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Abstract: Neuro-fuzzy modeling may be qualified as a grey-box technique, since it combines the transparency of rule-based 

fuzzy systems with the learning capability of neural networks. The main problem in the identification of non-linear processes is 

the lack of complete information. Certain variables are, either immeasurable or difficult to measure, the soft sensors are the 

necessary tools to solve the problem. Those latter can be used via online estimation, and then they will be implemented in fed-

batch fermentation processes for optimal production and online monitoring. The process parameters are estimated through a 

fuzzy logic system. The fuzzy models of takagi-sugeno type suffer of the problem of poor initialization, which can be solved by 

the trial-and error method Trial-and-error method is used to solve the poor initialization problem of TS models, this deals with 

identifying the structure of the model, such structure consists on finding the optimum number of rules, which enters in the 

model cost reduction. The fuzzy model might not capture the process non-linearity, especially if the number of rules is over-

optimized. Bioreactors exhibit a wide range of dynamic behaviours and offer many challenges to modeling, as a result of the 

presence of living micro-organisms whose growth rate is described by complex equations. We will illustrate the fuzzy and the 

neuro-fuzzy modeling on the identification of such a system. In order to compare the NF model outputs, we     use another fuzzy 

model that does not incorporate the neural network learning capability, to identify the parameters of the same process. Even 

though, the two models were trained using levenberg-marquardt algorithm, the corresponding simulation results show that a 

better modeling is achieved using NF technique, especially that we did not employ any involved optimization procedure to 

identify the NF structure. 
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1. Introduction 

Real processes in biotechnology are, in their vast 

majority, non-linear, uncertain and time-varying. The   

control of such systems is currently driven by a large 

number of requirements, because of the competition, 

environmental conditions, costs and furthermore these 

systems must be robust and fault-tolerant [5]. By 

considering all these effects, process modeling based 

on fuzzy logic and neural network techniques is 

introduced. These two methods imitate  human 

reasoning’s. In fuzzy systems [7], the input-output 

relationships are represented in the form of if-then 

rules, but in neural networks, the relationships are 

coded in the network by its parameters. Neuro-fuzzy 

systems combine the transparency of rule based fuzzy 

systems with the learning capability of neural 

networks. Their developments are based on empirical 

models, heuristics and observed data. They describe 

systems by using if-then rules represented in a network 

structure, combined to neural networks learning 

algorithms. Such a structure is more interpretable than 

the completely black-box models. In the  last    decade,  

different architectures of neuro-fuzzy models were 

introduced [4, 8]. The ANFIS (adaptive network based 

fuzzy inference   system)    proposed   by     Jang    [4],  

 
produces fuzzy models consisting of TS type rules. 

After specifying the number of membership functions 

for each input variable, the ANFIS algorithm 

iteratively learns the premise parameters via 

Levenberg Marquardt (LM) training method and 

optimizes the consequent parameters via linear least 

squares estimation. We also use another fuzzy model, 

trained by LM too, to compare the simulation results. 

The two fuzzy models are then validated with 

experimental data. This article is organized as follows. 

Section 2 discusses the adopted TS model. Thereafter, 

the description of the fed-batch fermentation process is 

given in section 3. Section 4 presents the training LM 

algorithm for premise parameters optimization of the 

two fuzzy models. Simulation results are discussed in 

section 5. Finally, conclusion is given in section 6. 

 

2. Takagi-Sugeno Fuzzy Model 

The considered Fuzzy Logic Systems (FLS) are based 

on TS type. If the dynamic model is of the form:  

                                  )(xfy =                                (1) 

where the input x is such that 
T

nkkk xxx ]....[ 1= and 

the output sample is ky . The index 



Fuzzy and Neuro-Fuzzy Modeling of  a Fermentation Process                                                                                                   379 

 

Nk .....1= denotes the individual data samples. It is 

often difficult to find a model that describes the system 

globally, and one solution might be to construct local 

linear models around selected operating points. Those 

local models are represented by fuzzy sets, and each 

fuzzy set is expressed by a rule; if there are L  fuzzy 

if-then rules, the rule iR can be written as: 

niniii

ninnii

xbxbbythen

xAisxandxAisxIFR

+++= ....

)(....)(:

110

111          (2)               

where ijA are fuzzy sets that are characterized by 

membership functions jjij xxA ;)(  are input 

variables; yi are local output variables; iji bandb 0  are 

real parameters. The overall output of the model is 

given by: 
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where 
i

β is the firing strength of the rule Ri, which is 

computed as:  

    )()....()(
2211 niniii

xAxAxA=β                      (4)                                                                  

The TS model can describe a highly non-linear 

system using a small number of rules. It contains the 

premise parameters (of bell generalized or Gaussian 

membership functions) and the consequent parameters 

(bi0 ….bij). If the premise and the consequent 

parameters are appropriately computed, the above FLS 

can correctly approximate the underlying non-linear 

dynamics that generated the given set of input-output 

data pairs. 

 

3. Yeast Fermentation Process Modeling 

Biological well-mixed fed-batch reactor, as shown in 

Figure 1, includes two models which are the kinetic 

and the mechanistic models [1]; The yeast cells, of 

concentration X , are growing in the liquid phase: they 

are consuming the glucose substrate, of  concentration 

S  and the dissolved oxygen, of concentration FO ; 

they are producing the carbon dioxide, of 

concentration FC . Ethanol, of concentration E , can 

be either a substrate or a product, depending on S  and 

FO  [4]. 
                  

 

3.1. Kinetic Model 

The saccharomyces cerevisiae yeast is characterized by 

three metabolic pathways: 

•  Respiratory growth on glucose: 

    

 

 
                  Figure 1. Fedbatch reactor. 

 

•  Fermentative growth on glucose: 

                                                  

 

 

•  Respiratory growth on ethanol:    

 

                                                 

                                                       

where 
O

E

F

S

O

S and µµµ ,  are the specific growth rates 

(expressed in 
1−h ) for the three metabolisms. 

Subscripts S  and E  mean glucose and ethanol 

respectively. 

It all depends on the respiratory capacity of the 

yeast cells. Respiratory pathways (5) and (6) if the 

respiratory capacity is enough; otherwise pathways (5) 

and (6) are followed by the yeast growth. Several 

kinetic models are proposed for yeast growth. In this 

paper, we considered monod type equations, and used 

Sonnleitner and Käppeli growth model. If 

2OS qandq are the specific glucose and oxygen 

uptake rates respectively,  then : 

If aq s  ≤ q02,  the regime is respiratory;  

If aq s  > q02,  the regime is respiro-fermentative; 

   where  a  is the stoichiometric coefficient of the 

oxygen in the pathway (5). 

The specific growth rate µ  is related to the 

corresponding substrates fluxes q  and yield 

coefficients y  by: 
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where 
F

SX

O

SX yandy //  represent the yield coefficients 

of biomass X in glucose S in the oxidative and 

fermentative phases respectively;  
O

EXy /   is the yield 

coefficient of biomass X  in ethanol E  in the 

oxidative way [2]. 
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(5) 



380                                                         The International Arab Journal of Information Technology, Vol. 6, No. 4, October 2009                                                             

 

 

3.2. Mechanistic Model 

Assuming that the yield coefficients y ’s are constant 

and the dynamics of the gas phase are neglected, the 

balances are as follows:  

 

 

 

 

 

 

 

 

 

where 2COE qandr  are the specific ethanol reaction 

and the specific carbon dioxide production rates 

respectively; The gas transfer rates are given by: 
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where CTRandOTR  are the oxygen and the carbon 

dioxide transfer rates respectively; )( aK i

L is the 

overall mass transfer coefficients ( i  indicating 

)CorO ; 
∗∗ CandO  are the equilibrium 

concentrations of CandO  respectively [2]. 

 

4. Parameters Optimization Algorithms  

As we mentioned in the introduction, we used two 

FLS , where the first one is of ANFIS  type. Both 

systems are trained using LM algorithm, which is a 

second order training method based on the 

modification of Newton’s method. In this algorithm, 

the Hessian matrix H  is computed as [6]: 

                                  JJH T=                                                                                                               

and the gradient g  is computed as: 

                                 eJg T=  

where J  is the Jacobian matrix that contains the first 

derivatives of the FLS  error with respect to the 

premise parameters, and e is a vector of FLS  error. If 

the performance function is V  and the parameter 

vector is α   then: 

                            
2

1
)(∑ =

=
N

k keV  

where: 

                         )(ˆ)( kykyek −=                    

yandy ˆ  being the desired and the estimated outputs 

respectively. The update of α  is given by: where I  is 

the ).( pp NN  identity matrix, pN  being the number 

of FLS  adjustable parameters. The parameter µ  is  

increased  if )(αV  increases and  is decreased  if 

)(αV  decreases. The aim is to shift toward Newton’s 

method (where )0=µ   as quickly as possible, because 

Newton’s method is faster and more accurate near a 

minimum.   

 

4.1. ANFIS Algorithm    

The ANFIS is an adaptive fuzzy Sugeno model that 

facilitates the learning and the adaptation. The ANFIS 

modeling is more systematic and less dependant on a 

priori process information. The  ANFIS architecture 

ncludes five layers which are described in the 

following: 

• Layer 1: its outputs are the membership functions of 

the inputs, 

                 .4,3,2,1),(1 == iOURO Aii µ                (21)  

                 .4,3,2,1),(1 == jCPRO Bjj µ                  (22) 

• Layer 2: each of its nodes computes the firing 

strengths of the associated rules. Its nodes outputs 

are given by:  

               16,...,2,1,
2 === iO BmAiij µµω                (23) 

               imji ==≤≤ ,1,41  

               4,2,85 −==≤≤ imji  

               8,3,129 −==≤≤ imji  

               12,3,1613 −==≤≤ imji  

• Layer 3: its outputs are the normalization of the 

rules firing strengths, 
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• Layer 4: its outputs are: 
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consequent parameters that are determined during the 

training procedure. 

• Layer 5: its output is the overall output of the model 

which is given by : 

                              ∑
=

=
16

1

5

i

iii fO ω                                (26) 

For this architecture, the first and the fourth layers are 

adaptive, the first layer premise parameters are 

determined using the LM algorithm; the fourth layer 

consequent parameters are identified using the least 

squares method. The Membership Functions (MF) are 

of type generalized bell membership functions and are 

of the form: 

                  

ib

i

i

Ai

a

cx 2
)(1

1

−
+

=µ                         (27) 

where { }iii c,b,a  is the antecedent parameter set; 

iA  is the linguistic label; ic  determines the center of  

;MF  ia  is the half width and ib ( together with ia )  

control the slope at the points where MF value is 0.5. 

The Jacobian matrix is computed through the back  

propagation algorithm, where the error propagates 

from the output, in a backward pass, toward the inputs   

                           αα d

dO
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d
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kk ∑
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where S  is the set of nodes whose outputs depend on 

α . Then for the overall error e , we get: 
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and the update equation 20. 

 

4.2. Fuzzy Algorithm  

 The sMF'  are gaussians  and are of the form[3]: 

               ))/)((5.0(exp 2
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i
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where { }ii ca ,  is the antecedent parameters set, ic  

determines the center of the MF , ia is the half-width. 

Using equation 3, the error e is written as: 
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The overall error E  is computed through equation 23, 

and the update formula i  given by equation 5. 

 

5. Simulations 

 

 

 

 

Figure 2. ANFIS model. 

The ANFIS  model is as shown in  Figure 2. The 

inputs are CPRandOUR , which are oxygen uptake 

rate and carbon dioxide production rate respectively, 

and they are expressed in )//( hlg . OUR of 1g/l/h is 

defined as 1 gram of oxygen consumed per 1 liter of 

solution per 1 hour; CPR of 1g/l/h is  defined as 1 

gram of carbon dioxide produced per 1 liter of solution 

per 1 hour; In this work, OUR varies up to 5.8g/l/h and 

CPR varies up to 14g/l/h. The outputs are 

EandSX ,  are as defined in section 3. For ANFIS  

algorithm, we use 16 rules, where each input is 

assigned 4 MFs  of bell type; then 24 premise 

parameters and 48 consequent parameters are to be 

determined; The sixteen rules of ANFIS model are of 

the form: 

iskCPRandkOURiskOURIf Aj )())(()( µ  

thenkCPRBm )),((µ iii rCPRqOURpk ++=)(   

where  stands for any output; the indices mandji,  

are as defined before. The eight rules of the FS model 

are of the form: 
 iskCPRandkOURiskOURIf An )())(()( µ  

thenkCPRBn )),((µ nnn rCPRqOURpk ++=)(  

The index n is such that 8,...2,1=n . The number of 

epochs is 100.  The outputs of the ANFIS  model are 

as shown below:  
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Figure 3. Estimation of X (training). 

 

 

 

 

 

 

 

 

 

 
                   

 

Figure 4. Estimation of X (validtion). 
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                      Figure 5. Estimation of S (training). 
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                Figure 6. Estimation of S (validtion). 
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              Figure 7. Estimation of E (traning). 
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        Figure 8. Estimation of E (validation). 

 

For  the fuzzy method, we use eight rules, where 

each input is assigned 8 membership functions  of 

gaussian type; then 32 premise  parameters  and 24 

consequent parameters are to be determined. The fuzzy 

model is as shown in Figure 9.   

 

 

 

 

 

 
Figure 9. Fuzzy model. 

 

The outputs of the fuzzy model are as shown below:  
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Figure 10. Estimation of X (traning). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  Figure 11. Estimation of X (validation). 
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the sampling interval is 15 minutes, OUR is 
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glucose and is also oxidative on ethanol; X then 
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increases while S is kept constant and E decreases. 

Stationary operation is reached at t =8h, in this 

phase, the estimation is working well; at t =10h, D 

is increased to 0.32h
-1

, the biomass growth is now 

fermentative, but the crabtree effect represses the 

growth and X then decreases; the ethanol production 

rate is higher; at  t=15h, OUR is reduced, X 

continues to decrease and E continues to increase; 

the growth is strongly oxygen limited [1].  
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Figure 12. Estimation of S (traning). 
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Figure 13. Estimation of S (validation). 
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Figure 14. Estimation of E (traning). 
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Figure 15. Estimation of E (validation). 

• Glucose of concentration S: Baker’s yeast is capable 

of oxidizing glucose when the glucose 

concentration is below  a critical value. Above that 

value,  the yeast will not be able to oxidize all the 

glucose. In this fedbatch experiment, the glucose 

concentration is kept at a very low value, for 

optimization of the biomass production. 

• Ethanol of concentration E: the ethanol  is reduced 

at first, because it enters in the oxidative  growth of 

the biomass, then it increases again  because  of  the 

fermentative growth of the  biomass;  where it is 

produced  in big quantities, the ethanol  production  

rate  is high. 

From the simulations results obtained, the training of 

ANFIS model is conducted with lower RMS errors, 

but the validation of FS model is better achieved, 

meaning that for this application,  the FS  model is 

capable of better forecasting the future behavior of the 

process. Also, we have sixteen fuzzy regions for the 

ANFIS model inputs, against only eight regions for FS 

model inputs. 

The reference [9] uses FS by means of fuzzy 

clustering to implement a soft sensor of the biomass 

concentration; the MSE is between 0.5 and 0.7.  
 

6. Conclusion 

One problem which appears  in control of  biotechnical  

processes is the difficulty to measure the important  

state  variables. The required  specific sensors  are 

either not available, or costly. The soft sensors provide 

a solution  to overcome  this problem, but  their  

performance depends on both  the  measurement 

quality delivered  by the sensor and  the associated 

estimation algorithms [9].  

     The simulations show that satisfactory training 

estimation results could be obtained through ANFIS 

because of the learning capability of the neural 

networks. For the training case, the RMSE for ANFIS 

is lower than for the other fuzzy model. For the 

validation of the model, need to have sufficient and 

accurate data for the training of the network. By the 

simulations, we can  see that the RMSE for validation 

is lower by using the fuzzy model. Furthermore, the 

soft sensors could replace the specific and 

sophisticated sensors if we improve the measurement 

quality and assess the estimation algorithms.  
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