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Abstract: The increasing importance of security in computers and communication systems introduces the need for several 

public-key cryptosystems. The modular division and  multiplication arithmetic operations in GF (p) and GF (2
n
) are 

extensively used in many public key cryptosystems, such as  El-Gamal cryptosystem, Elliptic Curve Cryptography (ECC), and 

the Elliptic Curve Digital Signature Algorithm (ECDSA). Processing these cryptosystems involves complicated computations, 

therefore, it is recommended to develop specialized hardware to speed up these computations. In this work, we propose 

efficient hardware design to compute both operations (division and multiplication) in  the binary extension finite filed (GF (2
n
).  

The common points in both operations are utilized in our design to reduce the design area and delay. making the proposed 

architecture faster than other previously proposed designs. The FPGA implementation of the proposed design shows better 

results compared with other designs in this field.  
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1. Introduction 

Very important data is transferred every second along 

wide distances. This data might be military information, 

financial records, and other vital information that is 

transmitted over public non-secure channels like the 

internet for example. The need to secure data 

transmission over channels became a priority. 

 Cryptography is widely used technique to secure 

data transmission. The cryptographic algorithms 

provide main security services such as confidentiality, 

integrity, and authentication. So, these algorithms must 

be used in a certain application according to the security 

service needed.  The implementation of cryptographic 

algorithms in hardware offers better performance when 

compared with software implementations. 

 

1.1. Cryptography  

Cryptography involves the encryption process, which 

refers to converting formation (plaintext) into an 

unreadable format (cipher text) using a secret parameter 

(key). The decryption is the reverse process. 

Cryptanalysis attacks refers to the attempts of deducing 

the key used in the encryption. The modern 

cryptography falls into two main categories: 

Symmetric-key cryptography and Public-key 

cryptography (Asymmetric). In symmetric-key 

cryptography both the sender and the receiver of the 

message share the same key for encryption and 

decryption.  Data Encryption Standards (DES) and 

Advance Encryption Standards (AES) are well known 

examples of symmetric ciphers. Using the same key 

between each sender and receiver of a message, 

requires a key management process to assure assigning 

each communication pair  in the network a different 

private key [13].  

In [7], a public-key cryptography methodology was 

proposed to overcome the key exchange problem in 

the symmetric key cryptosystems. A pair of two 

different but mathematically related keys is used: a 

public key (made public for all senders), and a private 

key (kept private with the receiver of the message 

only).  

The public key is typically used for encryption, 

while the private key is used for decryption. Public-

key algorithms are often based on the computational 

complexity of “difficult” problems in number theory. 

For example, the Hellman [7] and El-Gamal [3] 

cryptosystems are related to the discrete logarithm 

problem. Recently, Elliptic Curve Cryptography [13] 

technique was developed, in which security is based 

on elliptic curves operation such as point addition and 

point multiplication.  The complexity of most public-

key algorithms is due to difficult mathematical 

operations they involve, such as modular division, 

multiplication, and exponentiation. As a result, 

speeding up these computations directly influence the 
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performance of such cryptosystem and this was among 

the motivations for this work. 

 

1.2. Modular Algorithms Over GF(2
n
) 

The extended Binary GCD algorithm [10] is an efficient 

way to calculate modular division by intertwining the 

procedure for finding the modular quotient with that for 

calculating the greatest common divisor of two 

polynomials in GF(2
n
). In this work, we considered 

polynomial basis to represent the elements in GF(2
n
). 

An efficient algorithm to compute modular 

multiplication is the Montgomery Multiplication (MM) 

algorithm. It has many advantages over ordinary 

modular multiplication algorithms. The main advantage 

is that the division step in taking the modulus is 

replaced by shift operations which are easy to 

implement in hardware [9, 14, 15]. The MM algorithm 

has been expanded from its original form [11], which is 

a fixed-precision implementation in radix-2, to a 

scalable, word-based implementation on multiple 

radices [15, 17]. 

 

1.3. Motivation for Radix-4 

Implementing an encryption algorithm in hardware is 

faster and more secure than implementing it in 

software. That’s because the security of software 

implementation depends on the security of the operating 

system which might not be fully achieved.  The 

modular arithmetic operations such as division and 

multiplication over finite fields GF(p) and GF(2
n
) are 

heavily used in several public-key cryptographic 

algorithms that are used to provide security services in 

many applications. So, modular division is a complex 

and necessary operation at the same time, and also it is 

considered an essential operation in the Elliptic Curve 

Cryptography [2, 7, 11, 15].  

The importance of the modular arithmetic operations 

(including division) and the need for efficient 

implementation motivate the researchers to provide 

hardware architecture to accelerate the huge amount of 

computations required by public-key cryptographic 

algorithms.  

Many previous works concentrated only on radix-2 

and radix-8 designs for Montgomery Multiplication and 

division. A radix-4 Montgomery multiplication 

algorithm was shown in [15], which involves an 

encoding step for the multiples of the modulus. Other 

work use multi-bit shifting which provide ability to shift 

the operands K bits in each iteration [4], but this design 

increases the area in tremendous percent without 

providing increasing in the processing speed. 

Comparing with radix-2, radix-4 design is twice faster 

than radix-2 (since radix-4 algorithm scans 2 bits of the 

multiplier at a time which reduces the total number of 

computation cycles to half of what is needed for radix-2 

[15]. 

2.  Related Work  

A high-radix Montgomery multiplication algorithm 

with radix-8 Montgomery modular multiplier as an 

example was proposed in [17] and an elliptic curve 

hardware that uses high radix multiplier was proposed 

in [5]. Compared to radix-2, the radix-8 design has less 

total computational time, but on the other hand, there 

was a significant increase in area and complexity. This 

result reveals an expected trade-off between chip area 

and computational time, and it should be considered in 

any hardware implementation of Montgomery 

multipliers. By increasing the radix, the multiplier 

operand is scanned faster; however, the determination 

of the quotient digit (qM) becomes more complex. 

Simplifying the determination of qM in high-radix 

modular multipliers was discussed in [8]. 

The multiplication algorithm can be distributed 

among a ring of processors, while each processor 

operates on a certain set of data, and then forwards this 

data to the next processor. This was a new approach 

for modular multiplication based on residue arithmetic 

presented in [1].  Also, the flexibility of the design 

should be taken in consideration, and the main 

candidates for flexible hardware are FPGAs. It was 

shown in [1] that a flexible and scalable design would 

have flexibility and adaptability comparable to 

conventional software and good performance because 

of the hardware speed. In [12] a unified multiplier 

architecture was suggested for finite fields GF(p) and 

GF(2
n
). The proposed multiplier can operate in both 

fields without significant increases in the design area 

compared to a multiplier that works on GF(p) only. A 

radix-4 Montgomery multiplication algorithm that 

involves an encoding step for the multiples of the 

modulus was presented in [15]. The scalable (variable- 

precision) hardware design for varying operands  size 

that implements the algorithm uses booth encoding of 

multiples to reduce the number of iterations. 

On the other hand, there are many techniques to 

perform modular division (X(t)/Y(t) over GF(2
n
). 

Among the best techniques to compute modular 

division is by using the iterative transformations of the 

greatest common divisor based on euclid algorithm 

[2]. The only limitation of the hardware 

implementations of the algorithms that is based on the 

Euclid’s algorithm is the comparison step between the 

degrees of the polynomials at each iteration. 

In [2], a method replacing this comparison by a 

much simpler operation (counter) was proposed, which 

significantly reduced the complexity of such division 

algorithms. By exploiting the counter idea, many 

efficient division algorithms were proposed [9, 10, 

16]. The authors in [18] presented a binary shift-right 

algorithm and showed that this modification leads to 

better area-time complexity. 

A multi bit-shift techniques are shown by Gutub 

[4]. The proposed inversion algorithms work in both 
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finite fields and are based on montgomery inversing 

algorithms.   Most of the proposed designs compute the 

inverse in the binary extension fields GF(2
n
) [16, 17].  

On the other hand, a VLSI algorithm for modular 

division in GF(p) based on the Binary GCD algorithm 

was proposed in [10]. The algorithm is based on the 

plus-minus algorithm, which is a modification of the 

binary method for calculating the Greatest Common 

Divisor (GCD). 

In [14] the authors proposed a novel unified 

algorithm for modular division and multiplication in 

both fields (GF(p) and GF (2
n
)). The algorithm and its 

proposed hardware architecture which are based on 

readix-2 were among the first designs that combine both 

operations in one unit with minimum area-complexity 

trade-off. 

 

3. Modular Algorithms Design in GF(2
n
) 

In this section, we provide the radix-4 division and 

multiplication algorithms that will be integrated in the 

next section to accelerate the arithmetic operations 

execution in cryptographic applications. 
 

3.1. Modular Division Algorithms in GF(2
n
) 

The modular division algorithm on this work is based 

on the Extended Binary GCD algorithm [10]. The 

modular division algorithm computes the modular 

division in GF(2
n
) as: C(x)=A(x)/B(x) mod p(x).    

Figure 1 shows the radix-4 modular division algorithm 

in GF(2
n
).  This algorithm was presented in [9] and it 

will be used as our basic design component in the 

integrated design. 
 

Function:Modular Division  in GF (2
n 

) field Inputs:0 6 X < P (x), 0 6 Y  < 

P (x), 2
n−1  

<p< 2
n 

outputs:Z (x) = X (x)/Y (x)  mol  p(x) 

Algorithm: 

C=Y,  U=X,  D=2p,  W=0,  δ = 1, Sgn=0 

while C ≥ 0 do 

I F  c0 = 0 THEN 

         I F c1 = 0 T H E N  C := C/4, C := RE D(C, D) 

         I F  Sgn = 0 T H E N  δ := δ + 1 

 E lseI F  δ = 1 T H E N  δ := δ + 1, Sgn := 0 E LS E δ := δ − 1 

E lseI F  Sgn = 1 T H E N     C := (C ⊕ D)/4,   U := RED(U, W ) 

I F δ = 1 T H E N  Sgn := 0, E lse δ := δ − 1 

Else Sgn = 1, { C := (C ⊕ D)/4,   D := C/4}, 

{ U := RED(U, W ),  C := RE D(C, D)} 
E lseI F  Sgn = 1 T H E N 

I F  c1 = 0 THEN  C := (C ⊕ D/2)/4,   W := RED(U, W ) 

E lse C := (C ⊕ D ⊕ D/2)/4,   W := RED(U, W ) 

I F  δ = 1 T H E N  Sgn := 0, E lse δ := δ − 1 

Else 

I F  c1 = 0 THEN{ C := (C ⊕ D/2)/4,   D := C/2}, 

{ W := RED(U, W ), C := RE D(C, D)} 
Else{ C := (C ⊕ D ⊕ D/2)/4,   D := C/2},{ W := RED(U, W ), C := 

RE D(C, D)} 
I F  δ = 1 T H E N  Sgn := 1,  δ := δ − 1 

Return W 
 

Figure 1. Radix-4 modular division algorithm in GF(2n) [9]. 

The shown radix-4 division algorithm uses a digit 

size of 2. It needs a maximum of 1.2 n iterations to 

compute the result, where n is the operand size. The 

double shift right (»4) operator stands for the division 

by the square of the polynomial root (i.e., X2).  

The bits c0 and c1 are used to control of the 

algorithm flow. The body of the algorithm is divided 

into three main cases, with the set of three operations: 

shift, shift-add, shift-add and swap. For more details 

about these cases, the reader is forwarded to [9]. 

One important part of the algorithm is the ± counter 

(Denoted delta: δ) which replaced the hard comparison 

operations in the previously proposed algorithm [4, 6, 

8]. The counter (δ) would never be incremented or 

decremented by 1, but only by 2 since we are using 

radix-4. Moreover, the counter is initialized with an 

odd value, so it will never reaches zero. It is important 

to take care of the counter to ensure an optimal 

implementation as the counter variable is used to limit 

the number of iterations and the comparisons, forcing 

the swap of variables to be performed, which is 

required for convergence. 

 

3.2. Montgomery Modular Multiplication 

Algorithms in GF(2
n
) 

In Montgomery [11], described a modular 

multiplication algorithm which proved to be very 

efficient in both hardware and software 

implementations.  The algorithm replaces division 

operations with simple shift operations which 

significantly reduces the algorithm complexity. In our 

work, we modify the algorithm proposed in [17] in 

order to be compatible with our division algorithm.  

In our case, multiplication is performed in radix-4 

and over GF(2
n
): C(x)=A(x)/B(x) mod p(x). Therefore, 

the LSDs (least significant digits or last two bits) of 

B(x), p(x), C(x), and of the current digit of A(x) are 

used in order to determine the multiple quotient (q) to 

generate the partial product. The LSB of p(x) is always 

1 (p is odd), then only the second least significant bit 

of the modulus is included in the computations. The 

complete details about the algorithm are shown in [9]. 

 

4. Radix-4 Integrated Modular 

Divider/Multiplier  

The extended binary GCD and Montgomery modular 

multiplication algorithms can be modified and 

combined based on the similar operations they have. 

By exploiting these similarities we can introduce an 

integrated Division/ Multiplication algorithm with 

reasonable area increase. In this section, we propose a 

Radix-4 Division and Multiplication (R4DM) 

algorithm over GF(2
n
) and its hardware architecture. 

 

 



An Integrated Radix-4 Modular Divider/Multiplier Hardware Architecture for Cryptographic Applications                             287 

 

4.1. Radix-4 Modular Division/Multiplication  

Algorithm in GF(2
n
) 

Figure 2 shows the proposed R4DM algorithm over 

GF(2
n
). The algorithm has two modes of operation: (div 

or mult). Most of the arithmetic computations in the 

algorithm are common to both modes of operation. The 

complete details and the proof of the R4DM are 

proposed in [9]. 

 

Function: Modular Division and Multiplication  in GF (2
n 

) field 

Inputs: 0 ≤  X < P (x), 0 ≤ Y  < P (x), 2
n−1  

< p < 2
n 

, Op, n  
Outputs: Z (x) = X (x)/Y (x)  mod  p(x) when Op = div, Z(x)=X(x)Y(x)    mod  

p(x)   when Op = mult. 

Algorithm: 

IF Op = div THEN C=Y,  U=X,  D=2p, W=0,  δ  = 1, Sgn=0 

Else C=Y,  U=0,  D = 2p, W=X,  δ  = Ceiling (n/2), Sgn=1 

while[(C≥ 0 AN D Op = div)OR (δ  = 0 AN D Op = mult)] do 

I F  c0 = 0 THEN 

I F c1 = 0 T H EN  C := C/4, C := RED (C,D)                                                

I F  (Sgn = 1  AN D   Op = div) T H EN   δ := δ  + 1 

ElseIF δ=1T H EN  δ := δ + 1, Sgn:=0 ELSE δ:=δ− 1 

ElseIF Sgn=1T H EN C:= (C⊕D)/4, U := RED(U, W ) 

I F   δ = 1 T H EN  Sgn := 0, Else δ := δ − 1 

Else Sgn = 1, { C := (C ⊕ D)/4,   D := C/4}, 

{U := RED(U, W ),  C := RED(C, D)} 
 ElseIF ((Sgn=1 AND Op=div)OR(Op=mult)) THEN  

    IF  c1=0 THEN C:=(C⊕D/2)/4,W,U:=RED(U,W)  

    Else C := (C ⊕ D ⊕ D/2)/4,   W, U := RED(U,W) 

      I F  δ=1 TH EN  Sgn := 0, Else δ := δ − 1 

Else 

I F  c1 = 0 THEN{ C := (C ⊕ D/2)/4,   D := C/2}, 

 {W := RED(U, W ), C := RED(C, D)} 
Else{C:=(C⊕D/2)/4, D:=C/2},{W:=RED(U,W ), C:=  RED(C, D)} 

I F  δ ≠ 1 T H EN  Sgn := 1,  δ := δ − 1 

IF Op = div THEN Z := W Else Z := U  

Return Z 
 

Figure 2. R4DM algorithm in GF(2n) [9]. 

 

The initialization of variables depends on that 

division or multiplication being performed by the 

algorithm. For simplicity, the polynomials X(x), Y(x), 

and p(x) are denoted as X, Y, and p, respectively, which 

corresponds to the bit-vector representation of these 

polynomials.  

The R4DM performs n/2 iterations to compute 

Montgomery Modular multiplication using an n bit 

modulus p. The counter δ is initialized with value n/2, 

and in each iteration it is decremented by one. The 

variables used in the algorithm are initialized as: C=Y, 

U=0, D=2p, W=X, δ=n/2, Sgn=1. The partial product U 

is reduced mod p in each iteration. Notice that the 

addition in GF(2
n
) is done without carry propagation 

(bitwise XORING). The multiplication is completed 

when δ=0 and the final result is (Z=U). 

On the other hand, the R4DM algorithm computes 

modular division when the variable Op=div. The 

variables are initialized as: C=Y, U=X, D=2p, W=0, 

δ=1, Sgn=0. The division is completed when C=0, and 

the final result is (Z=W). Notice that the modular 

reduction step is performed every iteration for both 

operations. The reader is forwarded to [9] for the 

complete details of the R4DM algorithm operation. 

 

4.2. Hardware Design of The Radix-4 Modular 

Divider/Multiplier in GF(2
n
) 

Figure 3 shows the top level design of the R4DM that 

implements the R4DM algorithm. The hardware 

design has a Register File, Data path, and Control 

units. The complete details about each component of 

this design are presented in [9]. 

The register file has four registers (R1 to R4). The 

computations are done in GF(2
n
), and the elements are 

represented in non-redundant format (not Carry-Save 

format). Each intermediate variable (C, U, D, W) is 

represented only as one vector (sum), and there is no 

carry vector (carry free addition in GF(2
n
)). So, each 

register inside the register file stores one n-bit vector. 

The register file has one input, and two output ports.  

 

 
Figure 3. R4DM hardware design. 

  

The Control block provides the register file with the 

signals necessary to perform reading/writing 

operations. The 3bit signal dst determines the 

destination register to be written. The signals src1, 

src2 (3bits each), specify the registers to be read at 

output ports out1, out2, respectively. 

The proposed-bit data path is simple. The main 

operation that determines the critical path is the 

addition, and so, the main components of the data path 

are two XOR gates array adders to perform carry-free 

addition in GF(2
n
) field. Also, the data path includes 

shift register that is used to implement the 2bit right 

shift operation (C>>2). This shift register is loaded 

with the multiplier (C=Y) and shifted right by 2bit 

when a control signal is asserted. The least significant 

two bits of the shifted operands are used by the control 

section to perform the test on least two signification 

bits of C (c1 c0). Finally, the outputs of the data path 

(Sum) is shifted by 2bit to the right.  

The delay of the adders used to perform addition in 

GF(2
n
) (XOR Gates Array) equals to the delay of  one 

XOR gate, which is very small delay when compared 

with carry save adders that used for addition in GF(p).  

The data path also is responsible for generating the 
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suitable multiples of the irreducible polynomial (p) 

according to the two lest significant bits of U(u1, u0). 

As it is clear from the algorithm, these multiplies of (p) 

will be added to U, in order to keep the two lest 

significant bits (u1, u0)=00 before the shifting operation 

to avoid data loss. More explanations about each 

component of this design are presented in [9]. 

 

5. Experimental Results  

We show in this Section an estimation of the number of 

iterations and the critical path delay results for the 

hardware description of the  algorithm. 

 

5.1. The Number of Iterations  
 

The Unified Modular Division (UMD) algorithm 

presented in [16] computes modular division in two 

different fields.  The UMD works only in Radix-2 with 

some exception in GF(p) which is not our concern here. 

Our proposed division algorithm in section 3.1 operates 

in Radix-4, and needs about 40% less iteration than 

UMD when computing the inverse in GF(2
n
). And we 

notice that the number of iterations for both algorithm 

increase linearly with the operand size. 

In [14], it stated that the inversion in GF(2
n
) takes on 

average 3.3 cycles for each bit. UMD needs a maximum 

of 2 iterations/bit and on average 1.5 iterations/bit to 

compute the modular inverse in GF(2
n
). Our proposed 

algorithm takes maximum1.2 iterations/bit, and on 

average 1.14 iterations/bit to compute the modular 

inverse in GF(2
n
). These results are justified by the facts 

that our algorithm scans two bits in each iteration, but 

UMD scans one bit in each iteration. 

 

5.2. Synthesis Results 
 

The hardware design of the modular divider/multiplier 

that implements the R4DM algorithm was described in 

VHDL and simulated in ModelSim. Then, the design 

was synthesized using Xilinx ISE 10.1i to obtain area 

and delay results. The target technology used was 

FPGA Vertex 5 (xc5vfx30t-2ff665). 

 

5.2.1. Area Results 

Table 1 shows the area results obtained by synthesizing 

the design for the R4DM algorithm in number of slices 

for operand size form 16-512bits. 
 

Table 1. The Area results of (R4DM) design in number of slices for 

operand size form 16-512 bits (Vertex 5). 
 

Operand Size (n) Area (No. of Slices) 

16 216 

32 328 

64 552 

128 1000 

256 1896 

512 3688 

 

For the purpose of comparison we synthesized our 

design using vertex II chip (xc2v250-6cs144), in order 

to compare with the results presented in [14]. The 

results are shown in Figure 4. 
 

 

Figure 4. Area comparison (vertexII). 

 

From Figure 4, we notice that the area increases 

linearly as the operand size increases in both design. 

The difference between the two results is due to the 

fact that our R4DM design works on GF(2
n
) only 

where the multiplication and addition operations are 

easily implemented by simple AND, XOR operations. 

On the other hand, the UDMA design works on both 

fields (GF(p) and GF(2
n
)) which needs extra hardware 

to perform the complex operations in  GF(P). 

 

5.2.2. Critical Path Delay Results 
 

Table 2 shows the critical path delay (clock period) in 

nano-seconds for operand size in the range: 16-

512bits. The operating frequency of the R4DM design 

is the reciprocal of the clock period. Form Table 2, the 

lowest clock period (11.79 ns) happened at 16bits 

operand size, and so, the maximum operating 

frequency is around 84.8MHz. 
      

Table 2. The critical path delay in nano-seconds for operand sizes 

16-512 bits (vertex  5). 
 

Operand Size (n) Delay (Nano Sec) 

16 11.79 

32 12.58 

64 14.77 

128 18.24 

256 19.04 

512 19.32 

 

Again, and for the purpose of comparison with 

[14], we synthesized our design using vertex II 

(xc2v250-6cs144). Figure 5 shows the critical path 

delay comparison results.  The difference between the 

two results is explained by the fact of working only in 

GF(2
n
) in our design. The UDMA design uses adders 

to perform the addition in GF(p) which is more 

complicated and has more delay than the simple 

adders used in our design which are arrays of XOR 

gates. 
 



An Integrated Radix-4 Modular Divider/Multiplier Hardware Architecture for Cryptographic Applications                             289 

 

 
Figure  5. The critical path delay comparison (vertex II). 

 

6. Conclusions 
 

In this work, we proposed a radix-4 modular division 

algorithm to compute modular division in GF(2
n
).  The 

proposed algorithm computes the division in GF(2
n
) 

field in an efficient way when compared with other 

algorithms. It uses   counter to replace the polynomial 

comparison step. The proposed algorithm was 

integrated with a modified version of the Montgomery 

multiplication algorithm to produce a R4DM algorithm. 

The hardware design that efficiently implements the 

R4DM algorithm is also proposed.  

The proposed hardware design of the R4DM was 

described in VHDL, and simulated using ModelSim. 

The area and delay synthesis results using FPGAs 

vertex 5 and vertex 2 chips are obtained and compared 

with other designs. The experimental results showed 

that the computation time and the area of the proposed 

R4DM design is competitive with other designs. 
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