
The International Arab Journal of Information Technology, Vol. 6, No. 1, January 2009 99

New Approach for Conception and
Implementation of Object Oriented Expert

 System Using UML
Amel Touzi and Mohamed Ben Messaoud

 National School of Engineer of Tunis, Tunisia

Abstract: Since conception is the primary part in the realization of a computer system and in order to help designers describe
their software, several languages and tools such the UML modelling language have been proposed in the literature. UML
knew an important success for the conception of object oriented systems. In this paper, we propose a new approach of
conception and implementation of object oriented expert system based on the UML. For this we introduce our approach of
design of the object oriented expert system based on UML, then we define an extension of the CLIPS, called VCLIPS_UML, in
order to support UML. VCLIPS_UML brings two main improvements to CLIPS. The first improvement permits an easy access
and modification of the CLIPS knowledge base. The user introduces his knowledge base described with the UML class and the
object diagram; VCLIPS_UML gives the corresponding script directly. The second improvement concerns the ease of its
utilization by making the syntactic and semantics aspects of the CLIPS programming language more transparent. The
implementation of VCLIPS_UML is carried out in a way to make it expandable and portable.

Keywords: Expert system, expert system shell, UML, object oriented programming and GUI.

Received March 16, 2007; accepted June 15, 2007

1. Introduction

Today, when we wishes to achieve a software
system, it is necessary to represent, to specify, to
construct and to document this system beforehand
with the help of an adapted language admitted by the
software specialists community. With the growing
success of the object oriented programming,
numerous semi-formal analyses and conception
methods have been dedicated to this new paradigm.
Today, the Unified Modeling Language (UML) is the
most used language; it tends to become a standard
[17]. It permits to describe the plans of construction
of the software system, by integrating all the
conceptual elements, all functions and all databases,
all classes and all software components. It also
permits to validate these plans before beginning the
programming and to achieve the system [6, 17, 18].

Effectively, the success of the object paradigm
[16] led to the appearance on the market of several
Object Oriented Systems (OOS) in various fields, of
different programming languages, of various ES [14,
15] and ES Shell (ESS) of built ES using this
paradigm. As example of shell, we can mention
CLIPS [9] and JESS [7, 8]. The interest of this ESS is
the use of the object concepts [7, 8, 9, 14, 15, 16] in
the definition of the Knowledge Base (KB) of the
generated ES.

In spite of the big success of UML and its use in
varied domains [3, 19, 21], a theoretical study
permitted us to raise the following points:

• Few work tried to use UML in the domain of the
AI or the ES. We mention like example: berardi in
[4, 5] which proposed a method of reasoning on
UML class diagram and bauer in [2] which used
UML for the system multi-agent.

• The mode of hierarchical representation, offered
by Object Oriented Expert System (OOES) Shells
(OOESS) is too complex to assimilate particularly
for non initiated users. Defining of the KB
described with the OO concept is not an easy task.
Besides, to create an ES, the expert must master
the language of definition that varies from a
generator to other. To remedy this problem,
several researchers proposed visual versions for
this ESS. We mention like example JessGUI [13],
JavaDON [20] or visual JESS [11] for JESS.

To our knowledge, an approach of design of the ES
using UML was not still defined and there is not yet
OOESS which support language UML. Hence
following questions are worth asking:

• Why don’t we define the ESS offering an interface
that makes the syntactic and semantic aspects of
the ESS specific language transparent?

100 The International Arab Journal of Information Technology,

• Why don’t we use, as the case of the different
OOS, the UML language for the design of the
OOES?

• Why don’t we allow the user to describe his KB
using UML language and to have ESS support this
language?

In this paper, we present our contribution to answer
to these questions: we introduce our approach of
design of the OOES based on UML, and then we
define an extension of the CLIPS, called
VCLIPS_UML, in order to support the UML. This
ESS brings two main improvements to CLIPS:

• To support the UML class and the object
diagrams: the designer of system describes his KB
with a UML class diagram; VCLIPS_UML
generates the corresponding script automatically.

• To make it easily usable even by non initiated
users. It’s possible by making transparent the
syntactic and semantic aspects of the CLIPS
programming language.

Besides this introduction, this paper is organized in
six sections. In section 2, we present the UML
language and CLIPS shell. Section 3 presents
problems and contributions. The design of the OOES
with UML is presented in section 4. The extension of
CLIPS, called VCLIPS_UML that we propose is
described in section 5. Section 6 present the main
choices done in the implementation of
VCLIPS_UML while putting the accent on the
extensibility. The balance of this work and its future
perspectives are discussed in section 7.

2. Background

2.1. The UML Language

The UML language is a very rich graphic and textual
language. UML Notation is divided into various
types of diagrams, which describe complementary
but not disjoined aspects of the modeled system. To
instance we mention the following diagrams: (1)
Case diagrams that describe the system functionality
from the user's point of view, (2) class diagrams that
describe the structure and substructure of the system
using objects, attributes, operations, and associations.
(3) object diagrams that illustrate the class diagram.
In this paper, we will particularly describe the class
diagram. For more details on the other diagrams,
refer to [3, 6, 17, 18].

The class diagram in Figure 1 models the static
structure of a system, in term of classes and relations
between these classes. It is described by a collection
of elements modelling structure by the system
making abstraction of the dynamic and temporal
aspects. It is the essential axis of the modelling object
as well as the richest notation of all UML diagrams.

Figure 1. Class diagram.

A class is characterized by its name, the list of
its attributes and the list of its operations
(analogous to the methods). UML defines three
levels of visibility of a private and protected public
element we prefixed the element respectively by
the symbol +, - #. UML defines four main types of
relation between classes: (1) the association
(denoted by), (2) the aggregation (denoted by

), (3) the composition (denoted by)
and (4) the generalization (denoted by).
We can specialize a super-class, by adding to the
subclass of the attributes and operations It is said
that the super-class is a generalization of the
subclass.

The big success of UML is due to several
points: it is open and its visual aspect facilitates the
comparison and the assessment of solutions. It
permits to master the technical complexity thanks
to the formalism and to the abstraction provided by
the UML concepts.

2.2. The ESS CLIPS

To decrease costs of their development, we often
resort to the already ESS developed [10, 12]. Shells
essentially include an inference engine, a language of
expression of knowledge and structures and
conventions of representation [10, 12].

Recently, with the success of concepts of the
object paradigm [16], several ESS adopted this
paradigm OOESS as JESS [7, 8] and CLIPS [9] by
adding a layer COOL which supports the object
concept. Unfortunately, these ESS offers languages
that are often complex and difficult to use.

In this paper, we are interested in the shell CLIPS
of which we propose an extension. Before presenting
this extension, we will show the principal
characteristics of CLIPS and will show the
difficulties encountered in its use and specially at the
COOL level of layer. The CLIPS language permits to
describe three types of facts:

• Ordered facts: they permit to represent the simple
knowledge using the pattern concept.

• Structured facts: they permit to represent the
structured knowledge. They are represented by
templates.

• Layer CLIPS Object Oriented Language (COOL):
it permits to represent the object oriented concept.

The COOL layer is a sort of hierarchical templates
with multiple inheritances; it includes the object
oriented concepts as: encapsulation, dynamic

Class 1

Class 2 Class 3 Class 1

New Approach for Conception and Implementation of Object Oriented Expert System Using UML 101

generation of the instance, inheritance of the values
and procedures in a hierarchy of objects,
communication by message and polymorphism. A
class of objects is defined by: a name, her parents
(super-classes), her Sons (the sub-classes and
instances), a list of attributes “slots” or property) with
their description “facets” and a list of procedures
(methods). All the classes programmed by the
programmer must inherit directly or indirectly from
the abstract class USER, a control on the cyclic
inheritance is launched. A class that is already
instanced or inherited cannot be modified.

Clips use the following syntax for the definition of
a class:

 (defclass <name> [<comment>] (is-a <superclass-
name>+) [<role>] [<pattern-match-role>] <slot>*
<handler-documentation>*)
It use the following syntax for the definition of an
object of a class:
 (make-instance <instance-definition>) (active-make-
instance <instance-definition>) <instance-definition>
::= [<instance-name-expression>] of <class-name-
expression> <slot-override>* <slot-override> ::=
(<slot-name-expression> <expression>*)

Example:

• To create the class person one described by the
attributes name and age. In language CLIPS it will
be written as follows:

(defclass PERSON (is-a USER) (role concrete)
(pattern-match reactive) (slot Name (type
STRING) (default "Salah") (storage shared)
(propagation inherit) (visibility public)) (slot Age
(type INTEGER) (default 25) (create-accessor
read-write) (access read-write) (storage shared)
(propagation inherit) (source composite)
(visibility public) (pattern-match reactive)))

• To create an instance of this class, the PERSON
having the name “Sonia” and Age “20”. In
language CLIPS it will be written like follows:
(make-instance pers-1 of PERSON (Name
“Sonia”) (Age 20))

Conclusion:

Through this example, we can show the difficulties
encountered in its use and especially at the COOL
level of layer. This complexity of syntax of the
CLIPS language requires, from the expert, a
significant effort in order to write correctly its KB.
Moreover, the definition of the KB is done starting
from the line of command. The concepts of the object
paradigm, notably the class concepts, of inheritance
and polymorphism, used by CLIPS, are not discerned
explicitly by the expert especially as these concepts
are not always well assimilated. Thus, CLIPS make
the stains of the expert even more difficult. Notice

that the CLIPS language includes about fifty words
spare.

3. Problems and Contributions

The main strength of the ESS is the utilization of
concepts objects [11, 12], which is very close to the
perception of experts and users. This facilitated
significantly the writing of the KB. Languages of
definition of this KB use the concept of frame [11].
This fashion of representation, of hierarchical nature,
is very complex to understand notably by users no
insiders. Besides, the expert must master the
language of definition that varies from a generator to
the other. Indeed, the expert who wants to employ
CLIPS or JESS must master their proper language.

In addition the designers of OOS are accustomed
to working with the UML. So, the question which
arises then: why not introduce this concept in ESS?
Certainly, for an OOES designer, the ideal is to have
an ESS which supports OO concepts and UML
language.

For all these reasons, it seems natural that an
extension of CLIPS which makes its language
relatively transparent can only make it easily
exploitable particularly by no experts and support
UML.

4. New Approach for Designing OOES
Using UML

As in any computer application, we can define the
various diagrams of UML for an ES. In this section,
we limit to the UML class and the object diagram, to
model the KB of an ES, which allows modelling the
static view of an ES.

4.1. Basic Concepts

An ES is called OOES if its KB can be described
with the object concepts. The KB of ES is made up of
a Facts Base (FB), containing all the known facts of
the system relating to a particular problem actually
treated and of Rules Base (RB) made up of a list of
rules containing the know-how of the expert
expressed as rules.

We present in Table 1 the mapping between KB of
ES and UML.

 Table 1. Mapping between KB of ES and UML.

Knowledge
Base of ES

UML

FB Object Diagram
RB Class Diagram

Example:

Our goal is to conceive a KB for a classification of
vehicles. The class diagram relative to the description
is present in Figure 2.

102 The International Arab Journal of Information Technology,

Figure 2. Class diagram for a classification of vehicles.

4.2. Correspondence Between UML Diagram
and an ESS

As we presented above, to study the correspondence
between UML and an ESS returns to study the
correspondence between the UML class and the
object diagrams, presented the KB and FB of ES
respectively, and an ESS. To study this
correspondence, we chose CLIPS like ESS. Our
choice is justified by several reasons. It is free
software. It supports the approach object in its mode
of reasoning and in the representation of knowledge.
This homogeneity makes it more interactive and
extensible than other similar generators. The mapping
between UML class diagram and CLIPS language is
represented in Table 2. The mapping between UML
object diagram and CLIPS language is represented in
Table 3.

Table 2. Correspondence between UML class diagram and clips.

UML Class Diagram Class of CLIPS
Class Defclass
Attributes
 Name
 Type attributes
 Right of access

Slot
 Name
 Type
 Visibility

Simple inheritance
Propag : inherit|no-inherit
(is-a name of class)

Multiple inheritance
Propag: inherit|no-inherit
(is-a name of class1 name of
class2)

Methodes Signatures
(Void name of method (int x))

 Right of access

Defmessage-handler
Signatures (name
The value of the return of a
method is the result of the
assessment of the last action
in the method.)
Primary, after, around

Table 3. Correspondence between UML object diagram and
CLIPS.

UML Object Diagram Object in CLIPS

Object Objet : make instance

Attributes
 Name
 Type of attributs
 Right of access

Slot
 Name
 Type
 Visibility

Simple inheritance
Propag : inherit|no-inherit
(is-a name of class)

Multiple inheritance
Propag: inherit|no-inherit
(is-a name of class1 name of class2)

Example:

• Either to create the class “PERSON” described by:
“Name” (string), “Age” (integer) , Methods
“write-Name (vname: String) ”and “write-Age
(vage: Integer)”. The class “TEACHER” is
described by “Salary” (integer), Method
“calculate-Salary (vsalary: integer)” inherits the
class ”PERSON”.

Modelling respectively in UML and in CLIPS will
be as follows:

In UML:

In CLIPS:

(defclass PERSON (is-a USER) (slot Name (type
STRING) (default "Salah") (storage shared)
(propagation inherit) (visibility public)) (slot Age
(type INTEGER) (default 25) (create-accessor read-
write) (access read-write) (storage shared) (propagation
inherit) (source composite) (visibility
public) (pattern-match reactive)))

(defclass TEACHER (is-a PERSON) (role concrete)
(pattern-match reactive) (slot Salary (type
INTEGER) (default 500) (create-accessor read)
(access read-only) (storage local) (propagation no-
inherit) (source exclusuive) (visibility private)
(pattern-match reactive)))

• Either to create an instance of class TEACHER
having the name “Ali”, age “27” and salary 500.
modeling respectively in UML and CLIPS will be
as follows:

Vehicle
Speed: integer
Color: integer

Turnleft(): void
Turnright(): void

stop()

Truck
licence plate:

string

Ringbell():
void

Surrey

Size :integer

GetSizeof
engine() :void

Car
quantity gas:

integer

Roll():void

Motor vehicle

Weight:integer

Light tonnage():void

Horse drawn vehicle

Model :integer

New engine():void

Wagon

Number of
doors: intget
Number of

doors(): void

PERSON
- Name: STRING
- Age :INTEGER

+write-Name() :vnom :STRING

+ write -Age() :vage :INTEGER

TEACHER
- Salary :INTEGER

+ calculate-salary() :vsalary :
INTEGER

New Approach for Conception and Implementation of Object Oriented Expert System Using UML 103

In UML:

In CLIPS:

Make-instance teach-1 of ENSEIGNANT (Name
"Ali") (Age 27) (Salary 500))

Conclusion:

The designer who is accustomed use UML must
dominate CLIPS language, particularly the layer
COOL, and how CLIPS manages its classes. It is not
an easy or obvious task. In the following part, we
propose our VCLIPS_UML extension.

5. Presentation of VCLIPS-UML

VCLIPS is an extension of CLIPS, it’s developed in
Java [1]. VCLIPS_UML offers a convivial
interfacing, which on the one hand present explicitly
the object concepts and on the other hand encapsulate
the CLIPS language.

The principle of VCLIPS_UML is to allow an
expert to describe the KB of the ES using the
diagrams of classes and objects of UML and generate
automatically the corresponding scripts in accordance
with the language of CLIPS. The syntax of CLIPS
language must be transparent for the user.

.
5.1. Software VCLIPS_UML

VCLIPS_UML present to the expert a main screen
in Figure 3 similar to the standard usually used in
the Integrated Development Environment (IDE).
The main screen essentially includes two parts.
The left part is the navigator of KB basis
components (classes, objects, functions, rules). The
right part shows the corresponding script generated
automatically by CLIPS. The navigator of class’s
permits the selection of a component and the
manipulation of its elements. VCLIPS_UML
offers convivial and simple screens to define the
different components of its language such as the
facts in Figure 4, the templates in Figure 5, the
functions in Figure 6, and the rules in Figure 7. For
every step an automatic transformation in script
CLIPS is displayed.

Figure 3. Principal window of the application.

Figure 4. Data entry screen of a fact.

Figure 5. Data entry screen of a template.

Figure 6. Data entry screen of a function.

Pers-1: PERSON
Name= Ali
Age =27

Teach-1:TEACHER

Salary=500

104 The International Arab Journal of Information Technology,

Figure 7. Data entry screen of a rule.

5.2. From UML to CLIPS

VCLIPS_UML offers to the user the modelling of his
class with the UML notations in Figure 8 and its
translation in CLIPS language in Figure 9. We have
to note that, in Figure 8, the attributes Name, Age are
in blue since they are inherited of the related class
“PERSON”. The attributes that are defined in
addition, by CLIPS can have either the values given
by default by VCLIPS_UML or manually introduced
by a programmer who dominates the language CLIPS
in Figure 10. To define an object of the class, the user
must use the screen of the Figure 11.

Figure 8. Data entry screen of a class (UML notation).

Figure 9. Data entry screen of a class (CLIPS script and UML).

Figure 10. Screen of personalization of an attribute.

Figure 11. Data entry screen of an object.

6. Implementation of VCLIPS_UML

VCLIPS_UML is developed in Java [1]. We give in
this section, the main choices done in the
implementation of VCLIPS_UML.

For every element to manage a java class has been
conceived, which contain methods and the necessary
attributes to the management of this entity. Table 4
presents an illustration of the correspondence
between the CLIPS’s entities and classes conceived
in this application:

Table 4. Correspondence between the CLIPS’s entities and the
classes VCLIPS_UML under JAVA.

CLIPS’s Entities
Definite CLIPS Classes for

VCLIPS_UML Under JAVA

Template Template

Fact Template Instance

Slot Attribute

Rule Rule

Function Function

To facilitate the extension and the portability of
VCLIPS_UML the implementation has been
developed in six packages:

• Package clips manages the interaction with the
user.

• The clips.kb package contains classes that
implement the KB.

New Approach for Conception and Implementation of Object Oriented Expert System Using UML 105

• The clips.resouces package contains the requested
resources files for the application under study.

• The clips.images package contains pictures used by
the application.

• The clips.base package contains the utilitarian of
basis of the application.

• The clips.resouces package contains the syntactic
details of the CLIPS language.

It is the only package that it is necessary to modify to
adapt VCLIPS_UML to another OOESS. This
modification consists in replacing a file of syntax by
another. This approach permits a complete extensibility
of VCLIPS_UML.

7. Conclusion

In this paper, we proposed a new approach for
conception and implementation of OOES based on
the UML language. For this, we showed the
possibility of modeling a KB using UML class and
object diagrams and then we proposed an OOESS,
called VCLIPS_UML, supporting UML.
VCLIPS_UML is an extension of CLIPS.

VCLIPS_UML brings two principal improvements
to CLIPS. The first improvement makes the concepts
of the object paradigm explicit and it allows the
possibility of describe the KB with the UML class
and the object diagram, VCLIPS_UML generates the
corresponding script automatically. The second
improvement encapsulates the syntactic details of the
language CLIPS which is relatively complex since it
is based on the hierarchical structure of the frame.
The implementation of VCLIPS_UML is made so
that it can be adapted to any other EES making thus
easy its extensibility and its portability on other flat
shapes. A first version is operational under windows.
To our knowledge such a tool was not proposed yet.

As perspectives, we essentially mention to
define a tool for building an ES which makes it
possible to represent all the UML diagrams when
designing ES, like the rational rose tool for the OOS.

References

[1] Arnold K., Gosling J., and Holmes D., The
Java Programming Language, Addison
Wesley, New York, 2005.

[2] Bauer B. and Odell J., “UML 2.0 and Agents:
How to Build Agent-Based Systems with the
New UML Standard,” Computer Journal of
Engineering Applications of Artificial
Intelligence, vol. 18, no. 2, pp. 141-157, 2005.

[3] Bennett S., McRobb S., and Farmer R., Object-
oriented Systems Analysis and Design Using
UML, McGraw Hill, New York, 2005.

[4] Berardi D., “Using Description Logics to
Reason on UML Class Diagrams,” in

Proceedings of the KI’2002Workshop on
Applications of Description Logics, CEUR
Electronicworkshop Proceedings, pp. 107-118,
2002.

[5] Berardi D., Calvanese D., and Giacomo G.,
“Reasoning on UML Class Diagrams,”
Artificial Intelligence, vol. 168, no. 1-2, pp. 70-
118, 2005.

[6] Dennis A., Haley W., and Tegarden. D.,
Systems Analysis and Design with UML, Wiley,
UK, 2004.

[7] Ernest J. and Friedman E., Jess: The Rule
Engine for the Javaplate form,”
http://herzberg .ca.sandia .gov/jess/, 2006.

[8] Friedman E., Jess in Action, Manning
Publications, California, 2006.

[9] Giarratano J., CLIPS Basic Programming
Guide, Version 6.22, http://www.ghg.net/clips /
download/documentation/ Basic Programming
guide.pdf, last visited June 15th 2004

[10] Giarratano J. and Gary R., Expert Systems
Principles and Practice, PWS Publishing, UK,
1993.

[11] Grissa A., Ounalli H., and Boulila A. “VISUAL
JESS: AN Expandable Visual Generator of
Oriented Object Expert System,” World
Enformatika Conference, pp.290-293, 2005.

[12] Jackson P., Introduction to Expert Systems,
McGraw-Hill, New York, 1999.

[13] Jovanovic´ J., Gasˇevic´ D., and Devedzˇic´ V.,
“A GUI for Jess,” Expert Systems with
Applications, vol. 26, no. 4, pp.625-637, 2004.

[14] Liao S., “Knowledge Management
Technologies and Applications Literature,
Review from 1995 to 2002,” Expert Systems
with Applications, vol. 25, no. 1, pp.155-164,
2003.

[15] Liao S., “Expert System Methodologies and
Applications: A Decade Review from 1995 to
2004,” Expert Systems with Applications,
vol. 28, no. 4, pp. 93-103, 2005.

[16] Meyer B., Object-oriented Software
Construction, Prentice Hall, New York, 1997.

[17] Oestereich B., Developing Software with UML
Object-Oriented Analysis and Design in
Practice, Addison-Wesley, New York, 1999.

[18] Rumbaugh J., Jacobson I., and Booch G., The
Unified Modeling Language Reference Manual,
Addison Wesley, UK, 2004.

[19] Song E., Yin S., and Ray I., Computer
Standards & Interfaces, Elsevier Science,
Holland, 2006.

[20] Tomic´ B., Jovanovic´ J., and Devedzˇic. V.,
“JavaDON: An Open Source Expert System
Shell”, Expert Systems with Applications,
vol. 31, no. 1, pp.595–606, 2006.

http://www.penrose-press.com/idd/PUB1569.card
http://www.ghg.net/clips

106 The International Arab Journal of Information Technology,

[21] Willard. B., “UML for Systems Engineering,”
Computer Standards & Interfaces, vol. 29, no.
1, pp. 69-81, 2006.

Amel Touzi received the diploma
of engineering in computer science
and PhD in computer science from
the Faculty of Sciences of Tunis,
Tunisia in 1989 and 1994,
respectively. Currently, she is an
assistant professor at the
Department of Technologies of

Information and Communications in the National
School of Engineering of Tunis.

Mohamed Ben Messaoud
received the BSc degree in
computer science from university
of science of Tunis in 2003, and
the Master degree in automatic and
signal processing from the
National school of Engineer of
Tunis in 2006. His research

interests include artificial intelligence, expert system,
and multiagent system and also in speech
processing computer-assisted learning, and
computational auditory scene analysis.

