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Abstract: Nonhomogeneous poisson process based software reliability growth models are generally classified into two 

groups. The first group contains models, which use the machine execution time or calendar time as a unit of fault 

detection/removal period. Such models are called continuous time models. The second group contains models, which use the 

number of test occasions/cases as a unit of fault detection period. Such models are called discrete time models, since the unit 

of software fault detection period is countable. A large number of models have been developed in the first group while there 

are fewer in the second group. Discrete time models in software reliability are important and a little effort has been made in 

this direction. In this paper, we develop two discrete time SRGMs using probability generating function for the software 

failure occurrence / fault detection phenomenon based on a NHPP namely, basic and extended models. The basic model 

exploits the fault detection/removal rate during the initial and final test cases. Whereas, the extended model incorporates fault 

generation and imperfect debugging with learning. Actual software reliability data have been used to demonstrate the 

proposed models. The results are fairly encouraging in terms of goodness-of-fit and predictive validity criteria due to 

applicability and flexibility of the proposed models as they can capture a wide class of reliability growth curves ranging from 

purely exponential to highly S-shaped. 
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1. Introduction 

Software reliability assessment is important to evaluate 

and predict the reliability and performance of software 

system. The models applicable to the assessment of 

software reliability are called Software Reliability 

Growth Models (SRGMs). An SRGM provides a 

mathematical relationship between time span of testing 

or using the software and the cumulative number of 

faults detected. It is used to assess the reliability of the 

software during testing and operational phases.  

An important class of SRGM that has been widely 

studied is NonHomogeneous Poisson Process (NHPP). 

It forms one of the main classes of the existing SRGM; 

due to it is mathematical tractability and wide 

applicability. NHPP models are useful in describing 

failure processes, providing trends such as reliability 

growth and fault-content. SRGM consider the 

debugging process as a counting process characterized 

by the mean value function of a NHPP. Software 

reliability can be estimated once the mean value 

function is determined. Model parameters are usually 

determined using either Maximum Likelihood 

Estimate (MLE) or least-square estimation methods [6, 

13, 18].  

NHPP based SRGM are generally classified into 

two groups [2, 6, 17]. The first group contains models, 

which use the execution time (i.e., CPU time) or 

calendar time. Such models are called continuous time 

models. The second group contains models, which use 

the number of test cases as a unit of fault detection 

period. Such models are called discrete time models, 

since the unit of software fault detection period is 

countable. A test case can be a single computer test run 

executed in an hour, day, week or even month. 

Therefore, it includes the computer test run and length 

of time spent to visually inspect the software source 

code [2, 6]. A large number of models have been 

developed in the first group while fewer are there in 

the second group due to the difficulties in terms of 

mathematical complexity involved.  

The utility of discrete time models cannot be 

underestimated since the number of test cases (i.e., 

executed test run) is more appropriate measure of the 

fault detection/removal period than the CPU/calendar 

time used by continuous time model. These models 

generally provide a better fit than their continuous time 

counterparts because they are more realistic. Therefore, 

in spite of difficulties in terms of mathematical 

complexity involved, discrete time models are 

proposed regularly.  

Yamada and Osaki [17] discussed two classes of 

models. One class describes the fault detection process 

in which the expected number of faults per test case is 

geometrically decreasing whereas, in the second is 

proportional to the current fault-content and this class 
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is known as exponential model. Kapur et al. [6] 

proposed a model in which the testing phase is 

assumed to have two different processes namely, fault 

isolation and fault detection processes, this model is 

known as delayed S-shaped model. Further they 

proposed another model based on the assumption that 

software may contain several types of faults. In these 

models the fault removal process (i.e., debugging 

process) is assumed to be perfect. But due to the 

complexity of the software system and the incomplete 

understanding of software requirements, specifications 

and structure, the testing team may not be able to 

remove the fault perfectly and the original fault may 

remain or replaced by another fault. While the first 

phenomenon is known as imperfect debugging. The 

second is called error/fault generation. 

The concept of imperfect debugging was first 

introduced by Goel [3]. He introduced the probability 

of imperfect debugging in Jelinski and Moranda model 

[5]. Kapur et al. [6] introduced the imperfect 

debugging in Goel and Okumoto model [4]. They 

assumed that the fault removal rate per remaining 

faults is reduced due to imperfect debugging. Thus the 

number of failures observed by time infinity is more 

than the initial fault content. Although these two 

models describe the imperfect debugging phenomenon 

yet the software reliability growth curve of these 

models is always exponential. Moreover, they assume 

that the probability of imperfect debugging is 

independent of the testing time. Thus, they ignore the 

role of the learning process during the testing phase by 

not accounting for the experience gained with the 

progress of software testing. Actually, the probability 

of imperfect debugging is supposed to be a maximum 

in the early stage of the testing phase and is supposed 

to reduce with the progress of testing [1, 6, 7, 8, 10, 12, 

13, 14, 15, 16].  

In this paper, we propose two discrete time NHPP 

based SRGMs for the situation given above. The 

assumptions in this case are with respect to number of 

test cases instead of time. The rest of this paper is 

organized as follows. Section 2 derives the proposed 

two flexible discrete time models. Sections 3 and 4 

discuss the methods used for parameter estimation and 

the criteria used for validation and evaluation of the 

proposed models. The applications of the proposed 

discrete to actual software reliability data through data 

analyses and model comparisons are shown in section 

5. We conclude this paper in section 6. 

 

2. Software Reliability Modelling 

2.1. Basic Discrete Time Model 

2.1.1. Model Development 

The main assumption of SRGM is that the failure 

observation / fault detection depends linearly upon the 

number of remaining faults [4]. This assumption 

implies that all faults are equally likely to be detected. 

In practical situation it has been observed that large 

number of simple faults is easily detected at the early 

stages of the testing, while the fault detection may 

become extremely difficult in the later stages of the 

testing phase. In this case, the fault detection rate has a 

high value at the beginning of the testing as compared 

to the value at the end of the testing. On the contrary, it 

may happen that the detection of faults increases the 

skill of the testing team and thus leading to increase in 

efficiency. In other words, the testing team detects 

more faults in less time. This implies that the value of 

the fault detection rate at the end of the testing phase is 

higher than it is value at the beginning of the testing. 

Bittanti et al. [1] exploited this change in fault 

detection rate, which they termed as the Fault 

Exposure Coefficient (FEC) for their SRGM.  

Through real data experiments and analysis on 

several software development projects, the fault 

detection rate has three possible trends as time 

progresses; increasing, decreasing or constant [1, 10]. 

It decreases when the software has been used and 

tested repeatedly, showing reliability growth. It can 

also increase if the testing techniques/requirements are 

changed, or new faults are introduced due to new 

software features or imperfect debugging. Thus, we 

treat the fault detection rate as a function of the number 

of test cases to interpret these trends.  

 

2.1.2. Model Assumptions, Notations, and 

Formulation 

• Failure observation/fault detection phenomenon is 

modelled by NHPP. 

• Software is subject to failures during execution 

caused by faults remaining in the software. 

• Each time a failure occurs, the fault that caused it is 

immediately and perfectly detected, and no new 

faults are introduced, i.e., the debugging process is 

perfect. 
 

a Initial fault content of the software.  

b(n+1) Fault detection rate function is dependent on 

the number of test cases and behaves linearly 

on the number of faults remaining.  

bi          Initial fault detection rate. 

bf          Final fault detection rate. 

m(n) The expected mean number of faults detected 

by the n
th
 test case.  

 

Under the given model assumptions, the expected 

cumulative number of faults detected between the n
th
 

and (n+1)
th
 test cases is proportional to the number of 

faults remaining after the execution of the n
th
 test run, 

satisfies the following difference equation:         

        ( ))n(ma)1n(b)n(m)1n(m −+=−+         (1) 
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The fault detection rate is given as a function of the 

number faults detected, as in the following equation, 
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According to the values of bi and bf, we can 

distinguish between the following cases [1]: 

• Constant fault detection rate; bi=bf =b 

• Increasing fault detection rate; bf >bi  

• Decreasing fault detection rate; bi>bf 

• Vanishing fault detection rate; bf =0, bi>0 

By substituting equation 2 in the difference equation 1 

and then solving it using Probability Generating 

Function (PGF) with initial condition m(n=0)=0, one 

can get the closed form solution as given below. 
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The structure of the model is flexible. The shape of 

the growth curve is determined by the parameters bi 

and bf and can be both exponential and S-shaped for 

the four cases discussed above. In case of constant 

fault detection rate, equation 3 can be written as  

            ( )nbanm )1(1)( −−=                            (4) 

If bf<bi, it is apparent from equation 1 that b(n+1) 

decreases to zero more rapidly than linearly. The 

smaller ratio bf/bi, the larger rate convergence of 

equation 1. If bf=0, then equation 1 becomes: 

         ( )( ))()1()()1( nmanma
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The solution of which is given by: 
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If bf>bi, then equation 3 has an inflection point and 

the growth curve is S-shaped. Such behaviour of the 

SRGM can be attributed to the increased skill of the 

test team or a modification of the testing strategy.   

The proposed discrete time model defined in 

equation 3 is very interesting from various points of 

view. Besides the above-mentioned interpretation as a 

flexible S-shaped fault detection model, this model has 

the exponential model [17] as special cases as given in 

equation 4.  

Note that this proposed basic discrete time model is 

able to model both cases of strictly decreasing failure 

intensity and the case of increasing-and-decreasing 

failure intensity. None of the exponential model [17] 

and the ordinary delayed S-shaped model [6] can do 

both. 

 

 

2.2. Extended Discrete Time Model 

2.2.1. Model Development 

During debugging process faults are identified and 

removed upon failures. In reality this may not be 

always true. The corrections may themselves introduce 

new faults or they may inadvertently create conditions, 

not previously experienced, that enable other faults to 

cause failures. This results in situations where the 

actual fault removals are less than the removal 

attempts. Therefore, the fault detection rate is reduced 

by the probability of imperfect debugging [6, 8, 13, 

14]. Besides there is a good chance that some new 

faults might be introduced during the course of 

debugging. 

The learning-process of the software developers has 

also been studied [1, 6, 12, 16]. Leaning occurs if 

testing appears to improve dynamically in efficiency as 

one progress through the testing phase. Learning 

usually manifests itself as a changing fault detection 

rate. By assuming the fault detection rate is dependent 

on the number of test cases, the role of the learning 

process during the testing phase can be established. 

The extended model proposed below incorporates 

these three factors.  

To avoid mathematical complexity many 

simplifying assumptions have been taken while 

developing the basic model. One of which is that the 

number of initial fault-content is constant. 

Modifications to the basic model have been proposed 

for increasing over-all fault content, where a of 

equation 1 is substituted by a(n) as given in equation 8. 

The nature of a(n) depends upon various factors like 

the skill of test team or testing strategy, number of test 

cases, software size, and complexity. Hence no single 

functional form can describe the growth in number of 

faults during testing phase and debugging process. This 

necessitates a modelling approach that can be modified 

without unnecessarily increasing the complexity of the 

resultant model [8].  

Here, we show how this can be achieved for the 

proposed basic discrete time model by changing the 

fault detection rate. Before the spread of flexible 

models, a number of models were proposed that linked 

the fault detection rate to the initial fault content. But 

basic model due to it is inherent flexibility could 

describe many of them.  

Hence it is imperative to capture this flexibility and 

in this paper we do so by proposing a logistic number 

of test cases dependent for fault detection rate as 

proposed in equation 9. 

 

2.2.2. Model Assumptions 

In addition to basic discrete time model assumptions 

except for assumption 3, we have: 

• Over-all fault content is linearly dependent on the 

number of test cases.  
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• Fault detection rate is number of test cases 

dependent function with an inflection S-shaped 

model. 

• Fault introduction rate is a linear function of the 

number of test cases. 

• Faults can be introduced during the testing phase 

and the debugging process may not lead to the 

complete removal of the faults, i.e., the debugging 

process is imperfect. 

 

2.2.3. Model Notations 

In addition to the basic discrete time model notations 

we include the following:    

a(n) Over-all fault-content dependent on the 

number of test cases, which includes initial 

fault-content and the number of faults 

introduced.  

b(n+1) Fault detection rate dependent on the number of 

test cases.  

α Fault introduction rate per detected faults per 

test case. 

p The probability of fault removal on a failure, 

i.e., the probability of perfect debugging   

Fault detection rate function is dependent on 

the number of test cases and behaves linearly 

on the number of faults remaining. 

 

2.2.4. Model Formulation 

Under the above extended model assumptions, the 

expected cumulative number of faults detected 

between the n
th
 and (n+1)

th
 test cases is proportional to 

the number of faults remaining after the execution n
th
 

test run, satisfies the following difference equation:         

           ( ))()()1()()1( nmnanbnmnm −+=−+      (7) 

Both a(n) and b(n+1) are number of test cases 

dependent functions. An increasing a(n) implies an 

increasing total number of faults, and thus reflects fault 

generation. Whereas, b(n+1) is an S-shaped curve that 

can capture the learning process of the software testers, 

and this function is affected by the probability of fault 

removal on a failure and they are giving as: 
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By substituting equations 9 and 8 in 7 and then 

solving it using PGF with initial condition m(n=0)=0, 

after tedious algebraic manipulations, one can get the 

closed form solution as given below. 
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Fault generation and imperfect debugging with leaning 

are integrated to form the extended discrete time model 

as given in equation 10.  

According to the values of parameters, we can 

distinguish between the following cases: 

• Constant fault detection rate (bi=bf=b), no faults 

introduced (α=0), and prefect debugging (p=1) 

• No faults introduced (α=0), and prefect debugging 

(p=1). 

In case 1, equation 10 can reduce to equation 4. 

Whereas in case 2, it reduces to equation 3.  

 

3. Parameter Estimation 

MLE method is used to estimate the unknown 

parameters of the developed framework. Since all data 

sets used are given in the form of pairs 

(ni,xi)(i=1,2,…,f), where xi is the cumulative number of 

faults detected by ni test cases (0<n1<n2<…<nf) and ni 

is the accumulated number of test run executed to 

detect xi faults.  

The likelihood function L for the unknown 

parameters with the superposed mean value function is 

given as 
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Taking natural logarithm of equation 11 we get 
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The MLE of the SRGM parameters can be obtained 

to by maximizing L in equation 11 or 12 with respect 

to the following constraints: (a,bi,bf>0, 0<p≤1, α≥0).  

 

4. Model Validation and Comparison 

Criteria 

4.1. Model Validation 

To check the validity of the proposed discrete time 

models to describe the software reliability growth, they 

have been tested on four Data Sets (DS) cited from real 

software development projects.  
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The first DS-I was collected from test of a network- 

management system at AT&T Bell Laboratories, after 

it was tested for 20 weeks in which 100 faults were 

detected [13]. The second DS-II was collected during 

21 days of testing, 46 faults were detected [12]. The 

third DS-III was for a radar system of size 124 KLOC 

after it was tested for 35 months in which 1301 faults 

were detected [2]. The fourth DS-IV had been 

collected during 25 days of testing in which 136 faults 

were detected [13]. 

 

4.2. Comparison Criteria 

The performance of an SRGM judged by its ability to 

fit the past software reliability data (goodness-of-fit) 

and to predict satisfactorily the future behavior from 

present and past data (predictive validity) [6, 11]. 

 

4.2.1. Goodness of Fit 

• The Sum of Squared Error (SSE). The difference 

between the simulated data m^(ni) and the observed 

(reported data) xi is measured by the SSE as,              

          ( )∑
=

−=
f

i

ii xnmSSE
1

2
)(ˆ                (13) 

where f is the number of observations. The lower value 

of SSE indicates less fitting error, thus better 

goodness-of-fit.  

• The Akaike Information Criterion (AIC). This 

criterion was first proposed as SRGM model 

selection tool by [9]. It is defined as: 

AIC= -2(value of max. log likelihood function) + 

                      2(number of parameters used in the model)    (14) 

   Lower value of AIC indicates more confidence in the 

   model thus a better fit and predictive validity. 

• Coefficient of multiple determination (R
2
). This 

measure can be used to investigate whether a 

significant trend exists in the observed failure 

intensity. This coefficient is defined as the ratio of 

the Sum of Squares (SS) resulting from the trend 

model to that from a constant model subtracted from 

1, that is: 

                     
SScorrected

SSresidual
R −=12                   (15) 

R
2
 measures the percentage of the total variation about 

the mean accounted for by the fitted curve. It ranges in 

value from 0 to 1. Small values indicate that the model 

does not fit the data well [11]. 

 

4.2.2. Predictive Validity 

Predictive validity is defined as the ability of the model 

to determine the future failure behaviour from present 

and past failure behaviour [11]. The relative prediction 

fault (RPF) is defined as, 
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where xf is the cumulative number of faults removed 

after the execution of the last test run nf and m^(nf), is 

the estimated value of the SRGM m(nf), which 

determined using the actually observed data up to an 

arbitrary test case ne(≤nf).  

If the RPF value is negative/positive the model is 

said to underestimate/ overestimate the fault removal 

process. A value close to zero indicates more accurate 

prediction, thus more confidence in the model. The 

value is said to be acceptable if it is within (±10%) [6]. 

  

5. Data Analysis and Model Comparison 

5.1. For Basic Discrete Time Model 

5.1.1. Goodness of Fit Analysis 

Using MLE method, the estimated values of the 

proposed basic discrete time model parameters for DS-

I and DS-II are given in Table 1. According to the 

estimated values of the initial and final fault detection 

rates (bi and bf), the skill of the test-team does improve 

with time in both DS-I and DS-II. That is why the fault 

detection/removal process resembles an S-shaped 

growth curve in both DS-I and DS-II.  
 

Table 1. Parameters estimations for DS-I and DS-II. 
 

Parameter Estimation 

Model 
Data 

Set a bi bf 

DS-I 111 .0717 .1581 
Proposed  

Basic 
DS-

II 
59 .0167 .1550 

 

The fitting of the proposed model to both DS-I and 

DS-II are graphically illustrated in Figures 1 and 2 

respectively. It is clearly seen from both the figures 

that the proposed model fits both DS-I and DS-II 

excellently. This highlights it is flexibility. 
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Figure 1. Goodness of fit (DS-I). 
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Figure 2. Goodness of fit (DS-II). 

Comparison of the proposed model and well-

documented discrete time NHPP based SRGMs in 

terms of goodness of fit is given in Tables 2 and 3 for 

DS-I and DS-II respectively. Note that during the 

estimation process of models under comparison it is 

observed that the exponential model [17] fails to give 

any plausible result as it over estimates the fault-

content and no estimates were obtained for DS-II. It is 

clearly seen from both the Tables 2 and 3 that the 

proposed model is the best among the models under 

comparison in terms of SSE, AIC, and R
2
 metrics 

values, which is very encouraging.  
 

Table 2. Goodness of fit for DS-I. 
 

Parameter 

Estimation 

Comparison  

Criteria 
Models under 

Comparison 
a b SSE AIC R2 

 Exponential [17] 130 .0798 232 92 .9857 

 Delayed S-shaped [6] 106 .2165 357 99 .9781 

 Proposed Basic  See Table 1. 180 90 .9890 

 

Table 3. Goodness of fit for DS-II. 
 

Parameter 

Estimation 

Comparison  

Criteria 
Models under 

Comparison 
a b SSE AIC R2 

 Exponential [17] * * * * * 

 Delayed S-shaped [6] 84 .0831 28 79 .9938 

 Proposed Basic  See Table 1. 25 77 .9944 

 

Hence, the proposed basic discrete time model fits 

better than existing models on both DS-I and DS-II.  

 

5.1.2. Predictive Validity Analysis 

DS-I and DS-II are truncated into different proportions 

and used to estimate the parameters of the proposed 

basic discrete time model. For each truncation, one 

value of RPE ratio is obtained.  

Figures 3 and 4 graphically illustrate the results of 

the predictive validity. It is observed that the predictive 

validity of the proposed model varies from one 

truncation to another. The RPE ratio of the proposed 

model overestimates the fault removal process in DS-I 

and DS-II except when the testing progress ratio is 

about 55% and 50% it underestimates the process in 

DS-II. 
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Figure 3. Predictive validity (DS-I). 
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Figure 4. Predictive validity (DS-II). 

 

It is clearly seen from both Figures 3 and 4 that 55% 

of the total test time is sufficient to predict the future 

behaviour of the fault removal process reasonably for 

DS-I and DS-II.  
 

5.2. For Extended Discrete Time Model 

5.2.1. Goodness of Fit Analysis 

Using MLE method, the estimated values of the 

proposed extended discrete time model parameters for 

DS-III and DS-IV are given in Table 4. According to 

the estimated values of the initial and final fault 

detection rates (bi and bf), the skill of the test-team 

does improve with time in DS-III and in DS-IV does 

not. That is why the fault detection process resembles 

an S-shaped growth curve in DS-III and an exponential 

curve in DS-IV. According to the estimated values of 

the fault introduction rate parameter (α) the fault 

detection process (i.e., the debugging process) in DS-

III is perfect and no fault introduced during debugging, 

whereas in DS-IV was not.  
 

Table 4.  Parameters estimations for DS-III & -IV. 
 

Parameter Estimation 
Model 

Data 

Set a bi bf p α 

DS-III 1352 .0087 .1832 .9922 0 Proposed 

Extended DS-IV 156 .1525 .0005 .9965 .0036 

 

The fitting of the proposed model to both DS-III and 

DS-IV are graphically illustrated in Figures 5 and 6. It 

may be noticed that the relationship between the 

cumulative number of faults and the number of test 

cases vary from purely exponential to highly S-shaped. 

It is clearly seen from both the figures that the 



130                                                              The International Arab Journal of Information Technology, Vol. 6, No. 2, April 2009                                                         

proposed model fits both the DS-III and DS-IV 

excellently. This highlights it is flexibility. 
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Figure 5. Goodness of fit for DS-III. 
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Figure 6. Goodness of fit (DS-IV). 

 

Comparison of the proposed model and well-

documented discrete time SRGM based on NHPP in 

terms of goodness of fit is given in Tables 5 and 6 for 

DS-III and DS-IV respectively. Note that during the 

estimation process of models under comparison it is 

observed that the exponential model [17] fails to give 

any plausible result as it over estimates the fault-

content (a) and no estimates were obtained for DS-III. 

It is clearly seen from both the Tables 5 and 6 that the 

proposed model is the best among the models under 

comparison in terms of SSE, AIC, and R
2
 metrics 

values, which is very encouraging. Hence, the 

proposed extended discrete time model fits better than 

existing models on both DS-III and DS-IV. 

 
Table 5.  Goodness of fit for DS-III. 

 

Parameter 

Estimation 

Comparison  

Criteria 
Models under 

Comparison 

a b SSE AIC R2 

 Exponential [17] * * * * * 

 Delayed S-shaped [6] 1735 .0814 107324 518 .9856 

 Proposed Extended See Table 5. 7133 342 .9990 

       

Table 6. Goodness of fit for DS-III. 
 

Parameter 

Estimation 

Comparison  

Criteria Models under 

Comparison 

a b SSE AIC R2 

 Exponential [17] 136 .1291 766 119 .9664 

 Delayed S-shaped [6] 126 .2763 2426 176 .8936 

 Proposed Extended See Table 5. 306 116 .9866 

 

5.2.2. Predictive Validity Analysis 

DS-III and DS-IV are truncated into different 

proportions and used to estimate the parameters of the 

proposed extended discrete time model. For each 

truncation, one value of RPE ratio is obtained.  

Figures 7 and 8 graphically illustrate the results of 

the predictive validity. It is observed that the predictive 

validity of the proposed model varies from one 

truncation to another. The RPE ratio of the proposed 

model overestimates the fault removal process in DS-

III and DS-IV except when the testing progress ratio is 

about 65% and 60% it underestimates the process in 

DS-IV.  
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Figure 7. Predictive validity (DS-III). 
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Figure 8. Predictive validity (DS-IV). 

 

It is clearly seen from both Figures 7 and 8 that 50% 

of the total test time is sufficient to predict the future 

behaviour of the fault removal process reasonably for 

DS-III and DS-IV.  

 

6. Conclusion 

In this paper, newly developed discrete time SRGM 

based on NHPP to describe a variety of reliability 

growth and the increased skill (efficiency) of the 

testing team or a modification of the testing strategy 

during testing phase, are proposed.  

The proposed discrete time models have been 

validated and evaluated on actual software reliability 

data cited from real software development projects and 

compared with existing discrete time NHPP based 

models. The results are encouraging in terms of 

goodness of fit and predictive validity due to their 

applicability and flexibility. Hence, we conclude that 
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the two proposed discrete time models not only fit the 

past well but also predict the future reasonably well. 
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