
The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012                                                               235       

Testing and Evaluation of a Secure Integrity 

Measurement System (SIMS) for Remote Systems 

Shadi Aljawarneh1 and Abdullah Alhaj2 
1Faculty of Information Technology, Isra University, Jordan 

2Faculty of Information Technology, University of Jordan/Aqaba, Jordan 

Abstract: We have designed a novel system called a Secure Integrity Measurement System (SIMS) to provide a practical 

integrity for flexible and traditional remote systems. SIMS is not only targeted for Linux, but it can also be used for different 

operating systems such as Windows, and UNIX. All and executable content that are loaded onto any operating system is 

measured before execution. These measurements are protected by a secure Database Management System (DBMS) rather than 

using Trusted Platform Module (TPM) that is part of the Trusted Computing Group (TCG) standards. The proposed system 

can measure the executable content from the BIOS and the content that is generated at the application layer. Note our system 

does not require any special hardware such TCG or a new CPU mode or an operating system. In this paper, a set of 

experiments are carried out to meet the security and performance objectives. We have shown with the system evaluation that 

the SIMS can provide a tamper detection, and recovery to different kinds of content. The SIMS can efficiently and correctly 

determine if the executable content has been tampered with. 

 

Keywords: Data integrity, tampering, remote systems, trustworthiness, survivability. 

 

Received October 12, 2009; accepted March 9, 2010 
 

 

1. Introduction 

Due to the openness and distribution of computing 

systems, security becomes an important challenge in 

order to ensure the confidentiality, integrity, and 

availability of data. Therefore, the need to be able to 

securely identify the software stack that is running on 

remote systems is increased [18]. For example, in grid 

computing, we are concerned that the services 

advertised really exist and that the system is not 

compromised. In demand computing, we may be 

concerned that the outsourcing partner is providing the 

software facilities and performance that have been 

stipulated in the service level agreement. Yet another 

scenario is where we are interacting with the home 

banking or book-selling web services application and 

we need to make sure it has not been tampered with. 

The main issue with the scenarios above is that we 

cannot trust the program itself because it could be 

modified and gives incorrect answers. For the same 

reason we cannot also trust the kernel or the BIOS on 

which these programs are running since they may be 

tampered with too. Instead we need to investigate an 

immutable root to provide that answer. This is 

essentially the secure boot problem [12, 16], and so we 

are interested in integrity of the software stack. 

The Trusted Computing Group (TCG) has declared a 

set of standards TCG that describe how to take integrity 

measurements of a system and store the results in a 

separate trusted coprocessor called a Trusted Platform 

Module (TPM) whose state cannot be compromised by 

a potentially malicious host system. This mechanism is 

called a trusted boot. Unlike a secure boot, the trusted 

boot only takes measurements and leaves it up to the 

remote party to determine the trustworthiness of 

system. The secure boot works when the system is 

powered on and it then transfers control to an 

immutable base. This base will measure the next part 

of BIOS by computing a SHA1 secure hash over its 

contents and secure the results by using the TPM. This 

procedure is then applied recursively to the next 

portion of code until the operating system has been 

bootstrapped [18]. 

In this work, we will focus to maintain the chain of 

trust measurements up to the application layer, but 

unlike the bootstrap process, an operating system 

handles a large variety of executable content (such as 

kernel, kernel modules, libraries, scripts, and plug-in). 

The previous research focused on measuring code 

and associating integrity semantics with the code. For 

example, the IBM 4758 defines that the integrity of a 

program is determined by the code of the program and 

its ancestors [2, 5]. However, the IBM 4758 

environment is limited to a single program with a 

well-defined input state and the integrity is enforced 

with the secure boot process. However, the 

applications running on the 4758 which cannot handle 

low integrity inputs properly could be compromised 

[8]. Furthermore, because the IBM 4758 is most 

costly, most computers do not include a secure 

coprocessor, such as the IBM 4758 [3, 10, 13]. 

In this paper, we focus on the survivability of 

mission critical contents. We assume that all content 

are susceptible to malicious software attacks. The 



236                                                               The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012 

proposed system (consists of three components: 

registry, integrity checker, and recovery) will attempt to 

address the following concerns.  

1. We have modified the Windows kernel and the 

runtime system to take integrity measurements as 

soon as executable content is loaded into the system, 

but before it is executed. This concern is similar to 

TCG-Based Integrity Measurement system [18].  

2. We will use Database Management System (DBMS) 

table to store the hashing measurements rather than 

holding measurements directly in a special hardware 

such as TCG.  

3. The proposed integrity checker mechanism can then 

determine whether the executable content has been 

tampered with and, once the content is verified, a 

kind of trust will be satisfied.  

4. Otherwise, if any tampering occurs, the integrity 

checker sends alert to the recovery component to 

recover the tampered content by the original content.  

5. Where we make a backup copy for all list of content 

in the BIOS. 

This paper is organized as follows: section 2 

describes the design of the proposed SIMS architecture 

and its components. In section 3, we present 

experimental studies to evaluate the reliability and 

performance of the SIMS. This section includes:  

1. Experimental study to evaluate whether the SIMS is 

able to detect and recover from the tampering 

attacks. 

2. Another case study for micro-benchmarking 

performance to measure the performance of the 

proposed registry mechanism (using SHA-1 and 

SHA1-extended). Related work is made in section 4. 

Finally, conclusions and future work are offered in 

section 5. 

 

2. Related Work 

There are sixth key issues in prior work including:  

1. The distinction between secure boot and 

authenticated boot. 

2. The semantic value of previous integrity 

measurement approaches. 

3. Secure object identification. 

4. Kiosk computing.  

5. CD-boot linuxi.  

6. Atomic measurement using a memory copy-on-write 

strategy. 

As discussed above, the secure boot process enables a 

system to measure its own integrity and terminate the 

boot process if an action compromises this integrity. 

Arbaugh [12] has developed the AEGIS system, based 

on signed hash values to provide a practical architecture 

for deploying secure boot on a PC system. The 

validation process of the AEGIS is run for each layer in 

the boot process. It will abort booting the system if the 

hashes cannot be validated. However, secure boot 

does not enable a challenging party to validate the 

integrity of a boot process such as an authenticated 

boot process because it simply measures and checks 

the boot process, but does not ensure attestations of 

the integrity of the process. 

The IBM 4758 secure coprocessor [20] includes 

both secure boot and authenticated boot in a limited 

environment. It promises secure boot guarantees by 

validating (hash) partitions before activating them and 

by enforcing valid signatures before loading 

executables into the system. A mechanism called 

outgoing authentication [5] enables attestation that 

links each subsequent layer to its predecessor. The 

predecessor attests to the subsequent layer by 

generating a signed code that includes the 

cryptographic hash and the public key of the 

subsequent layer. To protect an application from flaws 

in other applications, only one application is allowed 

to run at a time. Thus, the integrity of the application 

depends on hashes of the code and manual verification 

of the application's installation data. This data is only 

accessible to trusted code after installation. Whereas 

our web server's example runs in a much more 

dynamic environment where multiple processes may 

access the same data and may interact. Further, the 

security requirements of the challenging party and the 

attesting party may differ such that secure boot based 

on the challenging party's requirements is impractical. 

The Trusted Computing Group [20] is a consortium 

of companies that together have developed an open 

interface for a TPM, a hardware extension to systems 

that provides cryptographic functionality and 

protected storage. The TPM enables the verification of 

static platform configurations, both in terms of content 

and order, by collecting a sequence of checksums over 

target code. However, the integrity of applications 

running on the operating system does not deal by TCG 

and TCG-measurements system. 

Various TPM-based systems have been proposed, 

including the Integrity Measurement Architecture by 

Sailer et al. [18], and the more recent, late-launch-

based Flicker [11]. To date, these systems assume that 

the external verifier has somehow obtained the TPM’s 

authentic public key, thus ducking the bootstrapping 

problem. Whereas, the proposed SIMS uses DBMS to 

save the checksum measurements. The researchers and 

technical group of DBMS security have proved the 

database is sufficient secure because the DBMS 

environment offers built-in security tools for databases 

and besides other ad-hoc DBMS security tools can be 

adopted in this area. 

In accordance to an access control, researchers have 

studied a related problem known as the Chess 

Grandmaster Problem, Mafia Fraud, or Terrorist Fraud 

[15], in which a criminal acts as a proved to one 

honest party and a verifier to another party in order to 

obtain access to a restricted area. Existing solutions 



Testing and Evaluation of a Secure Integrity Measurement System (SIMS) for Remote Systems                                               237 

rely on distance bounding [6], is ineffective for a TPM, 

or employ radio-frequency hopping [15] which is also 

infeasible for the TPM.  

In Kiosk computing, Garriss et al. [1] have studied 

the problem of kiosk computing, a specific case of the 

problem considered in this work. They have noted the 

potential for a cuckoo attack (though not by that name). 

Another related work is a CD-boot Linuxi [6]. It is a 

live Linux environment, which is easy to use because it 

is not installed in a hard disk, but simply boots directly 

from a CD. This helps secure the sensitive information 

because a clean environment can be prepared at boot 

time. For this, the CD-boot Linuxi is adapted to define 

a trustworthy environment. However, this work trusts 

the dynamic content because the authors in [6] assumed 

that if the static content has valid integrity then the 

dynamic data will not be effect by software attacks. 

Recent work in software integrity verification 

provides techniques for measuring integrity at runtime, 

where a measurement agent observes the memory 

image of a running process and creates some 

meaningful description of the current state of a process 

[19]. Unlike in static and load time measurement 

architectures, the target of a runtime measurement is 

running and hence able to change its state. Therefore, 

an accurate measurement should reflect a coherent state 

of the target. A coherent measurement should satisfy 

two properties:  

1. Atomicity ensures that a measurement corresponds 

to the state of the target at a particular point in time. 

2. Quiescence ensures that the target data is in a 

consistent state, i.e., not a critical section. The 

authors in [19] address the former property, showing 

that they can obtain an atomic measurement using a 

memory copy-on-write strategy. 

 

3. Design of Secure Integrity Measurement 

System (SIMS) 

As discussed above, the problem to be addressed is that 

the data integrity of operating systems can be 

compromised. This means that, we cannot trust the 

program itself because it could be altered and then it 

produces incorrect results. We cannot also trust the 

kernel or the BIOS on which these programs are 

running since they may be tampered with too. In 

attempt to address this issue, we have developed a 

novel system called the SIMS for investigating 

survivability of running of executable content. 

 

3.1. Assumptions 

Before we describe the components of our framework 

architecture, we have established three assumptions 

because without such restrictions, there would always 

be adversaries (inside or outside organisation) that are 

able to trick remote clients or a remote server. 

• Ensuring that the measurement list produced by the 

SIMS has not been tampered with. 

• DBMS is created, maintained and operated in a 

secure manner for ensuring the correctness of the 

internal state of the DBMS. Therefore, the 

protection of the hash value database is assumed. 

• Our SIMS is not targeted to detect and/or prevent 

hardware attacks against a system, so we assume 

that these attacks are not part of the threat model to 

this work. 

 

3.2. Overview of SIMS Framework 

Architecture 

An illustration of SIMS architecture is presented in 

Figure 1. This framework of SIMS consists of a 

number of components: 

• DBMS Table: Is called original-fingerprint table. 

This table is used for mapping the hash values of 

executable content to their specific repositories on a 

remote client or a server. The DBMS can maintain 

details for all content in the background by 

rendering a specified relation as in the original-

fingerprint table. The property of this table is 

append-only, modifications only add information 

with no information deleted. Hence, if old 

information is changed in any way then tampering 

is occurred. 

• Registry Component: Manages the hashing 

measurements for all system content that have been 

developed for use (i.e., loading and running) in the 

secure environment. In this stage, the hashing 

measurements are done offline (i.e., the hashing 

measurements are done before loading). If any 

content undergoes any add-on content (new code 

that is added to the original content), it is released. 

The updated content must be regenerated by 

producing a new hash value (checksum). In 

addition, a registry component sends the list of 

hashing values to DBMS original-fingerprint table 

for storing and maintaining. Note that modifications 

to the DBMS original-fingerprint table are not 

permissible as that would enable an adversary to 

hide integrity-relevant actions. 

 

 
Figure 1: Schematic view of SIMS architecture. 

 



238                                                               The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012 

The hashing measurement can take place where one of 

three conditions is satisfied:  

1. When a new executable content is developed for use.  

2. When a used executable content is legally changed. 

3. When the digital certificate of a used executable 

content has expired. Some executable content have a 

digital certificate, so it is important to take this case 

into our considerations. 

On each modification, the DBMS obtains a 

checksum and computes a cryptographically strong 

one-way hash SHA-1 function of the (new) data of 

executable content. However, some developers may not 

take into account the digital certificate expiration of 

(used) executable content because they rely on web 

browsers, web servers and operating system settings. 

Therefore, an adversary can replace an original element 

with an expired original element to evade the 

executable content in a remote machine. To counteract 

this risk, we compute the checksum using SHA-1 

hashing function in concatenation with private key, 

executable content id, issue date, expiration time and IP 

address (we use IP address at the application layer). 

It should be noted that the secret key is used to sign 

the executable content element, can be distributed from 

secure certificate authority or it results from some 

mathematical equation. In this paper, the secret key 

relies on the content element and on other factors such 

as the time factor, which specifies the expiry of a secret 

key to identify tampering attacks. 

We have used a Hash Message Authentication Code 

(HMAC) in our secure the system environment to 

ensure the data integrity. MAC is used to compute the 

checksum of a executable content in the repositories of 

remote clients. We compute a HMAC via one-way hash 

functions (SHA-1) and a changeable secret key to 

create unique fingerprint for each executable content. 

In the registry component, the backup process has 

been established. This process makes a backup of the 

data files to a directory, disk or computer across the 

network. A registry component then monitors the 

executable content and keeps the backup updated with 

new or changed files. It runs in the background with no 

user interaction. 

• Integrity Checker: The integrity checking process 

aims to detect the alterations in the verification data, 

which should be significantly much smaller than the 

multimedia data, can be stored in secure DBMS 

tables.  

When DBMS sends the hash value (checksum) of a 

loaded executable content to the verification process, 

the verification process checks to see if the content has 

been modified since it was used. The cryptographically 

original checksum is obtainable through the DBMS 

original-fingerprint table. The checksum of the loaded 

content is calculated and compared with the one 

retrieved from the DBMS table. Any tampering causes 

the content integrity check to fail. If there is a 

mismatch between the calculated checksum and the 

original checksum, the content integrity check will 

fail. Based on whether the test passes or fails, the 

integrity checker makes the decision about the next 

step in the process. If the integrity check passes, the 

executable content is sent to the running process 

straight away. If it fails, it is sent to the recovery 

component. 

• Recovery Component: Recovers the tampered 

loaded content if the integrity check fails. In other 

words, if the integrity verification process fails, it is 

sent to the recovery component, which tries to 

extract the original content that is known to be safe. 

Once it is determined that the executable content 

has been modified in an unauthorised manner, the 

proposed SIMS will try to recover the original 

executable content through restoring it from the 

secure backup, put it in a new assembly and discard 

the tampered content. When the new assembly is 

generated, the recovered assembly is sent to its 

direction and execution continues as normal. 

It is important to back up of the data. The backing 

up of data is the ability to recover that same data and 

recover it in a timely state to keep a service up and 

running. It should be noted that each backup copy has 

unique name for searching purposes. The registry 

component makes a backup copy for every executable 

content that has been registered (i.e., register a backup 

copy in the original-fingerprint table by generating a 

new assembly of hash value). This backup copy stores 

in the secure backup for recovery purposes. 

The steps of recovery process for web content are 

as follow: 

• When the detection of altered executable content 

happens at the loading level. 

1. Get a backup Copy (extracting executable content 

details, getting the executable content name, 

searching using the unique name in the secure 

backup). 

2. Verify backup Copy from tampering by the 

integrity verification process. 

3. Run the backup Copy. 

• Discard the tampered content. 

• Generate a log file (contains details such as the 

content information, the original checksum, the re-

calculated checksum, the state of database, the state 

of verification process, and the state of the recovery 

process). 

 

4. Implementation and Evaluation of SIMS 

The SIMS prototype consists of three mechanisms: 

Registry, integrity checker, and recovery. The SIMS is 

implemented in Java and MS Access Database. The 



Testing and Evaluation of a Secure Integrity Measurement System (SIMS) for Remote Systems                                               239 

web servers used are Apache 1.3.20 running on MS 

Windows Server 2003, and Apache Tomcat 5.01 on MS 

Windows Server 2003. We have carried out the 

following two experiments to test the security 

objective. How does SIMS provide tamper detection 

and recovery on Apache Tomcat and Microsoft IIS web 

servers of the proposed SIMS: 

• Experiment 1: To investigate the tamper detection 

and recovery on Apache Tomcat web server. 

• Experiment 2: To investigate the tamper detection 

and recovery on Microsoft IIS web server. 

We have picked over five hundred web requests from 

the:  

1. UK Hillside Primary school web site.  

2. Borland JBuilder JSP shopping cart.  

We have also identified a potential victim list of target 

web resources and manually confirmed exploitable 

flaws in the identified web resources. Over 45 

tampering attacks were launched against the designated 

directories of the suggested web sites hosted on Tomcat 

and IIS web servers. The results of this experimental 

study have shown that the proposed system may 

provide a high coverage of detection and recovery. 

 Table 1 shows a partial list of measurements for the 
executable content and Table 2 shows the 

corresponding list of the same executable content that 

has been compromised by the tampering attacks. The 

entries in Table 2 illustrates that after the attack, the 

checksum of the requested resource 

"/cyberventues/st\_proj.html" is different, indicating 

that the malicious software replaced the original 

version. The SIMS uses the difference in the hash value 

to detect whether malicious software has replaced the 

original resource.  
 
Table 1. A partial list of original hashing measurement. 

N Hash Value (Signature) Requested Resource 

1 D35C729762B3FC8795FB9063
1BCF64DEA061E33B    

/cyberventues/st proj.html 

2 8AEEED714BACD7AECB74A

054A5BE54A185CC9C52  

/Hachett trees07/trees.htm 

3 D90FB8C0A13CEA7C87CD51
5E2277E299195A1436  

/.../amandahtml/kiana.htm 

4 1E7707F952FCBF9627076FAE

387C1E6685FA6192  

/.../.../natalie.htm 

5 32CE36ED9039D3C2951350C
FC5843BC145998CDA  

/.../.../nf/nat 1.GIF 

… . . . … 

2941 56236652C0E32364638C5294B

501E786BD0F4B91  

/StartHere.jsp 

2942 0709306BA800150FB58C6520

F3310AEBD759AA16  

/Store.jsp 

… . . . … 

2961 8C967D27FB403E39848F4656
3070046EDA501529  

/travel-styles.css 

2962 DF9F21A89CB51BDFCADAF

D6A0DE728AA2E152808  

/tree2/backblue.gif 

2963 14D5F457E32810A1D95D21F
FE398AB39D110D177  

/tree2/fade.gif 

2964 B532E95DA8926D183002CA5

6BF26245EF49BD7E2  

/.../beginning.html 

Table 2. A partial list of hashing measurement after running 

malicious content manipulation software. 

1 9D354FF4B08DDB0FE8BD065
6692AE895C6F36887    

/cyberventues/st proj.html 

2 83AC2737D5DBAEBA408E35

13AF402158ACE0A4BE7  

/Hachett trees07/trees.htm 

3 45A9CF81C355F5383E9CD18
C3F7BDDFDB1062003 

/.../amandahtml/kiana.htm 

4 0887CBC41B81A9C418EF1ED

91C5AC4D4FA93D14A   

/.../.../natalie.htm 

5 F688117B8752340851B89ECA
5ECC853915815FB8 

/.../.../nf/nat 1.GIF 

… … … 

 

The verification process checks to see if the 

executable content has been modified since it was 

used. Based on whether the test passes or fails, the 

integrity checker mechanism makes the decision about 

the next step in the process. If the integrity check 

passes, the executable content is sent to the running 

process straight away. If it fails, it is sent to the 

recovery component. The original hash values of 

"/cyberventues/st\_proj.html" are shown in Table 1. 

The altered hash values after running tampering are 

shown in Table 2. It is suggested that the SIMS system 

has the capability to detect and recover executable 

content that has been tampered with, and hence, the 

SIMS system satisfies the security objective as defined 

above. 

 

4.1. Case Study for Micro-Benchmarking        

Performance 

We measured the runtime performance of the Registry 

mechanism with a set of micro-benchmarks. We 

measured the latencies of registry mechanism in two 

different cases, namely, SHA-1 (10 digits) and SHA1-

extended (16 digits). In the SHA-1 case, we calculated 

the hash value of executable content using SHA-1 

function (10 digits). The SHA1-extended represented 

the case when we calculated the hash value of a 

executable content by SHA-1 function where number 

of digits was 16. Since the goal is to measure the 

latency, we ran the registry mechanism 15 times over 

200 entries of different sizes for every case (SHA-1 

and SHA1-extended) using MS Windows XP 

Professional. The implementation of the micro-

benchmarks is based on the HBench framework 

industrial standard [5].  

An illustration of results is presented in Table 3. It 

should be noted from this table that the Registry 

overhead in the case of SHA-1 (10 digits) is low -- the 

average running time was 1.4274 seconds 

(representing the average of time taken to run 15 

trails), which is less time when using SHA1-extended 

(2.2176 seconds). These cases do not only measure the 

overhead of the hash value itself, it also measured all 

functions in a web register mechanism for both cases 

(SHA-1 and SHA1-extended). 

We have concluded that the SHA1-extended is the 

most costly in performance terms. This is 



240                                                               The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012 

understandable, because the SHA1-extended contains 

16 digits instead of 10 digits. Readers should note that 

this work as detailed in this thesis is more concerned 

with security than performance. 

It is anticipated that performance gains can be 

expected from an industrial standard web server. In the 

case of content, the registry is able to hash the 

executable content before a request is responded to, 

however in the case of  content, the hashing is required 

at the time of delivery and hence requires more 

computerised effort. 

We have also presented the registry performance of 

a executable content as a function of file sizes. We 

measured the Registry mechanism running time for 

both: SHA-1 and SHA1-extended, varying the input file 

sizes. The results are shown in Table 4. When the file 

size is large, the difference in the hashing overhead can 

be significant. For example, a 64 Kilobytes file when 

using SHA1-extended takes about 12.47 milliseconds, 

where it takes about 3.2 milliseconds for SHA-1. 

Furthermore, when using SHA1-extended, a 13 

Megabytes file records 1531 milliseconds performance 

overhead, but when using SHA-1, the same file records 

620.067 milliseconds performances overhead. 

In Figure 2, the performance overhead (ms) with the 

SHA1-extended case is represented by an unbroken 

curve, while the performance overhead (ms) with the 

SHA1 case is represented by a dashed line. The 

horizontal axis represents the file sizes in byte, and the 

left vertical axis represents the overhead running time 

in milliseconds. As expected, the performance overhead 

has a direct correspondence to the file size, i.e., the 

larger file size is the greater performance overhead. 

As shown in Figure 2, longer keys take much more 

computing resource to decrypt, and hence make them 

less vulnerable to attack. However, the SHA1-extended 

is also more costly in performance terms, but this is the 

cost that legitimate users pay for higher levels of 

security. The impact of hashing and encryption are 

issues that increase the overhead and they are rarely 

considered in the area of web engineering and design. 

In this experimental study, we measured the 

performance for two cases: SHA-1 (10 digits), and 

SHA1-extended (16 digits). 
 

Table 3. Overhead of a registry mechanism. 

Registry Call Overhead (ms) 

SHA1-extended (16 digits) 2217.6 (2.2176s) 

SHA-1 (10 digits) 1427.4 (1.4274s) 

 

Table 4. Registry performance for both SHA1-extended and SHA-1 
as compared with file sizes. 

File Size 

(Byte) 

Overhead (ms) with 

SHA1-extended 

Overhead (ms) with SHA1 

1KB 0.64 0.627 

16KB 5.13 2.13 

64KB 12.47 3.2 

2MB 163.73 118.73 

5MB 348 251.97 

13MB 1531 620.067 

 
Figure 2. The linear chart of a registry performance for both 

SHA1-extended and SHA-1 as compared with file sizes. 

 

The designed system SIMS has a number of 

advantages over other existing solutions as follows:  

• The SIMS would also verify the dynamic content as 

well as the static content. 

• The SIMS supports a recovery component to 

recover only the altered content so it does not need 

to recover the whole generated static and dynamic 

content. 

• The measurements of content are protected by a 

secure DBMS rather than using TPM that is part of 

the TCG standards. 

• The proposed system can measure the executable 

content from the BIOS and the content that is 

generated at the application layer. 

• Unlike some existing solutions, the SIMS 

architecture is not complex. The SIMS architecture 

does not involve redundant servers running on 

diverse operating systems and various operating 

systems. 

• The SIMS increases the end-of-end performance by 

utilizing a hashing strategy that could minimize the 

latency for integrity verification. 

• The SIMS does not require modifications to 

existing web application and operating systems 

architectures.  

• The SIMS would not be a blind system that is 

unable to understand the request and response 

across a network or on BIOS. 

• The SIMS does not rely on a database of known 

tampering attacks. 

 

5. Conclusions and Future Work 

A novel system has been designed and implemented, 

called a SIMS to provide a practical integrity for 

flexible and traditional remote systems. The SIMS can 

be used for various operating systems such as 

Windows, Linux, and UNIX. All and executable 

content that are loaded onto any operating system is 

measured before execution. These measurements are 

protected by a secure DBMS rather than using TPM 

that is part of the TCG standards. The proposed 

system can measure the executable content from the 

BIOS and the content that is generated at the 



Testing and Evaluation of a Secure Integrity Measurement System (SIMS) for Remote Systems                                               241 

application layer. In attempt to ensure the survivability 

of all and executable content, we enable a integrity 

checker mechanism to detect malicious codes in a 

content and recover the original content of the 

compromised one. 

Our experimental results indicate that the proposed 

SIMS has high coverage of detection and prevention 

against software attacks. In the next part of research, 

we are interested to evaluate our proposed system on 

Linux OS. Therefore, we will compare our results with 

the Linux Kernel Integrity Monitor (LKIM) [10]. 

LKIM sets up contextual inspection as a means to more 

completely characterise the operational integrity of a 

running kernel on Linux. 

 

References 

[1] Alexander D., Arbaugh W., Keromytis A., and 

Smith J., “Safety and Security of Programmable 

Network Infrastructures,” IEEE Communications 

Magazine, vol. 36, no. 10, pp. 84-92, 1998. 

[2] Alkassar A., Stuble C., and Sadeghi A., “Secure 

Object Identification or Solving the Chess 

Grandmaster Problem,” in Proceedings of the 

Workshop on New Security Paradigms, USA, pp. 

77-85, 2003. 

[3] Arbaugh W., Farber D., and Smith J., “A Secure 

and Reliable Bootstrap Architecture,” in 

Proceedings of Security and Privacy, IEEE 

Symposium, USA, pp. 0-65, 1997. 

[4] Bond M., “Attacks on Crypto Processor 

Transaction Sets,” in Proceedings of the 3
rd
 

International Workshop on Cryptographic 

Hardware and Embedded Systems, Springer-

Verlag, pp. 220-234, 2001. 

[5] Brown A. and Seltzer M., “Operating System 

Benchmarking in the Wake of Lmbench: A Case 

Study of the Performance of NetBSD on the Intel 

x86 Architecture,” in Proceedings of the ACM 

SIGMETRICS Conference on Measurement and 

Modeling of Computer Systems, USA, pp. 214-

224, 1997. 

[6] Chaum D., “Distance-Bounding Protocols 

Extended Abstract,” in Proceedings of 

EUROCRYPT, Lecture Notes in Computer 

Science, Springer-Verlag, pp. 344-359, 1993. 

[7] Dyer J., Lindemann M., Perez R., Sailer R., 

VanDoorn L., Smith S., and Weingart S., 

“Building the IBM 4758 Secure Coprocessor,” 

Journal of IEEE Computer Society, vol. 34, no. 

10, pp. 57-66, 2001. 

[8] Garriss S., C´aceres R., Berger S., Sailer R., 

VanDoorn L., and Zhang X., “Trustworthy and 

Personalized Computing on Public Kiosks,” in 

Proceedings of the 6
th
 International Conference 

on Mobile Systems, Applications and Services,  

USA, pp. 199-210, 2008. 

[9] Iliev A. and Smith S., “Protecting Client Privacy 

with Trusted Computing at the Server,” 

Computer Journal of IEEE Security and 

Privacy, vol. 3, no. 2, pp. 20-28, 2005. 

[10] Loscocco P., Wilson P., Pendergrass J., and 

McDonell C., “Linux Kernel Integrity 

Measurement using Contextual Inspection,” in 

Proceedings of the ACM Workshop on Scalable 

Trusted Computing, USA, pp. 21-29, 2007. 

[11] McCune J., Parno B., Perrig A., Reiter M., and 

Isozaki H., “Flicker: An Execution 

Infrastructure for TCB Minimization,” in 

Proceedings of the 3
rd
 ACM SIGOPS/EuroSys 

European Conference on Computer Systems, 

USA, pp. 315-328, 2008. 

[12] Nakamura M. and Munetoh S., “Designing a 

Trust Chain for a Thin Client on a Live Linux 

Cd,” in Proceedings of the ACM Symposium on 

Applied Computing, USA, pp. 1605-1606, 2007. 

[13] Parno B., “Bootstrapping Trust in a Trusted 

Platform,” in Proceedings of the 3
rd
 Conference 

on Hot Topics in Security, USA, pp. 1-6, 2008. 

[14] Sailer R., Zhang X., Jaeger T., and Vandoorn L., 

“Design and Implementation of a TCG-Based 

Integrity Measurement Architecture,” in 

Proceedings of USENIX Security Symposium, 

USA, pp. 223-238, 2004. 

[15] Smith S. and Weingart S., “Building a High-

Performance Programmable Secure 

Coprocessor,” Journal of Computer Network, 

vol. 31, no. 9, pp. 831-860, 1999. 

[16] Smith S., Gollmann D., Karjoth G., and 

Waidner M., “Outbound Authentication for 

Programmable Secure Coprocessors,” Journal 

of Lecture Notes in Computer Science, vol. 

2502, no. 1, pp. 72-89, 2002. 

[17] Smith S., “Outbound Authentication for 

Programmable Secure Coprocessors,” in 

Proceedings of the 7
th
 European Symposium on 

Research in Computer Security, Springer-

Verlag, pp. 72-89, 2002. 

[18] Thober M., Pendergrass J., and McDonell C., 

“Improving Coherency of Runtime Integrity 

Measurement,” in Proceedings of the 3
rd
 ACM 

Workshop on Scalable Trusted Computing, 

USA, pp. 51-60, 2008. 

[19] Trusted Computing Group, “Trusted Platform 

Module Main Specification, Part 1: Design 

Principles, Part 2: TPM Structures, Part 3: 

Commands,” Version 1.2, Revision 62, 2003. 

[20] Trusted Computing Group, available at: 

http://www.trustedcomputinggroup.org, last 

visited 2010. 

 

 

 

 

 



242                                                               The International Arab Journal of Information Technology, Vol. 9, No. 3, May 2012 

Shadi Aljawarneh holds a BSc 

degree in computer science from 

Yarmouk University in Jordan, a 

MSc degree in information 

technology from Western Sydney 

University and a PhD in software 

engineering from Northumbria 

University-England. He is currently assistant prof. in 

faculty of IT in Isra University, Jordan where he has 

worked since 2008. His research is centered in web and 

network security, e-learning, bioinformatics, and ICT 

fields. Aljawarneh has presented at and been on the 

organizing committees for a number of international 

conferences and is a board member of the International 

Community for ACM, ACS, and others.  

 

Abdullah Alhaj he awarded the BSc 

and MSc degree in computer 

engineering from Lvov Polytechnic 

Institute Lvov, USSR in 1988. 

Between 1991 and 1996 he worked 

for the Ministry of Education and 

Altahaddi University, Libya. Later, 

in 1997 to 2007 he worked as a lecturer for the Ministry 

of Higher Education (Colleges of education and applied 

sciences) in Sultanate of Oman. In November 2007 he 

got his PhD in computer network security from the 

University of Bradford, UK. His main expertise and 

areas of interest are in computer networks, network 

security and computer architecture. He is currently an 

assistant professor in computer science department, 

faculty of science and IT, University of Jordan, Aqaba, 

Jordan.  

 

 

 

 


