𝑐𝑎 
 

𝑝𝑜𝑢𝑡𝑏 = 1 − 𝑝𝑐𝑏 
 

So, coverage probability of a user being served by 

MBS in tier-1 can be found by using (16); 

𝑝𝑐𝑎 = ℙ [
𝑊𝑎

𝑁𝑎
𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑎𝑀𝑎) > 𝜌𝑎]  

𝑝𝑐𝑎 = ℙ(𝑆𝐼𝑁𝑅𝑎 >
2𝜌𝑎𝑁𝑎 𝑊𝑎⁄ −1

𝑀𝑎
) 

Similarly, the coverage probability of a user being 

served by SBS in tier-2 can be found using (17); 

𝑝𝑐𝑏 = ℙ [
𝑊𝑏

𝑁𝑏
𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑏𝑀𝑏 > 𝜌𝑏]  

𝑝𝑐𝑏 = ℙ(𝑆𝐼𝑁𝑅𝑏 >
2𝜌𝑏𝑁𝑏 𝑊𝑏⁄ −1

𝑀𝑏
)  

Higher coverage probability reinforces the reliability of 

the access or backhaul link or in simpler terms it means 

a better Quality of Experience (QoE) for users while 

providing the promised QoS as depicted by rate 

coverage probability.  

We now evaluate the coverage probabilities for 

various antenna selection schemes discussed in section 

3.  

The rate coverage probability for a massive MIMO 

HetNet with IAB for a target rate of 𝜌 is given as: 

𝑝𝑐 = 𝑝𝑐𝑎 + 𝑝𝑐𝑏 

𝑝𝑐 = ℙ {(𝑆𝐼𝑁𝑅𝑎 + 𝑆𝐼𝑁𝑅𝑏) > [
(

2𝜌𝑁𝑎 𝑊𝑎⁄ −1

𝑀𝑎
) +

(
2𝜌𝑁𝑏 𝑊𝑏⁄ −1

𝑀𝑏
)

]}  

For equal selection, 𝑀𝑎 = 𝑀𝑏 = 𝑀
2⁄  and assuming 

equal bandwidth: 

𝑝𝑐 = ℙ {(𝑆𝐼𝑁𝑅𝑎 + 𝑆𝐼𝑁𝑅𝑏) >
2

𝑀
(22(𝑁𝑎+𝑁𝑏)𝜌 𝑊⁄ − 2)}   

For offload favoring and GA based selection, the rate 

coverage probability is given as; 

Start 

Initialize M Transmit 

Antenna  

Calculate Fitness Function 

𝑓(𝑥) =
𝑊

𝑁
log2(1 + 𝑆𝐼𝑁𝑅(𝑥)) 

Select Parents  

Crossover and Mutation   

Stopping 

Criteria 

Generate 𝑀𝑎𝑀𝑏 

Yes 

No 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 



Transmit and Receive Antenna Selection Based Resource Allocation for ...                                                                               761 

𝑝𝑐 = ℙ {(𝑆𝐼𝑁𝑅𝑎 + 𝑆𝐼𝑁𝑅𝑏)

>
1

𝑀𝑎𝑀𝑏
[𝑀𝑏(2𝜌𝑁𝑎 𝑊𝑎⁄ − 1)

+ 𝑀𝑎(2𝜌𝑁𝑏 𝑊𝑏⁄ − 1)]} 

𝑝𝑐 = ℙ {(𝑆𝐼𝑁𝑅𝑎 + 𝑆𝐼𝑁𝑅𝑏) >
1

𝑀𝑎𝑀𝑏
(𝑀𝑎2𝜌𝑡1 + 𝑀𝑏2𝜌𝑡2 −

(𝑀𝑎 + 𝑀𝑏))}     

Where 𝑡1 =
𝑁𝑎

𝑊𝑎
 and 𝑡2 =

𝑁𝑏

𝑊𝑏
 

4.2. Energy Efficiency  

We will now derive the expressions for power model and 

energy efficiency model for access and backhaul links. 

The power model for access is given as: 

 𝑃𝑎,𝑡𝑜𝑡𝑎𝑙 = {

𝑃𝑚𝑎

𝛿(1−𝜎𝑓𝑒𝑒𝑑)
+𝑃𝑐𝑖𝑟+𝑃𝑠𝑡𝑎

(1−𝜎𝐷𝐶)(1−𝜎𝑀𝑆)(1−𝜎𝑐𝑜𝑜𝑙)
}  

Where δ is the power amplifier efficiency, Pcir is the 

power consumption of RF chains which consists power 

consumption from Digital to Analog Converter (DAC) 

(PDC), mixer (Pmix), filter at transmitter (Pfilt), and 

frequency synthesizer (Psyn).  

While lossy factors of antenna consist of losses in 

feeder (σfeed), DC-DC power supply (σDC), main power 

supply (σMS), and active cooling system (σcool).  

Similarly, power model for backhaul link is given as: 

𝑃𝑏,𝑡𝑜𝑡𝑎𝑙 = {

𝑃𝑚𝑏

𝛿(1−𝜎𝑓𝑒𝑒𝑑)
+𝑃𝑐𝑖𝑟+𝑃𝑠𝑡𝑎

(1−𝜎𝐷𝐶)(1−𝜎𝑀𝑆)(1−𝜎𝑐𝑜𝑜𝑙)
}  

The energy efficiency model for access link is given as: 

𝐸𝐸𝑎 =
𝑅𝑎

𝑃𝑎,𝑡𝑜𝑡𝑎𝑙
  

Likewise, the energy efficiency for backhaul link is given 

as: 

𝐸𝐸𝑏 =
𝑅𝑏

𝑃𝑏,𝑡𝑜𝑡𝑎𝑙
 

4.3. Mean Best Cost 

We calculated the mean capacity for Proposed Genetic 

Algorithm (PGA) and PSO based algorithms for 30 

runs of each algorithm. 

4.4. Standard Deviation 

Standard Deviation (SD) was also calculated for the 

data generated from PGA and PSO algorithm which 

was used for describing variation in mean data values as 

well for calculating the Standard Error of Means 

(SEM). 

4.5. Standard Error of Means 

The SEM was used to measure deviation in sample’s 

mean compared to population mean. It was used to 

measure the accuracy of the data sample being 

analysed. 

5. Simulation and Results  

5.1. Rate Coverage Trends  

To establish a benchmark and to gauge the accuracy 

of analysis, we analyse the network capacity for 

access and backhaul links with and without Channel 

State Information (CSIT) in Figures 3 and 4. Water 

pouring algorithm is used for capacity analysis with 

CSIT. An improvement in capacity is observed with 

increase in number of transmit antennas. System 

parameters used for simulation are presented in Table 

2. 

 

 

Figure 3. Effect on capacity with equal antenna selection for 

access and backhaul, with and without CSIT.  

 

Figure 4. Effect on capacity with offload favouring random 

selection for access and backhaul, with and without CSIT.  

Table 2. System parameters. 

Description Value 

MBS transmit power 50 dBm 

SBS transmit power 20 dBm 

Power amplifier efficiency 0.38 

Power consumption/RF chain 115.9 mW 

Idle power consumption 45.5 W 

Total number of MBS antenna 100 

Antenna subset cases 30, 50, 70 antennas 

SINR range 0 – 15 dBm 

5.2. Comparison of GA Selection  

The PGA based antenna selection was compared with 

compared with PSO based selection [20]. Both 

algorithms were tested using a large data set of 30 runs 

with 1000 iterations per run. The population size as 

well the cycle limit was kept same for both the 

(30) 

(32) 

(33) 

(31) 

(29) 
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algorithms. The crossover percentage, mutation 

percentage and mutation rate was kept as 0.7, 0.3, and 

0.1 respectively for PGA.  

For PSO based approach an inertia weight of 1, 

damping ratio of 0.99, personal learning coefficient of 

1.5 and global learning coefficient of 2 was used.  
 

 
Figure 5. Comparison of SEM of PGA and PSO. 

Figure 5 shows a comparison of SEM between PGA 

and PSO. The results clearly validate the accuracy of 

results. 

 
Figure 6. Comparison of mean capacity between PGA and PSO. 

Figure 6 shows a comparison of mean capacity as 

obtained through the two algorithms, PGA and PSO. The 

proposed algorithm clearly out performs the PSO based 

antenna selection.  

In Figure 7 we provide comparison of GA based 

antenna selection with random selection, eigenvalue-

based selection and equal bandwidth partitioning. The 

total population size used for GA is 100 which signifies 

the number of MBS antennas. In random selection we 

choose 𝑀𝑏 > 𝑀𝑎 where the antennas selected for access 

and backhaul are randomly chosen. Eigenvalue-based 

selection chooses antenna subset after calculating the 

eigenvalues of the channel matrix. A subset of the 

channel matrix representing maximum eigenvalues is 

selected which in turn represents the antenna subset 

being selected. These antenna selection schemes are 

compared with bandwidth partition where total 

bandwidth 𝑊 is divided equally for access and backhaul, 

i.e., 𝑊𝑎 = 𝑊𝑏 = 𝑊
2⁄ . Since the GA based selection 

chooses a subset of antenna that provide the best fitness 

value i.e., best cost or data rate, hence, the curve for 

GA in Figure 7 represents the greatest capacity. Best 

and mean fitness value is shown in Figure 8. Cost 

function with respect to fitness value can be seen to 

have a uniform increasing trend in Figure 9.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7. Comparison between different selection strategies and 

bandwidth selection. 

 

Figure 8. Fitness value vs number of generations in GA. 

 
 
 

 

Figure 9. Fitness value vs cost in GA. 

5.3. Comparison of Antenna Partitioning and 

Bandwidth Partitioning  

Further, we compare bandwidth partitioning with 
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antenna partitioning/selection and the results are shown 

in Figure 10 where the improvement in capacity with 

partitioning factor is much better for antenna partitioning 

than bandwidth partitioning. Here access partition is 

given as 𝑀𝑎 = (1 − 𝜂)𝑀 while that for backhaul is 

given as 𝑀𝑏 = 𝜂𝑀, where η is the partitioning factor. 

Similarly, the bandwidth partitioning as given in [34] is 

𝑊𝑎 = (1 − 𝜂)𝑊 and 𝑊𝑏 = 𝜂𝑊 for access and backhaul 

links respectively. Hence, our analysis show that antenna 

partitioning provides a much better capacity 

improvement for designing of self-backhauling 5G 

HetNets with massive MIMO. Similar results can be 

observed in Figure 11 for antenna and bandwidth 

partitioning for backhaul links. Hence, it can be deduced 

conclusively that TAS provides a more efficient IAB 

design strategy compared to bandwidth partitioning.  

 

Figure 10. Antenna partitioning vs bandwidth partitioning for access 

link.  

 

Figure 11. Antenna partitioning vs bandwidth partitioning for 

backhaul link.  

5.4. Mean Rate Analysis  

We consider three different cases with respect to the 

number of antennas selected and the number of users 

associated with kth tier. For a total of 100 MBS antennas, 

for case I we consider 30 transmit antennas being 

selected and total number of users associated with that 

particular tier to be 15. In case 2 we consider 50 transmit 

antenna selected with 25 users served by the 

corresponding tier while in case 3 we consider 70 MBS 

transmit antennas being selected with 35 users 

associated with that tier. A lower number of users 

represents a better mean rate as the antennas being 

selected are the ones that provide the best possible 

SINR subset out of total available antennas.  

It can be seen from Figure 12 that inclusion of more 

antennas in the subset results in lower mean rate as the 

demand increases in terms of number users while 

inclusion of less optimum subsets represents lower 

SINR values.  

 

Figure 12. Mean rate analysis for three different cases of number 

of users and number of transmit antennas selected.  

5.5. Energy Efficiency Analysis  

Next, we analyse case 1, case 2, and case 3 for energy 

efficiency analysis. In Figure 13 it can be seen that 

energy efficiency of the network decreases for all the 

three cases as the number of antennas are increased 

beyond 30, 50, and 70 antennas respectively. This 

signifies the fact that power consumption of MBS 

increases with increase in number of transmit 

antennas. 

 

Figure 13. Energy efficiency analysis for different number of 

transmit antennas.  

6. Conclusions 

In this paper, we proposed a GA inspired TAS strategy 
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for self-backhaul in 5G massive MIMO HetNet and 

investigated three different cases of selection. We 

developed a model for a two tier HetNet having three 

types of users, where the MBS is equipped with a 

massive number of transmit antennas. Our challenge was 

to investigate the effectiveness of TAS for IAB in a 

HetNet where TAS was GA based. We evaluated the 

SINR for both access and backhaul links for the 

proposed model and further analyzed the downlink rate 

coverage. A novel user association strategy was also 

proposed where the user association is also dependent on 

number of transmit antennas selection among other 

factors. Analytically it was shown that user association 

can be altered by changing the number of antennas 

selected per-tier. Hence, offloading MBS is possible by 

changing MBS antenna density per tier (in other words 

number of MBS antennas. The proposed work represents 

the following important insights: 

1. The proposed GA based TAS for two tier HetNet out 

performs some of the conventional techniques as well 

as bandwidth partitioning 

2. TAS based antenna selection shows promising 

capacity trends compared to bandwidth partitioning 

and hence, opens a promising research area. Our work 

can further be extended by incorporating 

instantaneous load-based analysis and comparison 

with other heuristic approaches for TAS along with 

analysis of optimum value for antenna partitioning 

factor. 
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