
The International Arab Journal of Information Technology, Vol. 11, No. 3, May 2014 229

A Software Tool for Automatic Generation of

Neural Hardware

Leonardo Reis, Luis Aguiar, Darío Baptista, and Fernando Morgado-Dias

Madeira Interactive Technologies Institute and Competence Centre for Exact Sciences and Engineering,

University of Madeira, Portugal

Abstract: Natural neural networks greatly benefit from their parallel structure that makes them fault tolerant and fast in

processing the inputs. Their artificial counterpart, artificial neural networks, proved difficult to implement in hardware where

they could have a similar structure. Although, many circuits have been developed, they usually present problems regarding

accuracy, are application specific, difficult to produce and difficult to adapt to new applications. It is expected that developing

a software tool that allows automatic generation of neural hardware while using high accuracy solves this problem and make

artificial neural networks a step closer to the natural version. This paper presents a tool to respond to this need: A software

tool for automatic generation of neural hardware. The software gives the user freedom to specify the number of bits used in

each part of the neural network and programs the selected FPGA with the network. The paper also presents tests to evaluate

the accuracy of the implementation of an automatically built neural network against Matlab.

Keywords: Artificial neural networks, feedforward neural networks, system generator, matlab, xilinx, simulink, integrated

software environment.

Received January 4, 2012; accepted August 26, 2012; published online April 4, 2013

1. Introduction

Natural Neural Networks are highly connected and

largely parallel structures capable of performing several

tasks that are very difficult to implement in a computer.

The artificial imitation, Artificial Neural Networks

(ANN), are structures composed of simplified neurons,

connected in networks with a certain degree of

parallelism that cannot be achieved in the sequential

operation of a computer. As pointed out by [5]. The

greatest potential of neural networks remains in the

high-speed processing that could be provided through

massively parallel VLSI implementations.

To achieve this parallelism a hardware

implementation is needed. Nevertheless the number of

implementations present in the literature and their

capacity for being generic is very low. This situation

can be changed if a simple and fast alternative for

implementing ANNs in hardware is supplied [1].

A few attempts have been made in building such

solutions [6, 10] but the proposed implementations are

still very simple. In [6], we can find very simple blocks

with low resolution and oversimplified activation

functions. In [13], though using only Heaviside

functions, we find a generic Simulink block for a

neuron that can be translated by system generator. The

most promising proposal found in the literature is in

[10]. In this paper an IP Core is proposed for building

synthesizable VHDL code for ANN but it only uses a

simplified fuzzy prepared activation function that

reduces the precision.

More work has been done regarding the manual

implementation of ANN. The difficulties for these

implementations are well known: the non-linearity of

the hyperbolic tangent; the number of bits necessary to

obtain high precision; the difficulties of using floating

or the limitations of fixed point notation and the

resources needed to implement a true parallel solution.

The implementation of the hyperbolic tangent as

activation function received a large share of the

attention in this area. The best solutions can be found

in [4], where the Mean Square Error (MSE) in the

hyperbolic tangent is 2.18×10
-5
 and in a control loop is

5×10
-8
; in [2], the solution is based in a Taylor series

which achieved an error of 0.51%; in [3], a piecewise

linear implementation is proposed which obtained

0.0254 of “standard deviation with respect to the

analytic form,” in [11], a set of five polynomial 5th

order approximations is proposed for a maximum

error of 8×10
-5
, using the sigmoid function. It should

be noted that these results are hardly comparable but

they are presented here as they were published.

In this paper we present a software tool for

automatic generation of neural hardware: Automatic

Neural Generator (ANGE). This software prepares and

downloads the ANN to an FPGA with the

characteristics defined by the user. ANGE tool uses

Matlab and Simulink (from Mathworks) and

Integrated Software Environment (ISE). Matlab and

Simulink tools are widely used in the ANN field and

ISE and System Generator are tools from the Xilinx

Company to work with programmable hardware

230 The International Arab Journal of Information Technology, Vol. 11, No. 3, May 2014

which is the preferred solution for a large part of the

ANN implementations due to the acceptable price for a

reduced number of copies [7]. The initial part of this

work was presented in [1, 9].

The rest of the paper is organized as follows: section

2 describes ANN structure; section 3 describes shortly

the neuron implementation developed; section 4

introduces the main tool; section 5 shows some of the

results obtained; section 6 draws the conclusions and

section 6 points the directions for future work.

2. ANN Structure

In this work we focus only in ANN of the feed forward

type as shown in Figure 1, where there are no lateral nor

feedback connections.

I1

I2

I3

1

f
1
(.)

f2(.)

F
1
(.)

y

w
11

w
12

w21

w22

w
31

w
32

w
41 w

42

w'
21

w'11

w'
31

1
Figure 1. Example of a feedforward ANN.

A Feedforward Neural Network (FNN) is a layered

structure, which can include non-linearity [12]. The

basic element of a FNN is the neuron that is shown

schematically in Figure 2.

1

I1

I2

I3

w
1

w
2

w
3

∑ F
y

w
4

Figure 2. Neuron structure.

The neuron implements the general equation:

).(
1

∑
=

=
n

i

wiIiFy (1)

Where usual functions for F are sigmoidal, linear and

hard limit.

A FNN is composed of an input layer, one or more

hidden layers with one or more neurons and an output

layer where frequently the neurons are linear.

The multi input single output FNN in Figure 1

implements the following general equation:

∑∑
==

=
nI

l

lljj

nh

j

j IwfwFy
11

11))('((2)

3. Neuron Implementation

The objective of this part of the work is to provide a

way to implement a neuron in an automated way. We

have chosen to do this using simulink and system

generator. This allows designing blocks and test them

with a friendly interface and, in the last stage,

download and test the developed solutions within a

FPGA. As a consequence of using system generator

the circuit will be implemented in fixed point notation.

The neuron is created as a subsystem that can be

configured using a mask. The mask used for our

neuron block can be seen in Figure 3.

Figure 3. Mask for selecting the neuron parameters.

The parameters used in this mask are: the number

of inputs, number of bits for the inputs, the position

for the fixed point and the number of values for the

Look Up Table (LUT) that implements the hyperbolic

tangent activation function.

This mask hides the Matlab code that is responsible

for placing the components in a simulink model and

connect them in order to complete the desired system.

An example of a simulink model for a neuron with

four inputs can be seen in Figure 4.

Figure 4. Simulink model for a neuron with four inputs.

Most of the blocks in this figure are common

blocks. The FuncAtiv block holds the LUT that

represents part of the hyperbolic tangent. Since it is an

odd function, this block transforms the partial

implementation in order to supply all the values

necessary.

The configuration windows of the ROM that

implements the LUT can be seen in Figure 5. The

upper part shows a ROM with 10000 values and the

choice of the values that fill the memory. The lower

part shows the use of 32 bits, with only one for the

integer part.

A Software Tool for Automatic Generation of Neural Hardware 231

Figure 5. Configuration of the ROM that implements the LUT.

• Neuron Tests

To analyse the precision of the solution developed a

neuron with a single input, represented in Figure 6, was

tested against the Matlab hyperbolic tangent function.

The subsystem block was connected as shown in

Figure 7 so that an input of 100000 points was supplied

to compare with the Matlab implementation of the

hyperbolic tangent.

Figure 6. Single input neuron.

Using this topology several tests were performed

such as the one shown in Figure 8. These tests include

different number of bits for the input, different number

of points in the ROM and different number of bits for

each value stored in the ROM.

The different format for inputs and outputs should

be understood by the fact that the range of values for

each situation is different. The choice made here was

to try to use only the number of bits that are really

necessary for the integer part to implement the

maximum value.

neuronio

I1

W1

Bias

OUT1

Scope

From File

sequencia .mat

Constant 1

0

Constant

1

System

Generator

Figure 7. Single input neuron subsystem connected.

The example of Figure 8 is the one with fewer

values in the LUT and with less number of bits used as

input and output. It was chosen because it is the only

one where a small difference between Matlab and

LUT can be seen.

Table 1 shows MSE for these tests, where the

format is marked as (total number of bits, number of

bits of the decimal part).

Also, interesting is the distribution of the error

against the input values. This is shown for one of the

examples in Figure 9.

As can be seen from Figure 9, the error is larger in

the regions where the slope of the hyperbolic tangent

is steeper. This analysis makes us propose a test with

the hyperbolic tangent proposed in [6], which we will

do as further work.

Considering Table 1, the values of the error

introduced seem to be low enough not to introduce

drastic changes in the ANN behaviour if 16 or more

bits are used with a minimum of 1000 points in the

LUT though 5000 would be preferable. We must not

forget that the error introduced in each neuron is

propagated to other neurons in the network and can

cause a larger change than expected.

Table 1. Summary of the tests performed to test the LUT’s input, output, and dimension.

LUT

Size

MSE

Input Format (8,4)

MSE

Input Format (16,12)
MSE

Input Format (32,28)

Output Format (32,30)
Output Format

(8,6)

Output Format

(32,30)

Output Format

(16,14)

Output Format

(32,30)

100 4,7763×10-5 3,9175×10-5 1,6488×10-5 1,6488×10-5 1,6483×10-5

500 2,8570×10-5 2,2453×10-5 9,0789×10-7 9,0715×10-7 9,0794×10-7

1000 2,8362×10-5 2,1960×10-5 2,1837×10-7 2,1811×10-7 2,1737×10-7

5000 2,8322×10-5 2,1706×10-5 1,0574×10-8 1,0434×10-8 1,0103×10-8

10000 2,8322×10-5 2,1704×10-5 2,3817×10-9 2,2174×10-9 1,8837×10-9

232 The International Arab Journal of Information Technology, Vol. 11, No. 3, May 2014

-6 -4 -2 0 2 4 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Input

O
u
tp

u
t

Comparison of the hyperbolic tangent implementation with MATLAB

Figure 8. Hyperbolic tangent implementation using 100 points with

4 bits for the integer part and 4 bits for the decimal part.

-6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-3

Input

O
u
tp

u
t

Distribution of the error between the inputs

Figure 9. Distribution of the error against the input values.

4. The Automatic Generation Tool-ANGE

ANGE, in version 1.0, is prepared to work with multi-

layer perceptron or feedforward neural networks with

linear activation functions or hyperbolic tangents.

The hyperbolic tangent is implemented in its

simplest way, although trying to maximize its

performance and minimize the error obtained: using a

LUT and reduced to the smallest part that can be used

to represent the whole function.

ANGE runs over Matlab R2007b, with system

generator 10.1 and ISE 10.1 and is capable of

configuring hardware in a Field Programmable Gate

Array (FPGA) for an ANN as large as the FPGA

available allows. ANGE main window is in Figure 10.

As can be seen from Figure 10, the number of bits

for the inputs, outputs and activation function can be

selected by the user to accommodate the needs and

capacity of the hardware available, using fields 3, 7 and

11. The position of the binary point (system generator

uses fixed point) can also be selected, using 4, 9, and

13, in order to maximize the number of bits available

after the point to increase the resolution.

The weights can be uploaded to configure all the

network at once and it is also possible to upload

information about which of the Input/Output Blocks

(IOB) to use and what to connect to each of them,

providing the file name in 14 and pushing 15, 16 or

both.

After selecting the configuration and characteristics

of the network, ANGE will automatically generate a

simulink model file, similar to the one represented in

Figure 11. The large blocks represented in this figure

are the neurons, the inputs are identified by the word

“In” and the weights are introduced using the constant

blocks. As can be seen the ANN is implemented using

full neurons and has a full parallel structure.

Figure 10. ANGE main window.

Figure 11. Example of an ANN generated by ANGE with the

weights loaded.

ANGE can also be used to create co-simulation

blocks. These blocks can be inserted in a Simulink

library and used in Simulink models, as shown in

Figure 12, inserting the FPGA in the loop and

approaching the simulation to the real functioning of

the system.

Figure 12. Example of an ANN generated by ANGE used as a co-

simulation block.

A Software Tool for Automatic Generation of Neural Hardware 233

5. Results Obtained

The ANN models must be inserted in a system to be

tested. To test ANGE’s implementation and evaluate

the error introduced by its fixed point notation, models

from a reduced scale kiln were used. This kiln was

prepared for the ceramic industry and further details

can be seen in [11].

For these tests two sets of models that represent a

direct and an inverse model of the system were used in

order to construct a Direct Inverse Control (DIC) loop,

as represented in Figure 13.

Plant
Inverse

Model

u(k)r(k+1) y(k+1)

Figure 13. Block diagram of the direct inverse control.

This kind of loop, though very simple and easy to

understand, requires the models to have a very good

match and therefore is the best loop to be used when

testing hardware implemented models because if the

implementation reduces the quality of the models it will

be seen directly on the control results.

The two sets of models, though representing the

same system, were trained under different conditions

and are different in the number of neurons in the hidden

layer.

The ANNs were implemented using 16 bits for the

inputs and representation of the hyperbolic tangent and

32 bits for the output. The LUT that holds the

hyperbolic tangent values contains 10000 values.

The models were tested using two reference signals

and they compare a result obtained implementing both

models in Matlab with another one where the inverse

model is implemented in an FPGA, using co-

simulation. Comparing the two DIC versions allows for

an indirect measurement of the error introduced by the

system generator implementation.

Some of the results can be seen in Figures 14 and 15

and they were measured in terms of Mean Square Error

(MSE) and are summarized in Table 2.

As can be seen, the maximum error introduced in the

hardware implementation of the models was of 15,

31%. This value is not very low but there are important

aspects that should be mentioned: the control loop

maintained stability and the error introduced seems to

be almost constant and therefore represents a larger

percentage when the error in Matlab is smaller. The

error introduced results from using less bits, fixed point

notation and a LUT to represent the hyperbolic tangent.

Its maximum value can be derived by the number of

bits truncated and the maximum step between

consecutive values in the LUT. As a result the error

introduced should be bounded and small and be

reduced with the increase of the number of bits used in

the solution.

In hardware implementations besides precision, it is

important that the final solution does not use too many

resources. To evaluate this, Table 3 shows a resume of

the resources used in proportion to the capacity of the

FPGA, a Virtex 5 5VFX30TFF665-2S. The ANNs

used are not very big (25fmd has 4 inputs and 8

neurons, while fmdb1 has 4 inputs and 6 neurons) and

the FPGA is a small Virtex 5, which means that with a

more recent FPGA it is possible to implement an ANN

more than 20 times larger than the ones used as

example here.

0 200 400 600 800 1000 1200
0

500

1000
Kiln Temperature and set point

0 200 400 600 800 1000 1200
-10

0

10
Error

0 200 400 600 800 1000 1200
-10

0

10

20
Control Signal

Sample

Figure 14. Results of model fmd1b with reference 1.

0 200 400 600 800 1000 1200
0

500

1000
Kiln Temperature and set point

0 100 200 300 400 500 600 700 800 900
-50

0

50
Error

0 200 400 600 800 1000 1200
-5

0

5

10
Control Signal

Sample
Figure 15. Results of model 25fmd with reference 2.

Table 2. Mean square error in co-simulation and Matlab.

Model and Reference Co-simulation Matlab Error Change

Fmdb1 – Ref1 2,5155 2,5173 0,07%

Fmdb1 – Ref2 72,4492 72,3548 0,13%

25fmd – Ref1 0,01507 0,01307 15,31%

25fmd – Ref2 8,1688 8,1542 0,18%

Table 3. Resume of the resources used in the implementation of
both neural models for LUT with 10000 values.

Resources
RAM16

% of 68

Registers

% of 20480

LUTS

% of 20480

DSP48ES

% of 64

25fmd 58 22 31 62

fmdb1 44 17 22 46

234 The International Arab Journal of Information Technology, Vol. 11, No. 3, May 2014

6. Conclusions

This paper presents ANGE, a tool for automatic

generation of neural hardware and shows some of the

results obtained with it.

ANGE makes use of system generator, which works

only with fixed point notation. The use of fixed point

notation and a simplified LUT representation of the

hyperbolic tangent introduce an error that must be

analyzed in order to see if it is acceptable.

Results of a test are presented with a small network

with a medium resolution fitted in a small Virtex 5

FPGA. The control loop shown presents an acceptable

error with medium resolution and keeps the loop stable.

With larger number of bits (possible with ANGE’s

present version) and more accurate implementation of

the hyperbolic tangent these results will be further

improved.

ANGE will allow fast prototyping using the

preferred hardware target for the neural community:

FPGA. It is expected to contribute to a new growth of

hardware implementations of ANN.

7. Further Work

The work presented, although represents an important

step, can be improved specially regarding the activation

function. The next version of ANGE will have more

options for the implementation of the hyperbolic

tangent.

Acknowledgments

The authors would like to acknowledge the Portuguese

Foundation for Science and Technology for their

support for this work through project PEst-

OE/EEI/LA0009/2011.

References

[1] Aguiar L., Reis L., and Morgado-Dias F.,

“Neuron Implementation Using System

Generator,” in Proceedings of the 9
th
 Portuguese

Conference on Automatic Control, Portugal,

2010.

[2] Arroyo M., Ruiz A., and Leal R., “An Artificial

Neural Network on a Field Programmable Gate

Array as a Virtual Sensor,” in Proceedings of the

Third International Workshop on Design of

Mixed-Mode Integrated Circuits and

Applications, Mexico, pp. 114-117, 1999.

[3] Ayala J., Lomeña A., López-Vallejo M., and

Fernández A., “Design of a Pipelined Hardware

Architecture for Real-Time Neural Network

Computations,” in Proceedings of IEEE Midwest

Symposium on Circuits and Systems, USA, pp.

419-422, 2002.

[4] Ferreira P., Ribeiro P., Antunes A., and Morgado-

Dias F., “A High Bit Resolution FPGA

Implementation of a FNN with a New Algorithm

for the Activation Function,” Neurocomputing,

vol. 71, no. 1-3, pp. 71-77, 2007.

[5] Lippmann R., “An Introduction to Computing

with Neural Nets,” IEEE ASSP Mag, vol. 4, no.

22, pp. 4-22, 1987.

[6] Moctezuma-Eugenio J. and Huitzil C., “Estudio

Sobre la Implementación de Redes Neuronales

Artificiales Usando XILINX System

Generador,” in Proceedings of XII Workshop

Iberchip, Costa Rica, pp. 1-7, 2006.

[7] Morgado-Dias F., Antunes A., and Mota A.,

“Artificial Neural Networks: a Review of

Commercial Hardware,” Engineering

Applications of Artificial Intelligence-IFAC, vol.

17, no. 8, pp. 945-952, 2004.

[8] Morgado-Dias F. and Mota A., “Direct Inverse

Control of a Kiln,” in Proceedings of the 4
th

Portuguese Conference on Automatic Control,

pp. 336-341, 2000.

[9] Reis L., Aguiar L., Baptista D., and Morgado-

Dias F., “ANGE-Automatic Neural Generator,”

in Proceedings of the 21
st
 International

Conference on Artificial Neural Networks,

Berlin, Germany, pp. 446-453, 2011.

[10] Rosado-Muñoz A., Soria-Olivas E., Gomez-
Chova L., Vila J., “An IP Core and GUI for

Implementing Multilayer Perceptron with a

Fuzzy Activation Function on Configurable

Logic Devices,” Journal of Universal Computer

Science, vol. 14, no. 10, pp. 1678-1694, 2008.

[11] Soares A., Pinto J., Bose B., Leite L., Da-Silva
L., Romero M., “Field Programmable Gate

Array (FPGA) Based Neural Network

Implementation of Stator Flux Oriented Vector

Control of Induction Motor Drive,” in

Proceedings of IEEE International Conference

on Industrial Technology, Mumbai, pp. 31-34,

2006.

[12] Taspinar N. and Isik Y., “Multiuser Detection
with Neural Network MAI Detector in CDMA

Systems for AWGN and Rayleigh Fading

Asynchronous Channels,” the International Arab

Journal of Information Technology, vol. 10, no.

4, pp. 413-419, 2012.

[13] Tisan A., Buchman A., and Oniga S., “A
Generic Control Block for Feedforward Neural

Network with On-Chip Delta Rule Learning

Algorithm,” in Proceedings of the 30
th

International Spring Seminar on Electronics

Technology, Cluj-Napoca, pp. 567-570, 2007.

A Software Tool for Automatic Generation of Neural Hardware 235

Leonardo Reis received his

bachelor’s degree in electronics and

telecommunications engineering

from the University of Madeira,

Portugal in 2011, and is currently

finishing his Telecommunications

and Energy Networks Master’s thesis

at the same university.

Luís Aguiar finished his bachelor’s

degree in electronics and

telecommunications engineering in

2009 and Master’s degree in

Telecommunications and Networks

Engineering in 2011, both at the

University of Madeira. He is

currently researcher at the University of Madeira,

Portugal.

Darío Baptista received his

bachelor’s degree in electronics and

telecommunications in 2007 and his

Master’s degree in

telecommunications and network

engineering in 2009 both from the

University of Madeira, Portugal. His

main research field is artificial neural networks and he

is currently researcher at the University of Madeira.

Fernando Morgado-Dias received

his Master’s degree in

microelectronics from the University

Joseph Fourier in Grenoble, France in

1995 and his PhD from the

University of Aveiro, Portugal, in

2005 and is currently Assistant

professor at the University of Madeira and Pro-Rector.

His research interests include artificial neural networks

and their applications, especially regarding their

hardware implementations.

