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Abstract: This paper reports on the development of a new hybrid architecture that integrates Learning Classifier Systems 

(LCS) with Rete-based production systems inference engine to improve the performance of the process of compacting LCS 

generated rules. While LCS is responsible for generating a complete ruleset from a given breast cancer pathological data-set, 

an adapted Rete-based inference engine has been integrated for the efficient extraction of a minimal and representative ruleset 

from the original generated ruleset. This has resulted in an architecture that is hybrid, efficient, component-based, elegant, 

and extensible. Also, this has demonstrated significant savings in computing the match phase when building on the two main 

features of the Rete match algorithm, namely structural similarity and temporal redundancy. Finally, this architecture may be 

considered as a new platform for research on compaction of LCS rules using Rete-based inference engines.  
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1. Introduction 

Learning Classifier Systems (LCS) [13] and 

Production Systems (PS) were two of the main issues 

that have been investigated in Artificial Intelligence 

(AI) over the last three decades.  PS is a model of 

knowledge representation [18] which was applied on 

many real expert system applications, and used to build 

expert system shells, such as CLIPS [10] and Jess [8]. 

LCS is a rule-based system which uses evolutionary 

algorithms to facilitate rule discovery [5]. It has been 

applied to different data mining problems and shown 

effectiveness in both predicting and describing 

evolving phenomenon [15]. However, in the real-

domain environments, having generated describable 

rules, LCS needs further step in which a subset of 

minimal number of rules is to be found that still can 

describe the environment. In other words, a 

compaction process is required over the rules 

generated as an output of the classifier system.  

A number of approaches have been attempted to 

develop a sufficient compaction algorithm where a 

minimal subset of rules can be extracted with minimal 

run time required. However, these attempts suffer from 

the same deficiency in terms of poor performance. This 

work discusses how production systems cycles can be 

utilized to improve the performance of the compaction 

process. A three-phased hybrid architecture has been 

developed that utilizes the Recognize-Act-Cycle 

(RAC) used by PS inference engines, and in particular 

adapting   the  Rete  match  algorithm  to  improve  the  

 
previous compaction algorithms resulting in an elegant 

and promising approach to compacting LCS generated 

rules. A brief introduction to PS is introduced in 

section 2, followed in section 3 by a brief description 

of learning classifier systems’ structure, and XCS in 

particular. A brief description of the main compaction 

algorithms cited in the literature is described in section 

4. Finally, section 5 reports on the implementation of 

the new approach followed by critical evaluation of the 

results achieved. 

2. Production Systems 

Over the last three decades, AI has been the aim of 

many researchers particularly in the field of expert 

systems or knowledge-based systems. The production 

system represents a model of knowledge representation 

that is mostly applied in real applications of expert 

systems; e.g., R1/XCON in configuring computer 

systems [21], and MYCIN [20] in diagnosing bacterial 

infections of the blood. 

In general, the architecture of a production system 

consists of three components: working memory, 

production memory, and the inference engine. The 

working memory (also called fact base) is the 

collection of facts (cases), which could be any 

information collected by the knowledge engineer or 

extracted from information systems. 

Production Memory (or Rule-Base) consists of a set 

of rules (productions) that represent domain-specific 

and problem-solving knowledge Gonzalez and Dankel 
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[11]. Each rule has a name and can be expressed by If-

Then statement. The if-part is the Left Hand Side 

(LHS), which is also called condition part, or the 

antecedent. It consists of one or more of condition 

elements. The then-part, which is called the Right 

Hand Side (RHS), consequent or action- consists of 

number of actions. The action behavior may affect the 

working memory by inserting, deleting, or modifying 

any of its elements.  

The inference engine is the production system 

interpreter that executes rules. Two well-known 

inferencing methods are used in production systems: 

forward and backward chaining. Forward chaining is 

reasoning from facts to conclusion, whereas the 

backward chaining is the reverse reasoning i.e., from 

the hypotheses to their supporting facts [10]. The 

approach adopted in this paper is based on the forward 

reasoning model which will be explained in the next 

section. 

 

2.1. The Recognize-Act-Cycle 

In the forward reasoning, the inference engine 

execution model is a three-phase cycle of: Match; 

conflict resolution, and; act phases [11] as shown in 

Figure 1. This cycle is commonly referred to as the 

RAC, select-executed-cycle, or situation-action-cycle 

[10].  

 
 

Figure 1. The RAC. 

 

In the match phase, the inference engine evaluates 

the condition elements of all production rules 

againstthe current Working Memory elements 

according to a predefined match algorithm, for 

example the Rete algorithm. In other words, the rule 

base is compared to the fact base to determine which 

rules are applicable. The applicable rules are 

instantiated (activated) and grouped to form the 

conflict set.  

Rete algorithm was introduced by [7] as an efficient 

match algorithm and since then it has been used as the 

match algorithm in many production systems and 

expert systems shells; e.g., CLIPS, Jess and others. The 

main advantage of Rete algorithm is its performance 

gain over previous match algorithms as it avoids 

redundant match iterations between working memory 

(facts) and production memory (rules) as fully 

explained in [7]. More precisely, it exploits two 

important characteristics of the rules in most 

production system programs. 

Temporal redundancy: this refers to the fact that 

executing rules would change only few working 

memory elements (facts) (3-4 on average). When a 

new working memory element is matched against the 

rule-base, match results are stored and subsequent 

changes take place only when this working memory 

element gets changed. Hence, this results in 

performance gains when few working memory changes 

take place and match results of previous cycles have 

been saved. 

Structural similarity: this refers to the structural 

similarity between patterns in the LHS of more than 

one production (rule). Rete makes the most of this 

feature by indexing the patterns in a tree-structured 

data-flow network [7]. 

The output of the match phase is the input to the 

conflict resolution phase, where the conflict set is 

sorted in descending order by the rule’s priority which 

is assigned for each rule according to predefined 

conflict-resolution strategy (for example depth 

strategy). The agenda (which is the ordered conflict 

set) is used in a similar way to a stack, where the top 

instantiated rule is the first one executed, where only 

one rule is selected for execution per production 

system cycle. This happens in the third phase, namely 

the Act phase, where the RHS of the selected rule 

instantiation is executed.  Each action in the RHS is 

one of the following four possibilities:  

1. Adding a new fact to the fact-base and/or a new 

rule(s) to the knowledge base;  

2. Modifying an existing fact;  

3. Explicit deletion of a working memory element, or;  

4. Halting the inference engine. The inference engine 

also halts if the conflict set is empty, i.e., no more 

rule instantiations exist to be selected for firing.   

3. Learning Classifier Systems 

LCS is a rule-based learning system that evolves 

evolutionary computation techniques, reinforcement 

learning, and other heuristics to generate an optimal set 

of rules for a given environment [5]. The first LCS 

architecture, namely CS-1, was introduced by [12]. 

However, this system was both complex and difficult 

to predict its behavior [28]. In [23], built on his 

Animate, in which Boole [24], New Boole [4], ZCS 

[26], and XCS [27] were refined. However, it may be 



118                                                          The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014 

 

 

said that most current LCS research has made a shift 

away from Holland’s original formalism after Wilson 

introduced XCS. 

 

3.1. XCS  
 

XCS uses the accuracy of rules’ predictions of 

expected payoff as their fitness. In addition, XCS uses 

Genetic Algorithms (GA) [14] to evolve 

generalizations over the space of possible state-action 

pairs of a reinforcement learning task with the aim of 

easing the use of such approaches in large problems, 

i.e., those with state-action combinations that are too 

numerous for an explicit entry for each. It can also 

avoid problematic ’overgeneral’ rules that receive a 

high optimal payoff for some inputs, but are sub-

optimal to other lower payoff inputs. Further details on 

XCS can be found in [27]. 

XCS consists of a limited size population [P] of 

classifiers (rules). Each classifier is in the form of “IF 

condition THEN action” and has a number of 

associated parameters. The condition may consist of 

binary representation for simple problems, integer 

intervals [25], real values [29], or combination of these 

for more complex one. One of the main measurements 

in LCS is the performance which is the percentage of 

the correct classifications that the classifier system 

performs during its testing phase. 

LCS in general and XCS in particular were applied 

to different data mining problems. It was shown that 

LCS could be effective for predicting and describing 

evolving phenomenon, in addition to its modeling 

ability [15]. In [19], applied XCS to the Monk datasets 

showing that, with an appropriate representation, XCS 

was able to solve these problems as accurate as or 

better than other competitive machine learning 

algorithms. Similar task was done in [1, 2, 6] on 

further data mining tasks drawn from the UCI 

Repository [3].  

Moreover, Wilson [22, 25] applied XCS to a 

medical dataset, namely the WBC Dataset, and showed 

that XCS can tackle real complex learning problems, in 

addition to its capability to deal with different 

representations. Also, XCS was tested on other 

datasets in [2] and showed to have a competitive 

performance in both training and testing phases. 

 

3.2. Case Study: The Wisconsin Breast Cancer 

Dataset  
 

Wisconsin datasets are three well-known breast cancer 

datasets from the UCI Machine Learning Repository 

[3]:  

1. Wisconsin Breast Cancer (WBC) Dataset which 

describes clinical images taken from fine needle 

biopsies of breast masses. 

2. Wisconsin Diagnostic Breast Cancer Dataset 

(WDBC)  which describes 30  characteristics of  the 

cell nuclei present in each image.  

3. Wisconsin Prognostic Breast Cancer Dataset 

(WPBC) which has follow-up data on breast cancer 

cases.  

The development of WBC started in 1989 in 

Wisconsin University Hospitals by Dr. William 

Wolberg, and since then it has been heavily used as a 

test bed for machine learning techniques [17]. It 

consists of 699 test cases, in which 16 cases have a 

missing value. Every case has nine integer attributes 

associated with the diagnosis. Also, each attribute 

ranges between 1 and 10 while the diagnostic 

parameter (action) has binary possibilities as either 

malignant (34.5%), or benign (65.5%).  The attributes 

are: Clump Thickness, Uniformity of Cell Size, 

Uniformity of Cell Shape, Marginal Adhesion, Single 

Epithelial Cell Size, Bare Nuclei, Bland Chromatin, 

Normal Nucleoli and Mitoses. Figure 2 shows the 

prediction accuracy of XCS over the WBC (average 

and standard deviation) compared to other learning 

algorithms showing the efficiency and ability of XCS 

to tackle real complex problems. In this research, WBC 

dataset has been used as the test bed to study and 

evaluate the outcomes of the new LCS compaction 

approach, namely Compaction using Recognise-Act 

Cycles (CRAC) [2]. 
 

 
 

Figure 2. Prediction accuracy of XCS and other learning algorithms 

on the WBC. 

4. Approaches to LCS Rule Compaction 

• Goals of LCS Rule Compaction 
 

XCS has been showing encouraging results in different 

domains in terms of its capability to produce a 

maximal, general, correct solution for a given 

environment. The huge size of the generated solution, 

however, may still be considered as a barrier to exploit 

its entire knowledge. For example, more than 1100 

rules were generated when WBC dataset was applied 

to XCS [25]. 

The main objective of applying real-domain 

problems to LCS is to provide the domain experts with 

a complete, minimal, readable solution with an 

organized underlying knowledge that have the ability 

to describe the given environment. “Complete” is one 

of the proved characteristics connected to XCS [16] 

which means that XCS is able to describe all regions of 

the input/action space (complete map) for the given 

environment. However, by increasing the number of 

rules describing the environment, overlapped patterns 

are allowed to exist, which conflict with the second 

term: “minimal”. In other words, there will be some 

regions in the environment that are described and 
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covered by more than one rule (or pattern). Actually, 

some of the real-domain problems require an 

overlapping solution by their nature of complexity, but 

the point is with the unnecessary overlapping that 

could be avoided.  

One of the other main problems caused by the huge 

number of rules is presenting these rules to an expert. 

This violates the third term: “readable” due to the over 

expected number of rules that make it impossible to 

comprehend them smoothly or make the maximum 

benefit of them. For example, providing a breast cancer 

specialist with 1100 rules describing the 700 WBC 

cases may not be easily comprehendible to make use of 

the underlying hidden knowledge for better 

understanding and enrichment of breast cancer 

knowledge. 

Therefore, developing a compaction algorithm that 

addresses the above dimensions is essential to increase 

the level of rules readability, interpretation, and 

organization of the underlying knowledge held in 

them. The main algorithms attempted to compact LCS 

rules are: Wilson's [22], Dixon, Wolfe and Oates [6], 

Fu and Davis [9], and Wyatt, Bull and Parmee [30]. In 

general, the main observation on these previous 

attempts is that they all aim to select the minimum 

number of rules that cover the dataset to produce a 

minimal subset from the generated rules that describe 

the original dataset on which LCS was initially trained 

and further tested. 

In summary, the importance of the compaction step 

has been addressed as an essential post-phase in LCS 

computations. The simplest algorithm was of Dixon, 

Wolfe, and Oates which has a polynomial run-time 

complexity rather than exponential as in the algorithms 

of Wilson, and Fu et al. ones. Wyatt, Bull and Parmee 

modification considered to be a performance 

improvement to the latter ones. But, since the above 

algorithms use a simple match algorithm (mainly the 

XCS one), the acceptance of these algorithms is 

expected to be severely affected by the excessive low 

performance of matching. The next section addresses a 

solution to the shortcomings outlined above building 

on the well-know Rete match algorithm. 

5. Compaction Using Recognize Act Cycle  

As mentioned above, one of the main disadvantages of 

the previous compaction algorithms is their 

dependency on the simple classical match algorithm 

(i.e., the classifier system’s match algorithm) which 

implies that each fact is tested against all the ruleset 

whenever performance of this ruleset is calculated to 

result in a redundant match procedure without saving 

any predecessor previous and similar matches. As a 

consequence, the run-time cost for these algorithms 

grows massively.  This can be easily observed, for 

example, in Wilson’s algorithm to require more than 

two hours running over 1100 rules and 700 facts. 

Figure 3 illustrates the general architecture of the 

proposed approach which integrates the two systems:  

1. Learning classifier system to generate a maximally 

general ruleset describing the underlying problem; 

2. Production System Inference Engine, enabled by its 

RAC to compact LCS generated rules using one of 

the algorithms described in the previous section. 

  

        

     Figure 3. Architecture of the new CRAC approach. 

 

This new approach, CRAC replaces the match 

algorithm used in the above compaction algorithms by 

Rete, the highly efficient match algorithm described in 

section 2, using the LCS rules to generate a minimal 

set of organized and representative knowledge. In 

implementing the CRAC approach, XCS is used as the 

LCS, and Jess shell as the production system shell with 

one of the previous compaction algorithm specifies the 

conflict resolution strategy. 

Java expert system shell (Jess) [8] is one of the 

developed expert system shells, which was written in 

java and developed in the late 1990s. Since then a 

number of AI applications have been written in Jess 

considering the support of the forward and backward 

reasoning by its inference engine. Also, having 

additional functionalities than other shells, the ability 

to control Jess reasoning engine thro java and to 

integrate with other java programs via its well defined 

API are considered to be a very strong features.  

The implementation of the hybrid architecture 

consists of three phases shown in Figure 4. The first 

stage starts by converting the existing rules, which 

were generated by LCS (XCS), to match the PS (Jess) 

syntax as well as translating the WBC dataset cases 

into its equivalent Jess format, based on a predefined 

and customized template. This is done by a 

transformation engine especially designed and 

developed for this purpose as described in phase 1 of 

Figure 4. 

Having converted the syntax of the rules and facts to 

their equivalent Jess format, Jess’s inference engine 

starts, in the second phase, where the adapted LCS 

rules are matched against the facts to build a data-flow 

network in which each node represents a condition 

element of the LHS (conditions) of each rule. 

Successive match results of facts against condition 

elements of the LHS of rules are stored saving a 

significant re-computation match time in subsequent 

inference engine cycles (i.e., RAC). In other words, the 

output of this phase is a data-flow network in which 



120                                                          The International Arab Journal of Information Technology, Vol. 11, No. 2, March 2014 

 

 

the condition elements of the rules are indexed along 

with associated matched facts. 

 
Figure 4. CRAC: Three phase hybrid architecture. 

 

Based on one of the previous compaction 

algorithms, the conflict resolution phase sorts out its 

conflict set to determine the rules’ execution order as 

shown in Figure 4-phase three. Each execution affects 

the Rete tree structure which forces the inference 

engine to reconstruct the affected part and not the 

whole tree since it is an indexed tree. In fact, this can 

be explained by the Rete exploitation to the 

characteristic of the temporal redundancy as explained 

before. 

Typically, the system halts if the conflict set is 

empty and the compacted ruleset should be extracted. 

Bellow is the description of the previous compaction 

algorithms  when  they  are  implemented  by  the new 

approach CRAC. In brief, storing successive 

matchresults of facts against condition elements of 

rules save a significant re-computation match time in 

subsequent inference engine cycles where redundant 

match computations are performed and wasted from 

cycle to cycle in the previous match algorithm. 

 

• Knowledge Representation of LCS Rules using Jess 
 

In Jess, the deftemplate construct is used to specify the 

structure of data and its properties. Each template has a 

name and number of slots, where each represent a 

certain property. Jess does not seem to have a limit on 

the number of templates and associated slots. The 

general syntax of deftemplate in Jess is: 

 (deftemplate <template name> (slot <slot name>) +) 
 

To add new data element into the working memory, 

the assert construct is used with the required template 

name and asserted attribute values as follows: 
 

(assert(<template name> (<slot name> <slot value>)+)) 
 

The two templates used in the CRAC implementation 

are: 
  

1. Breast-tissue in which the properties of the WBC 

cases are included. Figure 5 shows the structure of 

the breast-tissue template and an associated assert 

statement. 

2. Rule-property in which the XCS rules’ properties 

are described to be used within the PS. PN is the 

payoff numerosity product for the rule. It is used 

instead of calculating it each time as shown in 

Figure 6. 

 

Figure 5. The breast-tissue template structure and an assert example.
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 (deftemplate rule_property 

(slot ruleNo) (slot action) (slot payoff) 
(slot error) (slot fitness)(slot numerosity) 

(slot experience)  (slot PN)) 

Figure 6. The structure of rule-property template. 
 

The formal way to express rules in Jess is by using 

defrule construct. Each rule has a name and body 

where the if-then block is specified.  

6. Evaluation and Analysis of CRAC 

Implementation 

In CRAC and when using the Rete match algorithm to 

replace the match computations in each of the 

previously discussed compaction algorithms results in 

a number of advantages ranging from significant 

performance gain to better explanation and readability 

of generated LCS rules. To study the effect of 

exploiting Rete algorithm compared to the simple 

classical match algorithm used in the above 

compaction algorithms, we use the following simple 

rules: 
 

1. If X=2 & Y=5 & Z=3 then Action1 

2. If X=2 & Y=5 then Action2 
 

Figures 7-a and 7-b illustrate the application of the two 

match algorithms when matching rules 1 and 2. 

Although, the two rules have only two similar 

condition elements (X=2 and Y=5), the simple 

classical match algorithm handles them separately so 

that each fact should be matched to five condition 

elements (X=2, Y=5, Z=3, X=2, and Y=5) as shown in 

Figure 7-a. On the other hand, Rete match algorithm 

exploits the LHS structural similarity of rules and 

builds its tree with only three condition elements 

reducing the cost of initial matching of condition 

elements by a factor of 3/5 without considering the 

most common cases of rules having complex condition 

elements with multiple features (or tests) that are 

similar across the ruleset as can be strictly observed in 

LCS generated rules over the breast cancer dataset.  

And, exploiting Rete match algorithm in CRAC has 

shown some significant gain in performance compared 

to the simple classical match algorithm used within the 

space of applying compaction. This can be evident 

when the matching phase gets repeated using high 

number of cycles, where redundant match 

computations are performed and wasted from cycle to 

cycle. For example if ten facts are matched to the 

above two rules, the simple classical match algorithm 

will have to perform 50 matching tests, whereas Rete 

algorithm performs only 30. In fact, in the case of the 

WBC generated ruleset, there are more than 361,000 

similar patterns in the 1100 rules. While this paper is 

not about analyzing the complexity of Rete match 

algorithm, the simple classical match algorithm 

requires excessive computation time compared to Rete 

and this is expected to rise exponentially with the 

increasing number of facts and rules. In addition to the 

similarity structural advantage, the proposed approach 

makes use of Rete network in storing information 

about both the rules and their associated satisfied facts. 

Therefore, the time needed in the match process is 

reduced significantly since the stored information is 

used in the subsequent matches instead of re-matching 

the patterns with facts again.  

 

    
a) Rete. b) Algorithm in representing 

     rules. 

Figure 7.  The behavior of the simple classical match. 

 

As explained in the previous section, each 

production system cycle execution (RAC) in Jess 

affects some minimal part of the corresponding Rete 

tree of the LHSs of the ruleset. This leads the inference 

engine to update only the affected part rather than the 

whole inference tree.  This is   because   matching   the 

facts to the patterns in rules is done only once during 

initial stage when the indexed tree is built followed by 

few changes to the memory nodes in the Rete tree as a 

result of adding new facts, and/or modifying or 

deleting existing matched facts.  

The performance of the compaction algorithms 

discussed earlier has been compared both when using 

the CRAC (Rete-based) and the stand-alone 

implementation of these algorithms based on the 

simple classical match algorithm. Table 1 presents the 

execution results of both approaches when compacting 

the generated rules from running XCS over the original 

WBC dataset. 

Table 1. The execution time for the compaction algorithms. 

Compaction 

Algorithms 

Execution Time (in Minutes) 
Speed up 

Factor(T2/T1) 
 T1: CRAC  

(Rete Based) 

T2: Simple 

 Match 

Wilson ~36 ~180     5 

Dixon et al. ~35 ~2   .06 

Fu & Davis ~36 ~150   4.17 

Table 1 provides some strong indication on the 

possible speed up factors that can be obtained from 

implementing the compaction algorithms of Wilson, 

Dixon et al. and Fu & Davis using the new CRAC 

approach. In particular, the speed up factor obtained 

reached is 5 times as can be observed in the case of 

Wilson CRAC based implemented. Moreover, this 

speed up is expected much higher if larger number of 

rules/facts are used given that the cost of matching 

using the simple match algorithm  expected to rise 
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exponentially. Furthermore, the cost of computing 

match consumes 75% of the total execution time. In 

the case of the CRAC approach, the majority time of 

the time is spent in building the Rete tree for the first 

time. For example, building the Rete tree in Wilson 

algorithm took about 30 minutes where the rest of 

computations accounted only for only 6 minutes. This 

simply implies that the cost of constructing the Rete 

match tree in the first execution consumes most of the 

total execution time.  

Furthermore, simple and classical match algorithms 

spend more than 90% of their total run-time in 

matching patterns [7] since the whole matching 

process gets repeated because of redundant match 

computations. However, Dixon et al. algorithm is a 

special case as shown in Table 1 since the matching 

phase occurs only once and this explains the efficient 

performance of this algorithm compared to the CRAC 

implementation. We simply attribute the higher 

computation cost in the Dixon et al. CRAC based 

implementation to the cost of constructing the Rete 

match tree. 

7. Conclusions and Future Work 

In summary, integrating LCS with CRAC results in an 

efficient hybrid architecture to compact knowledge 

discovery that is component-based, elegant, and 

extensible. Also, this architecture acts as bridge 

between LCS research and efficient execution of 

production systems. While LCS is responsible for 

generating a complete map solution for a given 

environment, CRAC works on the efficient extraction 

of a minimal ruleset from the original LCS generated 

ruleset. The results, so far, show that the new hybrid 

architecture was able to achieve competitive results in 

terms of run-time complexity. 

In addition, integrating Rete match algorithm in the 

compaction process has shown significant run-time 

results in the form of significant savings in computing 

the match stage. This is because Rete builds on the two 

main characteristics, structural similarity and temporal 

redundancy. Finally, this architecture may be 

considered as a new platform for research on 

compaction of LCS rules using Rete-based inference 

engines.  
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