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Abstract: Languages-based security promises to be a powerful tool with which provably secure routing applications may be  
developed. Programs written in these languages enforce a strong policy of non-interference, which ensures that high-security  
data will not be observable on low-security channels. The information routing security proposed aim to fill the gap between  
representation and enforcement  by implementing and integrating the divers  security services  needed  by policy.  Policy is  
enforced by the run-time compiler and executions based mechanism to information violating routing policy and regulation of  
security services.  Checking the routing requirements of explicit  route achieves this result for statements involving explicit  
route. Unfortunately, such classification is often expressed as an operation within a given program, rather than as part of a  
policy, making reasoning about the security implications of a policy more difficult. We formalize our approach for a C++ like  
language and prove a modified form of our non-interference method. We have implemented our approach as an extension to C  
and provide some of our experience using it to build a secure information routing.
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1. Introduction

An information routing policy is a security policy that 
describes  the  authorized  paths  along  which  that 
information can route. Each model  associates a label, 
representing a security class, with information and with 
entities  containing  that  information.  Each  model  has 
rules about the conditions under which information can 
move  throughout  the  system.  Historically 
communication  security  policies  have  been  always 
crafted for the specific systems they support [18, 7] we 
find  that  language  provided  the  rudimentary  tools  to 
achieve low-level security goals and its extension were 
necessary to formulate and enforce application policy.

These  languages  provide  a  means  of  provably 
enforcing  a  security  policy  in  a  broader  sense.  A 
current technique for enforcing security routing relies 
on  so  called  best  practices  [11]  which  include 
simplistic  techniques  (such  as  password,  TCP, 
authentication,  rout  filter,  and  private  addressing)  to 
mitigate  the  most  rudimentary  vulnerabilities  and 
threats.

Security-typed languages annotate source code with 
security levels on types [17], such that the compiler can 
statically  guarantee  that  the  program  will  enforce 
noninterference [5]. In a broader sense, these languages 
provide  a  means  of  provably  enforcing  a  security 
policy. Theoretical models for security-typed languages 
have  been  actively  studied  and  are  continuing  to 
evolve.  For  example,  researchers  are  extending these 
models  to  include  new features,  such  as  exceptions, 

polymorphism,  objects,  inheritance,  side-effects, 
threads, encryption, and many more [13].

To  address  this  lack  of  practical  experience,  we 
build  a  realistic  application  in  a  security-typed 
language.  We  sought  to  discover  whether  this  C++ 
secure  language  programming  could  hold  up  to  its 
promise  of  delivering  real-world  applications  with 
strong security guarantees.  Two key criteria  we used 
for defining “real-world” were that (1) the application 
should  interact  with  other  non-security-typed, 
networked  components  while  still  maintaining  the 
security policy of its data, and (2) the security policy 
should  be  easily  re-configurable  such  that  the 
application  could  be  of  general  use  (not  just  in  a 
military,  MLS setting, but also in a corporate setting, 
for  example).  We  conducted  this  through a  security-
typed variant  of  C++ codes examples and definitions 
on  routing  processes.  Throughout,  we  reflect  on  the 
examples  and  definitions  of  language-based  security 
codes

A principal result of this study is that we succeeded 
in  developing  a  real-world  application  for  which  we 
can easily assess that there is no information leakage 
beyond what is allowed by a clear, user-defined, high-
level policy. We found that while language tools were 
robust  and  expressive,  additional  development  and 
runtime  tools  were  necessary.  We  provide  a  critical 
evaluation  of  the  C  language  through  examples  and 
definitions,  highlighting  its  effectiveness  at  carrying 
out  the  promised  security  goals,  the  difficulties 
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involved in using it and the ways in which it still needs 
improvement.

However to approach the problem, we use C’s type 
class  mechanism  to  give  an  interface  for  security 
lattices. Programs  written  in  the  embedded  language 
can  be  parameterized with  respect  to  this  interface. 
Moreover, the embedded language can easily be given 
security-specific  features such  as  a  declassification 
operation or  run-time  representation of  privileges  for 
access-control checks. In both cases, we make use of 
C’s  strong  type  system to  guarantee  that  the 
abstractions  enforcing  the  security policies  are  not 
violated.  This  encapsulation  means  that  it  is not 
possible  to  use  the  full  power  of  the  C  language  to 
circumvent  the  information-routing  checks performed 
by  the  embedded  language,  for  example  what  are 
reasonable  information  routing  policies?  For  each 
variable x, define x to be its information routing class. 
An information routing policy restricts  flow between 
certain  classes  and  is  a  relation  on  the  set  of 
information routing classes.  (Think of classes as:  top 
secret, secret, confidential,  etc.) A policy might be: no 
information routing from secret to unclassified. Why is 
the lattice assumption useful? Note that the lub and glb 
properties come “for free.” It is always possible to add 
elements to a lattice (top and bottom, for example) to 
satisfy the lub and glb requirements.  It turns out that 
having a lattice will allow us to compute some things 
very efficiently. Recall the example where x and y are 
natural numbers and we assign  z := x + y. We would 
like  to  analyze  the  expression  x  + y  (as  opposed  to 
examining each individual variable) in testing to see if 
execution  of  z:  =  x  +  y  should  be  allowed. The 
existence of a lattice implies: if x1 <= y, x2 <= y, . . .,  
xn <= y then there exists some x where x = x1 lub x2 lub 
x3 . . . xn and x <= y. Therefore, flows x1->y, x2->y, . . 
.lub xn->y, all are authorized if and only if x1 lub x2 lub 
x3 . . . lub xn <= y. And, to check if a policy is satisfied, 
it is only necessary to compute one least upper bound, 
rather than to check a set of  <= relations. If the latter 
computation is expensive, it is useful to only have to do 
it once.

Our extended view of policy allows us to consider 
new  ways  of  using  context.  Security-typed 
programming language allows the issuers of policy to 
augment applications through policy specification. We 
sought  to  discover  whether  this  tool  for  secure 
programming could hold up to its promise of delivering 
real-world applications with strong security guarantees. 
In practice, the security policies enforced by program 
monitors  grow more  complex  both  as  the  monitored 
software is given new capabilities and as policies are 
refined in response to attacks and user feedback. This is 
best  illustrated  by  examples  proposed  dealing  with 
policy complexity by organizing policies in such a way 
as  to  make  them  compassable.  We  present  a  fully 
implemented compiler and execution-based mechanism 
that  allows  security  engineers  to  specify and enforce 

composeable  policies  on  C++  applications.  We  also 
formalize  the  central  workings  by  defining  an 
unambiguous semantics for our applied language.

1.1. Related Work

Developer tools and programming experience have not 
evolved in  concert  with language features.  There  are 
currently  only  two  significant  language 
implementations, Flow Caml [14] and Jif [10] and only 
two applications [1, 10], both written in Jif. 

The  concept  of  information-flow  control  is  well 
established. After the first formulation by Bell and La 
Padula  [2]  and  the  subsequent  definition  of 
noninterference  [5],  Smith,  Volpano,  and  Irvine  first 
recast  the  question  of  information  flow into  a  static 
type  judgment  for  a  simple  imperative  language  [5]. 
The notion of information flow has been extended to 
languages with many other features, such as programs 
with multiple threads of execution [16, 18], functional 
languages  and  their  extensions  [6,  12,  19]  and 
distributed systems [8]. For a comprehensive survey of 
the field, see the survey by Sabelfeld and Myers [21]. 
Two  robust  security-typed  languages  have  been 
implemented  that  statically  enforce  noninterference. 
Flow Caml [14] implements a security-typed version of 
the Caml language that satisfies noninterference. JFlow 
[9] and its successor Jif [10] introduce such features as 
a decentralized label model and run-time principals in 
an  extension  to  the  Java  language.  Jif  is  actively in 
development,  with  the  latest  release  in  June  2006, 
introducing integrity labels [10].

1.2. Security Challenges, Requirements, and 
Goals

The security policy we defined at the outset is driven 
by  a  range  of  security  goals  and  requirements, 
Confidentiality Integrity and Availability (CIA). Based 
cryptographic traditional security mechanism,  such as 
authentication  protocols,  digital  signature  and  key 
management  which  responsible  to  keep  track  of 
binding keys and assist on establishing mutual trust and 
secure communications are posing both challenges and 
opportunities  of  archiving  security  goals. 
Cryptographic in routing protocols gives challenges of 
difficulties  on  time  synchronizations,  dependence 
complexity  of  techniques  as  routing  service  need  to 
bootstrap  themselves  (i.e.,  directories,  basic  startup 
operations  of  management  system).Consequence  of 
potential nor loss on investment have been encouraging 
commercial entities to devote and deploy more secure 
infrastructure.

No standardized security solutions for most routing 
technologies,  designing  secure  extension  or  new 
protocols are extremely broad. In a long run no single 
security  solutions  can  address  all  routing  protocols 
since  routing  protocols  differ  in  their  design  even 
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within single routing protocols different security might 
be  required.  Platform in  which  routing  protocols  are 
operating  is  another  challenge  i.e.,  More  than  three 
orders of magnitude have different exit in the control, 
different data plane’s processing capabilities.

The  complexity  of  and  requirements  imposed  on 
routing technologies continue to escalate and this will 
increase  the  potential  vulnerabilities  to  and 
consequence  of  focused  routing  system  attacks  [11] 
Internet  Engineering  Task  Force  (IETF)  routing 
protocols  security  requirements  working  group  gives 
more discussion on this [15].

2. Information Routing Policy

Information  routing  policies  define  the  way 
information  moves  throughout  a  system.  Typically, 
these policies are designed to preserve confidentiality 
of data or integrity of data. In the former, the policy's 
goal is to prevent information from routing to a user 
not authorized to receive it.  In the latter,  information 
may  route  only  to  processes  that  are  no  more 
trustworthy  than  the  data.  Any  confidentiality  and 
integrity  policy  embodies  an  information  routing 
policy. Example:  the  model  describes  a  lattice-based 
information routing policy. Given two compartments A 
and B, information can route from an object in  A to a 
subject in  B if and only if  B  dominates  A. Let x be a 
variable  in  a  program.  The  notation  x  refers  to  the 
information routing class of x . 
Example: consider a system that uses the model above. 
The variable 1 x which holds data in  the compartment 
(TS,  {NUC,  EUR}),  is  set  to  3.  Then  x =  3  and 
 x = (TS, {  NUC,EUR }).

Intuitively, information routing from an object  x to 
an  object  y if  the  application  of  a  sequence  of 
commands  c causes  the  information  initially  in  x to 
affect the information in y .
Definition 1: the command sequence c causes a routing 

of  information  from  x to  y if,  after  execution  of  1c

some information about  the value of  x before  c  was 
executed can be deduced from the value of y after c  
were  executed.  This  definition  views  information 
routing in terms of the information that the value of y

allows  one  to  deduce  about  the  value  in x .  For 
example, the statement  y : = x; reveals the value of x

in the initial state, so information about the value of x  
in the initial state can be deduced from the value of  y 
after the statement is executed. The statement y: = x / z; 
reveals some information about x , but not as much as 
y:  = x statement.  The final  result  of  the  sequence c 
must reveal information about the initial value of x for 
information to route. The sequence

            tmp : = x;
              y : = tmp ;

has information routing from x to y because the 
(unknown) value of x at the beginning of the sequence 

is revealed when the value of y is determined at the 
end of the sequence. However, no information routing 
occurs from trap to x, because the initial value of trap 
cannot be determined at the end of the sequence. 
Example: consider the statementx := y + z ; Let y

take any of the integer values from 0 to 7, inclusive, 
with equal probability, and let z take the value i with 
probability 0.5 and the values 2 and 3 with probability 
0.25 each. Once the resulting value of x  is known, the 
initial value of y can assume at most three values. 
Thus, information routes from y to  x . Similar results 
hold for z . For example: consider a program in which x 
and y are integers that may be either 0 or 1. The 
statement
                 if x = 1 then y : = 0;
                            else y : = 1;

does not explicitly assign the value of  x to  y. Assume 

that x is equally likely to be 0 or 1. Then H(x ) = 1s . But

s t H(x I y ) = 0 , because if y is 0, x is 1, and vice versa. 

Hence,

          H(x  I y ) = 0 < H(x  I y ) = H(x ) = 1. s s s st  

(1)

thus, information routes from x to y .
Definition 2: an implicit routing of information occurs 
when information flows from x  to y  without an 
explicit assignment of the form y := f(x) , where f(x) is 
an arithmetic expression with the variable x . The 
routing of information occurs, not because of an 
assignment value of x, but because of a routing control 
based on the value of x. This demonstrates that 
analyzing programs for assignments to detect 
information routing is not enough. To detect all routing 
of information, implicit routing must be examined.

3. Execution Based Mechanism

The goal of an execution-based mechanism is to 
prevent an information routing that violates policy. 
Checking the routing requirements of explicit route 
achieves this result for statements involving explicit 

routings. Before the assignment l ny = f(x ,  ...,  x ) is 

executed, the execution-based mechanism verifies that 
≤l nlub(x , ..., x ) y  if the condition is true, the assignment 

proceeds. If not, it fails. A naive approach, then, is to 
check information routing conditions whenever an 
explicit routing occurs. Implicit routing complicates 
checking. 
Example: let x and y be variables. The requirement for 
certification for a particular statement 
y op x is that x  y ≤ .

The conditional statement if x = 1 then y := a, 
Causes a routing from x to y . Now, suppose that when

≠x 1 , x = High and y = Low . If routing were verified 
only when explicit, and ≠x 1 , the implicit routing 
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would not be checked. The statement may be 
incorrectly certified as complying with the information 
routing policy.

3.1. Variables Classes

The classes of the variables in the examples above are 
fixed.  This  suggests  a  notion  of  dynamic  classes, 
wherein  a  variable  can  change  its  class.  For  explicit 
assignments, the change is straight forward. When the 
assignment y:= f(x1,… ,xn) occurs, y’s class is changed 

to l nlub(x , ..., X ) .  Again,  implicit  routing  complicates 

matters. 

Example: Consider the following program (which is the 
same as the program in the example for the data mark 
machine [8].

                  proc copy ( x : integer class{ x } ;
                 var y: integer class { y });
                 var z :  integer class variable {Low };
                 begin
                       y := 0;
                      z :=0; 
                      if x=0 then z := 1;
                      if z =0 then y := 1;
                end;

In this  program,  z is  variable and initially  Low.  It 
changes when something is assigned to z .Routings are 
certified whenever anything is assigned to y.  suppose
 y < x . If  x = 0 initially, the first statement checks that 

yLow ≤ (trivially true). The second statement sets  z to 
0 and z  to Low.  The third statement changes z  to1 and
z to lub (Low, x) = x .  The  fourth  statement  is  skipped 
(because z = 1 ). Hence,  y  is set to 0 on exit.  If  x = 1

initially,  the  first  statement  checks  that  Low y ≤

(trivially true). The second statement sets z  to 0 and z 
to Low. The third statement is skipped (because  x = 1 ). 
The  fourth  statement  assigns  1  to  y  and  checks  that
 lub(Low, z) = Low  y≤  (again, trivially true). Hence, y is 
set to 1 on exit. Information has therefore routed from 
x to y even  though y < x .  The  program  violates  the 
policy but is nevertheless certified.

4. Compiler Based Mechanism

Compiler-based  mechanisms  check  that  information 
routing  throughout  a  program  are  authorized.  The 
mechanisms determine if the information routing in a 
program  could violate  a  given  information  routing 
policy. This determination is not precise, in that secure 
paths  of  information  routing  may  be  marked  as 
violating  the  policy;  but  it  is  secure,  in  that  no 
unauthorized path along which information routing will 
be undetected. 
Definition 3: a set of statements is certified with respect 
to  an  information  routing  policy  if  the  information 

routing within that  set of  statements does not violate 
the policy.
Example: consider the program statement

if x = 1 then y := a
              else y := b;

By the rules discussed earlier, information routes from 
x and a to y or from x and b to y, so if the policy says 
that, ≤a y ≤b y , and ≤x y  then the information routing 
is secure. But if ≤a y only when some other variable z 
=  1,  the  compiler-based  mechanism  must  determine 
whether  z =  1 before  certifying  the  statement. 
Typically, this is infeasible. Hence, the compiler-based 
mechanism  would  not  certify  the  statement.  The 
mechanisms described here follow those developed by 
denning [4].

4.1. Declarations

For our discussion, we assume that the allowed routing 
is supplied to the checking mechanisms through some 
external means, such as from a file. The specifications 
of allowed routing involve security classes of language 
constructs.  The  program involves  variables,  so  some 
language  construct  must  relate  variables  to  security 
classes. One way is to assign each variable to exactly 
one security class. We opt for a more liberal approach, 
in  which  the  language  constructs  specify  the  set  of 
classes  from  which  information  may  route  into  the 
variable. For example x: integer class { A, B } states 
that x is an integer variable and that data from security 
classes A and B may route into x. Note that the classes 
are statically,  not dynamically,  assigned. Viewing the 
security classes  as  a lattice,  this  means  that  x's  class 
must be at least the least upper bound of classes A and 
B that is, ≤lub{A, B}  x.

Two distinguished classes, Low and High, represent 
the  greatest  lower  bound  and  least  upper  bound, 
respectively,  of  the lattice.  All  constants are  of  class 
Low. Information  can  be  passed  into  or  out  of  a 
procedure through parameters. We classify parameters 
as input parameters (through which data is passed into 
the procedure),  output parameters (through which data 
is  passed  out  of  the  procedure),  and  input/output 
parameters (through which data is passed into and out 
of  the  procedure).  Consider  the  following  program 
which is the same as the program in the example in [5]. 

(* input parameters are named is; output   parameters, os; *)
(* and input/output parameters, ios, with s a subscript *)

proc something(i1, ..., ik; var o1, ..., om, io1, ..., ion);
        var l1, ..., lj;  (* local variables *)
        begin
             S;    / * body of procedure *)
         end;

The class of an input parameter is simply the class 
of the actual argument is: type class { is }, let r1, ..., rp be 
the set of input and input/output variables from which 
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information  routing  to  the  output  variable  os. The 
declaration for the type must capture this os: type class 
{r1, ..., rp}.

We  implicitly  assume  that  any  output-only 
parameter  is  initialized  in  the  procedure.  The 
input/output  parameters  are  like  output  parameters, 
except  that  the  initial  value  (as  input)  affects  the 
allowed security classes. Again, let r1, ..., rp be defined 
as above. Then ios: type class {r1, ..., rp, io1, ..., iok }. 

Example: consider  the  following  procedure  for 
adding two numbers.

proc sum(x: int class { x };
           var out: int class { x, out });

                            begin
                                 out := out + x;
                            end;

Here,  we  require  that  ≤x out and  out ≤ out (the 
latter holding because ≤ is reflexive). The declarations 
presented  so  far  deal  only with  basic  types,  such  as 
integers,  characters,  floating  point  numbers,  and  so 
forth.  Nonscalar  types,  such  as  arrays,  records 
(structures),  and variant records (unions) also contain 
information. The rules for information routing classes 
for these data types are built on the scalar types.

Consider the array a: array 1 .. 100 of int; first, look 
at  information  routing out  of  an element  a[i] of  the 
array.  In this case, information routing from  a[i]  and 
from i, the latter by virtue of the index indicating which 
element  of  the  array to use.  Information routing into 
a[i] affect only the value in a[i], and so do not affect 
the information in i. Thus, for information routing from 

a[i], the class involved is lub{  a[i] , i  } ; for information 

routing into a[i], the class involved is a[i] .

5. Program Statements

A program consists of several types of statements some 
of  them  typically  are  conditional  statement,  Goto 
statement  and  procedure  calls.  We  use  the  same 
statements for our compiler based approach.

5.1. Conditional Statements

A conditional statement has the form

                       if f(x1, ..., xn) then
                           S1;
                      else
                          S2;
                     end;

where  x1, …,  xn are variables and  f is some (boolean) 
function  of  those  variables.  Either  S1 or  S2 may  be 
executed, depending on the value of f, so both must be 
secure. As discussed earlier, the selection of either S1 or 
S2 imparts information about the values of the variables 
x1,  ...,  xn, so information  must  be able  to route from 
those variables to any targets of assignments in S1 and 
S2. This is possible if and only if the lowest class of the 

targets  dominates  the  highest  class  of  the  variables 
x1,  ...,  xn.  Thus,  the  requirements  for  the  information 
routing to be secure are:

• S1 secure
• S2 secure

• lub{ 1x ,  ...,  nx }  ≤ glb{ y  |  y is  the  target  of  an 
assignment in S1 and S2 }

As  a  degenerate  case,  if  statement  S2 is  empty,  it  is 
trivially secure and has no assignments.
Example: consider the statements
                     if x + y < z then
                          a := b;
                     else
                          d := b * c - x;
                      end;

Then the requirements for the information routing to 
be secure are ≤ b  a  for  S1 and lub{ b, c, x } ≤  d for  S2. 
But  the  statement  that  is  executed  depends  on  the 
values of  x,  y,  and  z.  Hence,  information also routes 
from  x,  y, and  z to  d and  a.  So, the requirements are 
lub{ y, z } ≤   x , b ≤  a, and lub{   x, y, z } ≤  glb{ a, d }.

5.2. Goto Statements

A  goto statement  contains  no  assignments,  so  no 
explicit routing of information occurs. Implicit routing 
may occur; analysis detects these routing.
Definition 4: a basic block is a sequence of statements 
in  a  program that  has  one  entry  point  and  one  exit 
point. 
Example:  consider the following code fragment  from 
[5] adopted for our method.

       proc transmatrix (x: array[1..10] [1..10] of  int  
class{x})

var y: array [1..10][1..10]of int class{y}};
var i , j : int class {tmp}
begin

i : =1
{b1}
12: if i>10             goto  17
{b2}
j=1;  
{b3}
14:  if j>10  then   goto 16; 
{b4}
y[j][i]= x[i][j]; 
{b5}
j:=j+1; 
goto  14;
16:i:=i+1;
{b6} 
goto  12;
17:  
{b7}

    end;

There are seven basic blocks, labeled 1b through 7b and 

separated by lines. The second and fourth blocks gave 
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two ways to arrive at the entry either from a jump to 
the label or from the previous line. They also have two 
ways to exit either by the branch or by falling through 
to  the  next  line.  The  5th block  has  three  lines  and 
always  ends with a branch.  The sixth block has  two 
lines and can be entered either from a jump to the label 
or  from the  previous  line.  The  last  block  is  always 
entered by a jump.

Control within a block routing from the first line to 
the  last.  Analyzing  the  routing  of  control  within  a 
program is therefore equivalent to analyzing the routing 
of control among the program’s basic blocks. Figure 1 
shows the routing of control among the basic blocks of 
the body of the procedure Transmatrix.

The  basic  blocks  are  labeled  1b through  7b .The 

conditions under which branches are taken are shown 
over the edges corresponding to the branches.

4b

2b

6b

7b

3b

5b

1b
≤j n

≤i n

>j n

≤j n

Figure 1. The control routing graph of the procedure transmatrix. 

When a basic  block has  two exit  paths,  the block 
reveals information implicitly by the path along which 
control routing. When these paths converge later in the 
program,  the  (implicit)  information  routing  derived 
from the exit path from the basic block becomes either 
explicit (through an assignment) or irrelevant.  Hence, 
the  class  of  the  expression  that  causes  a  particular 
execution  path  to  be  selected  affects  the  required 
classes of the blocks along the path up to the block at 
which the divergent paths converge.
Definition  5:  an  immediate  forward  dominator  of  a 
basic block  b (written IFD( b ))  is  the first  block that 
lies on all paths of execution that pass through  b  for 
example in  the  procedure  transmatrix,  the  immediate 
forward  dominators  of  each  block  are 

( ) , ( ) , ( ) ( )7 51 2 2 3 4 6 4= = = = =iFD b b IFD b b IFD b b b IFD b b ,  and 

( )6 2=IFD b b .  Computing  the  information  routing 

requirement for the set of blocks along the path is now 
simply applying the logic for the conditional statement. 
Each block along the path is taken because of the value 
of  an  expression.  Information  routing  from  the 
variables  of  the  expression  into  the  set  of  variables 

assigned in the blocks. Let iB be the set of blocks along 

an  execution  path  from b1 to  IFD(bi),  but  excluding 

these endpoints.  Let  1
,L inX Xi be the set of variables 

in  the  expression  that  selects  the  execution  path 

containing the blocks  in jB .  The requirements  for  the 

program’s  information  routing  to  be  secure  are:  all 

statements in each basic block secure 1
, ... }{ i inlub x x {y | 

y is the target of an assignment in iB }.

Example:  consider  the  body  of  the  procedure 
transmatrix. We first state requirements for information 
routing within each basic block:
         1b : low i   secure ≤ ⇒

         1b : low j  secure ≤ ⇒

         
{ [ ][ ], , } [ ][ ]

{ [ ][ ], , } [ ][ ]

≤ ≤ ≤ ≤

⇒ ≤

b : lub x i j i j y y j i ; j j5

lub x i j i j y j i

         { , }b : lub low i i secure6 ≤ ⇒

The  requirement  for  the  statements  in  each  basic 
block to be secure is:

for 1, ,i n= L and  1, , lub { [ ][ ], , } [ ][ ]= ≤Lj n X i j i j y j i

.

By the declarations: this is true when lub{ , } ≤X i y . 

In  this  procedure,  { , , , } { }5 52 3 4 6 4= =B b b b b and B b .  Thus, 

in 2B ,  statements  assign  values  to , , [ ][ ]yi j and j i .  In

4B ,  statements  assign  values  to [ ][ ]j and y j i .  The 

expression  controlling  which  basic  blocks  in  2B are 

executed  is  10i ≤ ;  the  expression  controlling  which 

basic  blocks  in  4B ,  are  executed  is  10j ≤ .  Secure 

information routing requires that i ≤ glb {i,  y} and i ≤ 
glb {i, y}, or i ≤ y  combining these requirements, the 
requirement for the body of the procedure to be secure 

with respect to information routing is { }lub ,X i Y≤ .

5.3. Procedure Calls

A procedure call has the form

        proc procname(i1, ..., im :  int; var o1, ..., on : int);
        begin
            S;
        end;

where each of the ij's is an input parameter and each of 
the  oj's  is an input/output parameter.  The information 
routing  in  the  body  S must  be  secure.  As  discussed 
earlier, information routing relationships may also exist 
between  the  input  parameters  and  the  output 
parameters. If so, these relationships are necessary for 
S to be secure. The actual parameters (those variables 
supplied in the call to the procedure) must also satisfy 
these relationships for the call to be secure. Let x1, ...,  
xm and  y1,  ...,  yn be the  actual  input  and input/output 
parameters,  respectively.  The  requirements  for  the 
information routing to be secure are S secure
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For j = 1, ..., m and k = 1, ..., n, if ij ≤  ok then xj ≤ yk

For j = 1, ..., n and k = 1, ..., n, if oj ≤ ok then yj ≤ yk

Example: consider  the  procedure  transmatrix from 
section  5.2.  As  we  showed there,  the  body  of  the 
procedure is secure with respect to information routing 

when lub{ x,, tmp  } ≤ y. This indicates that the formal 

parameters  x and  y have  the  information  routing 
relationship x, ≤ y . Now, suppose a program contains 
the call transmatrix (a, b). The second condition asserts 
that  this  call  is  secure  with  respect  to  information 
routing if and only if a .

6. Conclusion

This  paper  focus  on  the  language  based  information 
routing  security.  Two  mechanisms  are  put  forward 
complier  based  and  execution  based  mechanism  to 
specify  and  enforce  security  policies  with  C++ 
language. We have demonstrated that it is possible to 
implement  security  policy  using  security-typed 
languages  through  examples  and  C  typed  codes. 
However,  further investigation of the language based 
support for policy enforcement is necessary before they 
can fulfill their considerable promise of enabling more 
secure  routing.  For  example  certifying  compilers  are 
needed for security-typed languages, because compilers 
for source languages (such as Jif) are too complex to be 
part  of the trusted computing base.  However, current 
security-type  systems  are  not  expressive  enough  to 
support a security-typed low-level target language.

From our  finding  the  results  demonstrate  that  the 
idea of language based is easy to comprehend but much 
more difficult to implement efficiently. Here are some 
obstacles that we have learned from the paper: 

• How  to  encode  the  formal  language? Trivial 
encoding  of  policy  properties  programs  is  very 
large. 

• How to check the policy? This is not an easy task 
if you want your policy to be terse and the checker 
to  be  small,  fast,  and mostly-independent  of  the 
actual safety policy that is being enforced. 

• How to relate the policy with the program? It is of 
no use to validate the policy if we cannot ensure 
that it says something about the program at hand. 

Although  many  type  secure  languages  exists 
fundamentally  our  (C++)  based  codes  makes  it 
impossible to commit broad classes of errors to policy 
enforcement.  Our  work in  C++ also uncovered three 
central  deficiencies.  First  aspects  of  information  and 
enforce security policies with C++ language. We have 
demonstrated that it is possible to implement security 
policy  using  security-typed  languages  through 
examples.  Given  the  value  of  one  variable,  entropy 
measures  the  amount  of  information  that  one  can 
deduce about a second variable. Second the routing can 
be explicit,  as in the assignment  of  the value of one 

variable to another, or implicit, as in the antecedent of a 
conditional  statement  depending  on  the  conditional 
expression. Third traditionally,  models of information 
routing policies  form lattices.  Should the models  not 
form  lattices,  they  can  be  embedded  in  lattice 
structures.  Hence,  analysis  of  information  routing 
assumes a lattice model.

Our  approach  through  examples  and  definitions 
addresses incongruity insecurity by allowing flexibility 
to environment applied as security requirements are as 
diverse  as  the  environments  in  which  systems  exist, 
support  for  flexible  policy-  defined  security  is 
desirable.  Definitions  presented  elaborate  how 
command sequence in C language causes information 
routing  from  point  x to  y. However  conditional 
statements  has  been  used,  (boolean)  and  variables 
function for execution 

Even in the face of the considerable challenges we 
encountered  in  this  project,  we  are  heartened  by the 
experience. To be sure, the tools and practice of using 
C++  codes,  and  in  larger  sense  security-typed 
languages, must mature before their promise is met. We 
see  this  work as  another  step in  that  maturation and 
take  this  work  as  another  milestone  in  that 
achievement.

References

[1] Askarov  L.  and  Sabelfeld  A.,  “Secure 
Implementation  of  Cryptographic  Protocols:  A 
Case Study of Mutual Distrust,”  in Proceedings 
of the 10th European Symposium on Research in 
Computer Security ESORICS ’05, pp. 1-5, Italy, 
2005. 

[2] Bell  D.  and  La  Padula  L.,  Secure  Computer 
Systems, Mathematical  Foundations  Technical  
Report, 1973.

[3] Chong S. and Myers A., “Decentralized 
Robustness,” in Proceedings of the 19th IEEE 
Computer Security Foundations Workshop, pp. 
321-334, USA, 2006.

[4] Denning  D.,  Cryptography  and  Data  Security,  
Reading, MA, 1982.

[5] Goguen  J.  and  Meseguer  J.,  “Security  Policies 
and  Security  Models,”  in  Proceedings  of IEEE 
Symposium on Security and Privacy, pp.  11-20, 
USA, 1982.

[6] Hicks B., King D., McDaniel P., and Hicks M., 
“Trusted Declassification: High-Level Policy for 
a Security-Typed Language,” in Proceedings of  
Workshop  on  Programming  Languages  and 
Analysis for Security, pp. 65-74, Canada, 2006. 

[7] Kent S. and Atkinson R., “Security Architecture 
for  the  Internet  Protocol,”  Internet  Engineering 
Task Force Journal, vol. 37, no. 1, pp. 1, 1998.

[8] Mantel H. and Sabelfeld A., “A 
Unifying Approach to the Security of 
Distributed and Multi Threaded 



 98                                                            The International Arab Journal of Information Technology, Vol. 6, No. 1, January 
2009                                                               

Programs,” Journal of Computer Security, vol. 
11, no. 4, pp. 615-676, 2003.

[9] Myers C., “Mostly-static Decentralized 
Information Flow Control,” Technical Report  
MIT/LCS/TR-783, 1999.

[10] Myers C., Nystrom N., Zheng L., and Zdancewic 
S., “Jif: Java + Information Flow,” 
www.cs.cornell.edu/jif, July 2001.

[11] Montgomery D. and Murphy S., “Towards Secure 
Routing  Infrastructures,”  IEEE  Security  & 
Privacy, vol. 4, no. 5, pp 84-87, 2006.

[12] Pottier F. and Simonet V., “Information Flow 
Inference for ML,” in Proceedings of Principles 
of Programming Languages (POPL), pp. 319-
330, USA, 2002.

[13] Sabelfeld  A.  and  Myers  A.,  “Language  Based 
Information  Flow  Security,”  IEEE  Journal  on 
Selected Areas in Communications, vol. 21, no. 1, 
pp. 5-19, 2003. 

[14] Simonet V., “FlowCaml in a Nutshell in Hutton,” 
in  Proceedings  of  the  First  APPSEM-II  
Workshop, pp. 152-165, UK, 2003.

[15] The Internet Engineering Task Force, www.ietf. 
org/html.charters/rpsec-charter.httm, 2006

[16] Volpano D. and Smith G., “Probabilistic 
Noninterference in a Concurrent Language,” 
Journal of Computer Security, vol. 7, no. 2, pp. 
231-253, 1999.

[17] Volpano D., Smith G., and Irvine C., “A Sound 
Type System for Secure Flow Analysis,” Journal  
of Computer Security, vol. 4, no. 3, pp. 167-187, 
1996. 

[18] Ylonen  T.,  “SSH:  Secure  Login  Connections 
Over the Internet,” in Proceedings of 6th USENIX 
UNIX  Security  Symposium,  pp.  37-42,  Korea, 
1996.

[19] Zdancewic S., “A Type System for Robust 
Declassification,” in Proceedings of the  
Nineteenth Conference on the Mathematical  
Foundations of Programming Semantics, pp. 47-
66, Berlin, 2003.

George Oreku received his Master in computer 
science from University of Odessa Polytechnic in 2002. 

He is currently a PhD candidate at the Department of 
Computer Science and Engineering, Harbin Institute of 
Technology, Harbin, China.

Li Jianzhong the director of the Department of 
Computer Science and Engineering at the Harbin 

Institute of technology, China. 
Also he is a part-time professor in 
FuDan University and RenMin 
University of China. 

Fredrick Mtenzi is a supervisor of 
postgraduate students, lecturing systems security and 
cryptography, security and forensics, security and 

cryptography advanced research, and 
proposal writing at school of 
Computing Dublin Institute of 
Technology, Ireland. 


	1. Introduction
	1.1. Related Work
	1.2. Security Challenges, Requirements, and Goals

	2. Information Routing Policy
	3. Execution Based Mechanism
	3.1.	Variables Classes

	4. Compiler Based Mechanism
	4.1. Declarations

	5. Program Statements
	Conditional Statements
	Goto Statements

	6. Conclusion
	[15] The Internet Engineering Task Force, www.ietf. org/html.charters/rpsec-charter.httm, 2006


