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Abstract: A  contextual  clustering  procedure  for  Statistical  Parametric  Maps  is  calculated  from  time  varying  three-
dimensional images. The algorithm can be used for the detection of neural activations from functional Magnetic Resonance  
Images. Ogawa et al. (1990) have discussed about the brain magnetic resonance imaging with contrast dependent on blood  
oxygenation concepts.  Subsequently,  the processing strategies for time-course data sets in functional magnetic resonance  
imaging of the human brain have been analyzed by Bandettini et al. (1993). By using the voxel by voxel testing technique, the  
neighborhood  information  is  utilized  and  this  is  achieved  by  using  a  Markov  random field  prior  concept  and  Iterated  
Conditional Modes algorithm. The simulation results and human functional magnetic resonance imaging experiments using  
visual stimulation demonstrate that a better sensitivity is achieved with a given specifications in comparison with the voxel-by-
voxel thresholding technique. 
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1. Introduction

Current tomographic technologies in medical imaging 
enable the study of brain function by measuring 
hemodynamic changes related to changes in neuronal 
activity. The signal changes observed in functional 
Magnetic Resonance Imaging (fMRI) are mostly based 
on Blood Oxygenation Level Dependent (BOLD) 
methods and are usually close to the noise level. 
Consequently, statistical methods and signal average 
methods are frequently used to distinguish data signals 
in the noise backgrounds area. In most fMRI setups, 
images are acquired during alternating task (stimulus) 
and control (rest) conditions.

The analysis of the image series is frequently based 
on the computation of a statistical parametric map and 
statistical inferences derived from it. The voxel-by-
voxel computation technique for the difference of 
means of intensities between control and task states is 
normalized by the estimated standard error.  This 
generates a statistical map that follows the distribution 
in the non active area. Correlation analysis, subspace 
modeling, Fourier and wavelet transform methods, 
pseudo generalized least squares analysis using 
sinusoidal regression and Kolmogorov Smirnov test 
are examples of other approaches used to create 
statistical maps. The linear model is a general 

framework that includes the simple parametric tests. 
Significant active areas are found by thresholding   the 

maps. Methods that assess statistical significance 
levels are based on the   spatial extent   of the    cluster 
activation. In order to improve the sensitivity, 
thresholding technique has been developed.

Because the spatial extent must exceed a threshold, 
this type of method is known as Dual Parameter 
Thresholding (DPT) techniques. It should be noted that 
the fMRI time series may be temporally correlated and 
that the general linear model has been extended to deal 
with temporal correlations. Several preprocessing steps 
such as motion correction and temporal filtering are 
frequently performed before the analyzing of data. In 
particular, spatial filtering is frequently used to 
increase signal-to-noise ratio and validity of inferences 
are based on the theory of Gaussian fields.  In addition 
to the above mentioned inferential data analysis 
approaches, several methods that emphasize the 
exploratory nature of the problem have been proposed. 
These methods include independent spatial component 
analysis, principal component analysis, and clustering 
of the time series.  Ardekani et al. [4] have activated 
the detection in functional MRI using subspace 
modeling and maximum likelihood estimation and 
Bullmore have developed the statistical methods of 
estimation and inference for functional MRI analysis.
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 A single activation region typically consists of 
numerous voxels. Hence, it may be useful to utilize 
contextual information. In texture segmentation, pixel 
features are acquired from a pixel neighborhood. A 
simple example of a method that utilizes classification 
information from a voxel’s neighborhood is the median 
filtering of the thresholded image. In addition, the DPT 
techniques and spatial filtering methods can be used 
which incorporate contextual information for the data 
analysis. An interesting option is to use the intensity 
value of a pixel and classification information from the 
pixel neighborhood in the same stage of the 
classification. This approach can be realized in the 
context of Markov Random Fields (MRF). MRFs 
regularize a classification by defining interactions 
between neighboring pixels.  An MRF model is also 
used for the spatiotemporal analysis of fMRI data. An 
iterative contextual analysis method is designed which 
is based on MRFs. The first step in this method is to 
compute a statistical parametric map using well-known 
results from general linear models. Then, the statistical 
parametric map is clustered, therefore segmented into 
non-active and active regions. The contextual 
clustering algorithm is based on besag’s Iterated 
Conditional Modes (ICM) algorithm. However, in this 
The ICM algorithm is modified for performing 
hypothesis testing by defining an artificial activation 
class. The null hypothesis is set such that the voxel is 
non-active. If the null hypothesis is rejected, then 
voxel is considered to be active. Simulations are used 
to find false positive (i.e., false activation) rates for 
different varying parameter values of the algorithm. 
This allows classification so that the probability of 
false values is controlled.

2. Brain Imaging

Brain  imaging  basically  consists  of  the  structural 
anatomy,  functional  anatomy,  auditory  signal 
processing and the functions are explained in detail as 
follows.

2.1. Structural Anatomy 

The basic anatomical structure of the human brain is 
depicted in Figure 1 It has been studied for a long time 
about the function of the brain in terms of crude and 
invasive methods.  Central  Nervous System (CNS) is 
formed by the cortex, brain stem, cerebellum and other 
connected subcortical areas. The brain stem and other 
sub cortical regions are mainly involved in lower level 
functions,  like  automation  and  primitive  signal 
processing.  Higher  functions,  such  as  conscious 
thought, are performed on the cortex  is the surface of 
the brain. Higher functions, like memory, also rely on 
support from the sub cortical areas.

The surface is heavily folded to increase its area and 
the folds are defined as sulci and it  separates  the surface 

into  small  sections  termed  as  gyri.  Bigger  folds  that 
separate  larger  parts  are  called  fissures,  like  the 
longitudinal fissure shown in Figure 1(a), which separates 
the left and right hemispheres of the brain. The division 
of the cortex into the four lobes, as shown in Figure 1(b), 
is somewhat arbitrary, but it is based on major sulci and 
fissures which are visible on the surface. The density of 
neurons,  their  size  and  shape  differ  between  the  areas. 
The boundaries are not always so clear in real brains and 
changes are seen slightly from one individual to another.

2.2.  Functional Anatomy

Functional anatomy mainly deals with the surface areas 
of  the  brain.  The  neuronal  configuration  is  similar 
throughout the surface, but different inputs and outputs of 
the peripheral nervous system are connected to different 
parts of the brain. Thus, different areas of the brain are 
involved  with  different  kinds  of  information  in  which 
different  purposes  are  served.  Table  1 provides  the 
functional  properties  of  the  four  lobes  of  the  brain. 
Figure  2(a) depicts  the  location  of  some  of  the  well 
known  primary  processing  areas  on  the  cortex.  These 
areas are mainly connected contralaterally, which means 
that  the  areas  on  the  left  hemisphere  are  mainly 
responsible for signals from the right side of the body. 
The primary areas are then connected to additional areas 
nearby  on  the  same  hemisphere.  The  additional  areas 
usually  perform more  complex  functions  based  on  the 
processing done on the primary areas. The left and right 
hemispheres of the brain are functionally quite symmetric 
in nature, but usually each task has a more dominant side. 
The brain is  also  adaptive in  the  sense that  sometimes 
other  areas  overtake  more  functionally,  when  the 
dominant side suffers an injury.
 
2.3.  Auditory Signal Processing 

Audio processing may seem relatively simple compared 
to visual image processing. However, auditory processing 
is closely linked to understanding of spoken language and 
therefore related to higher functions, such as memory and 
conscious thinking. The signal processing actually begins 
already in the ear and in the thalamus, even before the 
signals reach the cortex. The early processing is used to 
form a tonotopic map (t-map) based on frequency on the 
primary  auditory  area.  Unlike  in  many  other  sensory 
inputs,  audio  signals  from both  ears  are  used  together, 
which  makes  it  possible  to  detect  the  direction  of  the 
original sound by analyzing the phases of the signals. The 
primary auditory area responds to all kinds of sounds, but 
it  is tightly connected with additional areas involved in 
more complex processing and these areas are shown in 
Figure 2(b).

3. Evolution of Imaging Techniques

In the past decades crude pathological methods existed 
for  studying  the  brain,  and  functional  studies  were 
virtually impossible. Brain imaging has been developing 
rapidly  during  the  last  decades.  Specifically  in  recent 

http://www.cis.hut.fi/whyj/publications/thesis/thesis_node7.html#fig:brain.functional.b
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years,  it  has  become  also  quite  noninvasive,  allowing 
theroutine imaging of living tissues. The potential future 
techniques used are Near InfraRed Spectroscopy (NIRS) 
or Diffuse Optical Imaging (DOI).

(a) (b) (c)

Figure 1. Anatomical structure of the human brain.

Table 1. Functional properties of the four lobes of the brain.

Lobe Input and Output Other Functions

Frontal Motor Memory and Emotions 

Temporal Auditory Language and Structure 

Parietal Somatosensory Association and Attention 

Occipital Visual Pattern and Object Recognition 

(a) (b)

Figure 2. Functional areas of the human brain.

(a) (b) (c)

Figure 3. Examples of structural magnetic resonance images.

It is based on the diffusion of laser-light in tissue and 
blood. The difficulties in using Laser based maging 
method includes the ability to generate high resolution 
images and penetrate deep into the tissues.

The images in Figure 3 shows the slices of a human 
head viewed from (a) sagittal, (b) frontal and (c) 
horizontal directions. Using standard signal processing 
techniques, the measurements can be turned into an 

image of the focused slice. The full volume is 
produced by scanning several adjacent slices, one after 
the other. The image voxels contain a kind of density 
measure based on the scanning parameters and the 
properties of the tissue. The scanning is actually very 
slow because of the relaxation process and adjusting 
the magnetic fields, requires certain amount of time. 
Producing high resolution images more time is 
consumed which is shown in Figure 3. Naturally, the 
quality of the images is strongly affected by 
homogeneities in the magnetic fields, the internal 
magnetic interactions and electromagnetic interference 
from the environment.

A study of fMRI is shown in Figure 4(a). The low 
resolution and the scanning parameters, optimized for 
BOLD, make the contrast between different tissue 
types which are not good. Additionally, the fast 
scanning and low signal-to-noise ratio of the BOLD 
signal make the image very noisy. Therefore, a high 
resolution structural MRI is often scanned separately to 
aid in locating the activation during analysis by super-
positioning. The bright areas in the images do not 
necessarily correspond to the active areas. Careful 
analysis of the whole sequence is required to detect the 
activation patterns.

.a Standard Preprocessing of 
Images 

In addition to the low signal-to-noise ratio and additive 
noise, which is seen in Figure 4(a), the fMRI 
measurements are contaminated with artifacts, 
such as head movement and physiological 
vascular changes. Thus, the detection and 
analysis of interesting phenomena is very 
difficult. To overcome these difficulties, the 
images need to be preprocessed. Figure 4(b) is a 
slice after preprocessing. The level of noise is 
clearly reduced and the values are much more 
continuous. Also, the excess area outside the 
brain has been removed which is shown in 
black. 

The reference time-course can be approximated 
using the stimulation pattern and a model of the 
hemodynamic response, as shown in Figure 5. The 
depicted pattern is a very simple case of repeated on-
off type of stimulus. The stimulation time-course is 
then convolved with the model of the hemodynamic 
response which is Gaussian.

The analysis can be considered in two steps. First, 
the reference time-course is compared to the time-
course of each voxel in the fMRI sequence statistically. 
This produces an image of the probability to fit the 
given time-course, where the voxels with the highest 
probabilities are considered to be active. However, the 
probability image is very noisy and the second step is 
to segment it into the active and non-active areas. The 
segmentation is made robust by using a statistical 

http://www.cis.hut.fi/whyj/publications/thesis/thesis_node7.html#fig:fmri.stimulus
http://www.cis.hut.fi/whyj/publications/thesis/thesis_node7.html#fig:fmri.example.b
http://www.cis.hut.fi/whyj/publications/thesis/thesis_node7.html#fig:fmri.example.a
http://www.cis.hut.fi/whyj/publications/thesis/thesis_node7.html#fig:fmri.example.a
http://www.cis.hut.fi/whyj/publications/thesis/thesis_node7.html#fig:mri.example
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model for the noise, usually assumed Gaussian. The 
difficulty with this approach is to define a threshold for 
the probability of activation that produces an accurate 
segmentation. 

After the spatial activation patterns have been 
formed, the true activation time-course of each area is 
formed by taking the mean sequence of all the voxels 
in the area. Again, if the segmentation is poor then it is 
due to an incorrect threshold value and the time-
courses are not generated accurately. 

4. Statistical Parametric Mapping 

Kwong [8] have implemented the fRMI with echo 
planar imaging. Friston et al. [5] have made a report on 
Statistical parametric maps in functional imaging under 
general linear approach. The use of temporal 
correlation coefficients for magnetic resonance 
mapping of functional brain activation under 
individualized thresholds and spatial response 
delineation was analyzed by Kkleinschmidt et al. [7]. 

Characterizing a regionally specific effect rests on 
estimation and inference.  Inferences in neuroimaging 
may be about differences expressed when comparing 
one group of subjects to another or within subjects. 
Changes are noted over a sequence of observations. 
They may pertain to structural differences in voxel-
based morphometry or Neuro physiological indices of 
brain functions.

(a) A scanned slice without 
processing 

(b) After the standard 
preprocessing has been 
applied. The images do 
not show a direct 
measure of activation.

Figure 4. Sample of functional magnetic resonance image..

.i Realignment

 Kuppusamy et al. [9] have used the statistical 
assessment of cross correlation, variance methods and 
analyzed the importance of electro-cardiogram gating 
in functional magnetic resonance imaging. Brammer 
used the concept of multidimensional wavelet analysis 
of functional magnetic resonance images and a new 
statistical approach was introduced for detecting the 
significant activation in functional MRI by Marchini et  
al. [10] Kannan et al. [11] has analysed the genetic 
code by the implementation of artificial Neural 
Network with Hidden Markov Model.

But in this paper changes in signal intensity over 
time from any one voxel, can arise from head motion 

and this represents a serious confound, particularly in 
fMRI studies.  Despite restraints on head movement, 
co-operative subjects still show displacements upto 
several millimeters.  Realignment involves (1) 
estimating the 6 parameters of an affine “rigid-body” 
transformation that minimizes the [sum of squared] 
differences between each successive scan and a 
reference scan (usually the first or the average of all 
scans in the time series) and (2) applying the 
transformation by re-sampling the data using tri-linear 
interpolation.  Estimation of the affine transformation 
is usually effected with a first order approximation of 
the Taylor expansion in which the effect of movement 
on signal intensity using the spatial derivatives of the 
images are observed.  This leads to a simple iterative 
least square solution that corresponds to a Gauss-
Newton search.  For most imaging modalities this 
procedure is sufficient to realign scans. However, in 
fMRI, even after perfect realignment, movement-
related signals can still persist.  This calls for a further 
step in which the data are adjusted for residual 
movement-related effects.

The Bayesian alternative to classical inference with 
SPMs rests on conditional inferences about an effect if 
the data is given as opposed to classical inferences 
about the data in which the effect is zero.  Bayesian 
inferences about spatially extended effects use 
Posterior Probability Maps (PPMs).  Although less 
commonly used than SPMs, PPMs are potentially very 
useful because they do not have to contend with the 
multiple comparisons problem induced by classical 
inference. The coloring is based on a smooth gradient 
for a range of smoothly interpolated values, which 
makes stronger activation and in brighter (hotter) 
colors. The color gradient can be seen in Figure 6(b), 
which shows the histogram of the activation volume.

As the active regions are sparsely distributed the 
volume is noisy. Therefore, the main lobe of the 
histogram can be considered as noise or the inactive 
region. The volume is always shown so that the tail of 
the histogram    with the     most energy or mass which 
is considered     to be the positive extreme. 

This effectively   fixes the    sign   ambiguity of ICA. 
However, there are cases where the histogram is almost 
symmetric in nature and all the   energy is in the main 
lobe. From this, it is understood that there is no 
significant focal activation in the volume.

(a) An 

ideal stimulation time-course comprising of
rest and activation periods

http://www.cis.hut.fi/whyj/publications/thesis/thesis_node10.html#fig:visualize.activation.b
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(b) The corresponding ideal reference time-course with
The hemodynamic response. In reality the detected time-course 

varies significantly

Figure 5. Illustration of an ideal stimulus.

Figure 6. First partial view of the interactive user interface.

Figure 6 reflects the fact that the volumes from 
three orthogonal directions with the cross-hairs 
pinpointing the current location and the histogram of 
the activation volume. The structural volume is drawn 
using grayscale values and the amount of activation 
with color gradient, where brighter (hotter) colors 
means stronger activation.  The gradient used for 
coloring the activation pattern is fitted to the range 
from the main lobe to the more powerful extreme. The 
lower end of the gradient is fully transparent and the 
higher end is fully opaque. As mentioned, the color 
also changes smoothly from darker (colder) to brighter 
(hotter) values. It is very easy to see that a strongly 
activated area is located at the back of the brain on the 
right side, most probably related to processing visual 
information. It is also possible to calculate and show 
the variability from the volume, but calculating the 
volumetric distribution is very time consuming.  Still, 
the volume may allow easier interpretation of certain 
kind of variability, as shown in one of the results from 
the experiments in Figure 9.

The left disk of Figure 7 shows the spread of the 
Euclidean distances between the members of the group 
and the right disk between the distances to all other 
groups, with the black circles marking the mean values 
of those distances.

5.1. Complete User Interface

Multi-modal information is brought together to allow 
the interactive human interpretation. The complete user 
interface, for a single component  is shown in Figure 8, 
which combines the parts shown in Figures 6, 7 and 6 
The interface includes some numerical properties of 
the component shown above and below the time-
course. Also, a possible reference time-course is shown 

as a two colour pattern beneath the activation time-
course. The bands depict the on-off nature of the 
stimulus. 

The numerical information is related to the grouping 
and the histogram of the activation pattern. The 
number of estimates in the group and the normalized 
rank of the component are on the top. The ratio of 
energy between the upper and lower tail of the 
histogram, related to skewness and the amount of 
energy in the main lobe of the histogram are on the 
bottom.

Additionally, the user interface offers helpful 
interactive tools, which make it very user friendly. The 
functional overlay can be toggled on or off to reveal 
the structure underneath. The activation pattern can 
also be viewed without the structural template. The 
component does not contain clear or focal activations. 
The current location can be centered on the strongest 
activation automatically. All the interactive tools are 
focused on making the interpretation fast and easy. 

.a Volume Acquisition 

During the four repetitions of speech and resting 
periods 10 full head volumes were acquired in each 
condition with a scanning interval of approximately 3 
seconds, resulting in a total of 80 volumes. It is 
common that under a hypothesis driven experiment the 
scanning is focused only on a few slices of the brain, 
which have been classified as interesting beforehand. 
Sometimes this is beneficial, since it could allow faster 
scanning or increased resolution, but as ICA is a purely 
data-driven method then it would be rather impossible 
to define the interesting regions of the brain 
beforehand. And again, such scanning would limit the 
data too much to fully characterize unexpected 
phenomena.

 
.a Volume Preparation 

Before data analysis, the volumes were processed in 
the usual way fMRI data is processed by using the 
traditional analysis method. This was done with the 
SPM toolbox and resulted, for each of the 14 subjects, 
in 80 volumes with a resolution of 95 X 79 X 69 
voxels. Additionally, the volumes were masked with a 
cortical mask to remove uninteresting voxels outside 
the brain. This effectively lowered the amount of data 
to half, still leaving an intimidating 80 X 254484 
observation matrix per subject. 

http://www.cis.hut.fi/whyj/publications/thesis/thesis_node10.html#fig:visualize.variability
http://www.cis.hut.fi/whyj/publications/thesis/thesis_node10.html#fig:visualize.activation
http://www.cis.hut.fi/whyj/publications/thesis/thesis_node10.html#fig:visualize.gui
http://www.cis.hut.fi/whyj/publications/thesis/thesis_node12.html#fig:results.link
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6. Results: Individual Experiments 

The observation matrix of each subject was then 
analyzed with the method. The FastICA algorithm was 
run 100 times using a bootstrapping of 20% and PCA 
whitening to the 30 strongest principal components in 
each run. FastICA was used in symmetric mode with 
nonlinearity concepts estimating 15 independent 
components in each run. This resulted in 1500 
independent component estimates per subject, which 
were then clustered with correlation threshold 0.8 and 
power 8.

7. Conclusions

The utilization of contextual information was studied 
for the analysis of fMRI data. The results presented 
here demonstrate that the context-free thresholding is 
more sensitive to random noise than the contextual 
analysis. Better sensitivity was achieved with contextual 
clustering. The results show that the spatial 
autocorrelations present in a typical fMRI study in which 
the effect is small particularly for family-wise tests. The 
main conceptual difference between the method of 
Descombes and the method presented here is that the 
former performs data restoration and analysis for the 
original spatio-temporal fMRI data while the latter 
clusters a standard statistical parametric map. In addition, 
Simulated Annealing (SA) optimization algorithm was 
used to find the global maximum of the objective 
function.

A strong point of ICM is the exclusive dependence on 
local image characteristics. For fMRI data, the ICM 
algorithm converged in ten cycles. The small number of 
cycles assures that a deviating data distribution either due 
to activation or art-fact at one location does not increase 
the false positive probability or reduce the power. The 
results indicate that the power of the developed 
contextual algorithm is superior to that of conventional 
voxel-by-voxel thresholding of a statistical parametric 
map. A method for analyzing the consistency of 
independent components was presented and its usefulness 
was tested in a real fMRI study. The method works well 
with real fMRI data indeed, makes interpreting the results 
easier and more reliable.

Figure 7. Third partial view of the interface, showing the 
discrimination power of the group.

 

Figure 8. The complete view of the interactive user interface, 
showing all the information related to a single component.

Figure 9. Minimum and maximum values in the time series 
image.

Figure 10. Filtered image –Frame 13.

Figure 11. Frame 13.
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