
258 The International Arab Journal of Information Technology, Vol. 5, No. 3, July 2008

Agent Based Bioinformatics Integration
Using RETSINA

Kulathuran Shunmuganathan1, Kumar Deepika2, and Kumaradhas Deeba2
1Anna University, India.

2Noorul Islam College of Engineering, India

Abstract: Vast amounts of life sciences data are scattered around the world in the form of a variety of heterogeneous data
sources. The need to be able to co-relate relevant information is fundamental to increase the overall knowledge and
understanding of a specific subject. Bioinformaticians aspire to find ways to integrate biological data sources for this purpose
and system integration is a very important research topic. The purpose of this paper is to provide an overview of important
integration issues that should be considered when designing a bioinformatics integration system. The currently prevailing
approach for integration is presented with examples of bioinformatics information systems together with their main
characteristics. Here, we introduce agent technology and we argue why it provides an appropriate solution for designing
bioinformatics integration systems.

Keywords: Wrapper, system integration, agent technology, mediator, RETSINA.

Received December 16, 2006; accepted April 23, 2007

1. Introduction
System integration is a challenging research topic,
important for bioinformatics. Agent technology has
been successfully applied in the past to system
integration. In the following paper we introduce agent
technology and argue that it is appropriate for
bioinformatics systems integration. Section 2
represents the integration of bioinformatics system.
Agent technology is discussed in section 3 and section
4 summarizes the bioinformatics integration and agent
technology.

2. Bioinformatics System Integration
System integration is a challenging research in
Bioinformatics systems because of the inherent
complexity of the domain in which: (1) most rules
have exceptions; (2) there is a rich variety in data
demanding vast amounts of storage capacity; (3)
complex relationships between structures; (4) variation
in curation and quality control standards [9]; (5)
multiple sources of similar data or interpreted versions
of the same data; and (6) uncertainty, natural variation,
experimental error, interpretation error, computational
error. In this section we will introduce principal
aspects of system integration with a focus on
bioinformatics systems.

2.1. Fundamental Aspects of Integration
The main goal of integration is to provide mechanisms
that can unify a number of computer systems. We can
describe request of data from various resources and

then combine the results to get more useful information
using integrated systems as a number of steps: (1) the
user makes a request (query) to the integrated system;
(2) the integration system processes the request and
decides how to split it into sub-requests specific to data
sources; (3) the sub-requests are made and all
individual results are returned to the integration
system; and (4) the results are combined to a coherent
answer which is returned to the user. Three important
aspects of system integration are distribution,
autonomy and heterogeneity.

2.2. Heterogeneity
Heterogeneity has two major categories [10]:

• Technical: such differences can occur because of
different hardware platforms, operating systems,
database management systems (query languages,
data models), access protocols, transport formats,
and programming languages.

• Semantic: conceptual differences occur in the data
models/schemas of the data sources, i.e., the
organisation of data and the relationships between
such data.

To bridge schema heterogeneity we usually define a
common schema expressed in a Common Data Model
(CDM). Each local data model is mapped to the CDM
thereby resolving semantic heterogeneity. Integrated
systems that aim to create a CDM and a federated
schema are called federated systems.

Agent Based Bioinformatics Integration Using RETSINA 259

2.3. Federated Systems
Federated systems can be classified in terms of their
degree of federation and instantiation. The first refers
to how autonomous-independent from the integration
system-the data sources are; autonomy indirectly
influences the precision of the schema integration. We
can have a tight federation, which involves non-
autonomous data sources-potentially very precise
matching of the local schemas-, and capability to allow
reliable read-write access to the integrated system.
Alternatively, a loose federation means completely
autonomous data sources-constraint matching of the
local schemas-, and only read-only reliable access to
the data sources. The second, the degree of
instantiation, refers to where the physical data reside.
We can have a virtual federation, which means that the
actual data reside in the respective data sources, and
the integration system provides just a unified view of
these data sources, or a materialized federation-also
called warehousing-in which the integrated system
consists of a global physical repository, which includes
all the data sources’ data. Although a materialized
solution is more efficient computationally, in general
the virtual approach is preferred as it does not involve
data replication-which introduces data update and
synchronization problems-and it is much easier to
maintain [2].

2.4. Legacy Systems and Wrappers
Each data source has a query language that allows
users to request data from that resource. This query
language is designed to achieve mapping between the
two. To deal with query language heterogeneity,
integration systems use a global query language-also
called internal or Common Query Language (CQL).
This language is used as the common language
between the heterogeneous data sources and it should
be designed according to the common data model used.
With a query formulated in the CQL the integrated
system could use the federated schema to decompose,
usually referred to as query decomposition and
planning, the initial query to sub-queries that could be
answered by individual resources. The sub-query,
expressed using the CQL, is then translated to the data
source-specific language. This task is accomplished by
using software modules called wrappers. Wrappers
encapsulate or ‘wrap’ the functionality of existing
legacy systems. They are responsible for converting a
request formulated in the CQL to the specific query
language used by a data source and vice versa.

2.5. Mediation and Bioinformatics Integration
Systems

One of the most common integration approaches in
bioinformatics is mediation. Mediators were
introduced with the argument that they “simplify,

abstract, reduce, merge, and explain data” and their
primary purpose is seamless integration of
heterogeneous data sources. A mediator is a software
module that exploits encoded knowledge about certain
sets or subsets of data to create information for a
higher layer of applications. Mediation is an abstract
architecture that conceptualizes integration. In our
integration overview we presented a more practical
view of the integration procedure that is summarized in
Figure 1.

Figure 1. Overview of integration procedure.

We can now describe the integration steps in more
detail:

• The user provides a query formulated in the
common query language to the integration system-
mediator(s).

• The integration system applies the query to the
common data model. The query decomposition and
planning module (part of the mediators)
decomposes the initial query into sub-queries, again
formulated in the common query language. The sub-
queries are passed to the appropriate data sources
via their respective wrappers. Each wrapper
translates the sub-queries to the local query
language used by the data source and then translates
the results back to the CQL.

• The results are then returned to the integration
system where they are combined to a coherent
result, which is returned back to the user.

Systems that do not provide a conceptual model in
their CDM, or not a CDM at all, cannot provide
integration and location transparency. That means that
the user has to define how the data sources’ data will
be combined and which data sources should be used;
we refer to such systems as non-transparent.
Bioinformatics integration systems follow the
procedure illustrated in Figure1 and their functionality
can be generally described with the integration steps
mentioned above. Most of bioinformatics integration
systems follow the system integration by providing a

260 The International Arab Journal of Information Technology, Vol. 5, No. 3, July 2008

CDM and a CQL as an intermediate layer; an
integration system can dynamically answer any queries
related to the integrated data sources as described by
the CDM.

2.6. Confidence in Results’ Quality
Transparency avoids the need for the user to know
which data sources contain the information needed and
how the resulting data should be combined to reach a
final result. A transparent system incorporates
integration reasoning automates the integration
procedure. Allowing the user to intervene limits the
system’s transparency. Although, integration would be
transparent the user should be able to adjust the level
of transparency according to his/her needs.

2.7. Semantic Web Services, Semantic Grid,
and Integration

With data integration, developers could not be certain
of the purpose (semantics) of the service. The semantic
web has been developed to provide a solution. The
goal is to provide common meaning between concepts
used in web pages and services. To this end: (1) a
general-purpose data format has been designed (XML
[1]); (2) it was extended to allow for metadata (RDF);
(3) basic semantics for the data structures and values
allowed have been specified (RDF Schemas), and
recently; (4) fully developed ontology languages have
been defined, e.g., the Web Ontology Language
(OWL). Ontology is a group of concept definitions that
describe an application domain. The very large-scale
distributed computing and data required of particle
physics coupled with the need to go beyond the limited
stateless and insecure web service technology has led
to the development of the grid [6]. The goal was to
inter-connect a large amount of computing resources at
a national or even worldwide scale to build ‘cheap’
virtual supercomputers. Other research communities,
such as biology, earth science, and astronomy, have
expressed interest in the grid. This change of focus
made other extensions necessary; for example, to
resolve heterogeneity of the disparate resources and to
incorporate ontologies, led to what is now called
semantic grid. In the bioinformatics literature, in the
context of the semantic web and grid, ‘system
integration’ is also used in a more general sense, i.e.,
that of mustering a large number of data sources and
providing a framework for their discovery and
execution. Two such notable systems are BioMOBY-
for bioinformatics web services and myGRID-for a
bioinformatics semantic grid.

2.8. Investigating Agent Technology
Biology domain contains a significant amount of
ontologies. A consortium was formed, comprising
collaborations between many bioinformatics data

sources’ curators, called Gene Ontology (GO).
Because semantic heterogeneity is a fundamental part
of interoperability, agent systems used ontologies.
There are two primary reasons for agent systems to
ideal. Firstly, biology’s ontological work may exploit
the potential of agent technology, in relation to
semantic heterogeneity. Secondly, it has been argued
that ‘‘agent-oriented approaches are well suited for
developing complex, distributed systems’’, which
applies to bioinformatics integration systems. Agent
technology has been successfully applied in the past to
system integration. However, in bioinformatics
systems it has mainly been used for enhanced
automation and thus far only a couple of
bioinformatics integration systems are based on agent
technology.

3. Agent Technology
Agent technology is a new concept derived from
artificial intelligence. Agent technology has its roots in
multiple research areas including distributed systems,
social and economic. The agent is a computer system
capable of autonomous action in some environment.
For real world applications single agent is not enough.
So we go for multi-agent. Systems with a number of
co-operating agents are called Multi-Agent Systems
(MAS). Agents that are part of MAS need to possess
autonomy and communication. Agent Communication
Language (ACL) achieves proper communication.

3.1. Agent Communication Languages
Communication between agents is modeled as the
exchange of declarative statements. By including lexis
in the semantics we can use sub-set of natural language
characteristics to describe a language for agents. To be
more precise it can be partitioned into three layers:

• Pragmatics: specifies the way that an entity will
express its needs or/and the effect that it wants to
pass to the receiver. This layer can be thought of as
the specification for information exchange.
Pragmatics is referred to as the ACL. In FIPA ACL
in which speech acts are called communicative acts,
and KQML in which speech acts are called
performatives.

• Syntax: used to structure the information that will be
sent. The content of the message contains words that
are arranged according to a structure, defined by the
syntax of the language.

• Semantics: semantics is used to give meaning to
words. It ensures that the word is associated with
the correct concept. Semantics for ACLs can
comprise of multiple ontologies. This layered
approach helps us to work on each one part of the
language independently. FIPA specifications
provide both formal and informal definitions for all
the communication terms used in the ACL messages

Agent Based Bioinformatics Integration Using RETSINA 261

exchanged, i.e., what are the speech acts, what is
their semantic meaning, what kind of expressiveness
does a content language need to provide, and so on.

3.2. ACLs and Bioinformatics Integration
The three-layered approach for communicating a
message is a big step towards resolving heterogeneity-
which was one of the main goals of MASs. More
specifically:

• A common ACL with a pre-specified content
language takes care of any potential technical
heterogeneity as it provides a common intermediate
representation of the exchanged data and

• A common ontology resolves any potential semantic
heterogeneity.

Since the purpose of an ACL is the communication
between agents, one can think of it as the CQL of an
integration system.

3.3. KSE and FIPA
The goal of Knowledge Sharing Effort (KSE) was to
develop techniques, methodologies, and software tools
for knowledge sharing and reuse at the design,
implementation, and execution stages. The KSE model
was intended for information exchange between
databases, expert systems and any other system that
could be viewed as a virtual knowledge base.
Nonetheless, the main focus was to share information,
which implies communication, which in turn implies a
common language for communication. This led to the
concept of an ACL, as we use it today, and provided
KQML as the means of communicating information.
The KSE model consisted of KQML, KIF, and
ontolingua for the pragmatic, syntactic, and semantic
layers, respectively. The KQML [4] implementations
made it impossible for different systems to
interoperate. The companies joined to form a forum,
the Foundation for Intelligent Physical Agents (FIPA),
to discuss, design, and provide specifications for agent
technology. FIPA’s mission statement is: ‘‘FIPA is an
international organization that is dedicated to
promoting the industry of intelligent agents by openly
developing specifications supporting interoperability
among agents and agent-based applications’’ FIPA
[12] succeeded in establishing its specifications as the
accepted international standards in MAS
interoperability. RETSINA is a software development
framework aimed at developing multi-agent intelligent
systems.

3.4. The RETSINA Multi-Agent Infrastructure
REusable Task-based System of Intelligent Networked
Agents (RETSINA) [6] is a multi-agent infrastructure
that was developed for information gathering and

integration from web-based sources and decision
support tasks. Each agent in RETSINA specializes in a
specific class of tasks. When the agents execute tasks or
plan for task execution, they organize themselves to
avoid processing bottlenecks and form teams to deal
with dynamic changes in information, tasks, number of
agents and their capabilities. In RETSINA, the agents
are distributed and execute on different machines. The
RETSINA architecture is shown in Figure 2.

Figure 2. RETSINA architecture.

Based on models of users, agents and tasks, the
agents decide how to decompose tasks and whether to
pass them to others, what information is needed at each
decision point, and when to cooperate with other agents.
The agents communicate with each other to delegate
tasks, request or provide information, find information
sources, filter or integrate information, and negotiate to
resolve inconsistencies in information and task models.
The system consists of three major classes of agents:
interface agents, task agents and information agents
[11]. Interface agents interact with users receiving their
specifications and delivering results. They acquire,
model and utilize user preferences. The interface agents
hide the underlying structural complexity of the agent
system. For instance, there may be a hybrid of two
types, such as interface+task agent. Task agents [2]
formulate plans and carry them out. They have
knowledge of the task domain, and which other task
agents or information agents are relevant to performing
various parts of the task. In addition, task agents have
strategies for resolving conflicts and fusing information
retrieved by information agents.
Information agents provide intelligent access to a

heterogeneous collection of information sources. They
have models of the information resources and strategies
for source selection, information access, and conflict
resolution and information fusion. Information agents
can actively monitor information sources.

262 The International Arab Journal of Information Technology, Vol. 5, No. 3, July 2008

3.5. Standardisation and Bioinformatics
Integration

Ideally, each data source provider would provide an
interface that complies to a standard. It is here that the
agent interoperability standardization efforts can be of
great use. By embracing the FIPA standards data
providers can just implement a FIPA-compliant agent
that provides an interface to their data source.

3.6. Planning in Multi-Agent Systems
One of the popular techniques to distribute problem
solving is by task sharing or task passing. Each agent
tries to solve the given problem and when it reaches a
task that it does not know how to handle it requests
help from other agents. The basic steps in task sharing
[3] are:

• Task decomposition: generate a set of tasks to be
passed to other agents. This involves decomposing
large tasks to sub-tasks that can be tackled by
different agents.

• Task allocation: request from the appropriate agents
to handle the sub-tasks.

• Task accomplishment: the appropriate agents each
accomplish their sub-tasks-which may require
further task decomposition and allocation.

• Result synthesis: when an agent completes a sub-
task that it was responsible, it sends the result back
to the requesting agent. The last will then synthesize
the results into a solution, which could be a sub-
solution and thus, in turn, needs to return the result
to its requesting agent, until we reach the initial
(root) agent that will compose an overall solution. In
Figure 3 each one of the agents depicted acts as a
planner-using traditional centralized planning-and
co-operates with the rest to achieve a common goal.

Figure 3. Example of multi-agent task sharing problem solving.

The agent that initially decomposed task acts as
synchronization point for parallel execution of sub-

tasks. Other types of distributed planning are:
‘centralized planning for distributed plans,’ ‘distributed
planning for centralized plans,’ and ‘distributed
planning for distributed plans.’

3.7. Planning and Integration
The steps of task sharing are to the integration steps. If
we consider a task to be a query, as expressed in the
CQL, then the two procedures are identical. This
implies that significant synthesis is possible between
technologies developed for these activities.

3.8. Adjustable Autonomy
Adjustable autonomy means dynamically adjusting the
level of autonomy of an agent depending on the
situation. It is beneficial to have a mechanism that
enables control over the behavior of a dynamic and
complex distributed system so as not to feel uncertain
about the quality of the results.

3.9. Adjustable Transparency
The issue of the results’ quality is more important to
the user. We already suggested that we need a way to
adjust the integration system’s transparency.
Adjustable autonomy has as a result for the user to gain
some control over the behavior of the agents. If the
agents’ functionality is to integrate then adjusting their
autonomy is exactly what we need to better manage the
system’s transparency.

4. Agents and Integration
Most agent integration systems use the mediation
approach. An agent acts as a mediator, usually called
Mediator Agent (MA). This agent has access to the
CDM, which could be represented using any
representation language-including the content language
of the ACL. Additionally, a number of agents will act
as wrappers, usually called resource agents. The ACL
could be used as the CQL.

4.1. Distribution, Autonomy, and Heterogeneity
Agents naturally cover the fundamental aspects of
integration.

• Distribution: a MAS is naturally distributed.
• Autonomy: agents are designed with the assumption
that software entities are autonomous. Also, FIPA’s
interoperability standardization efforts will ensure
communication between agents created from many
different vendors, organizations, or research groups.

• Heterogeneity: a common communication language
and a common message content language deal with
technical heterogeneity while sharing ontology
handles the semantic differences.

Agent 1

Planning

Agent 2

Planning

Agent 3

Planning

Agent 4

Planning

Agent 5

Planning

Agent 6

Planning

t1

t2

t3

t4

t5

Agent Based Bioinformatics Integration Using RETSINA 263

4.2. Legacy Systems and Wrappers
Nonagent systems could be made a part of an agent
community if they were able to communicate using an
ACL and ACL acts as the CQL, with wrappers
translating from the ACL to the local query language
and vice versa. Figure 4 shows three possible ways to
do this-called agentification process [7].
A transducer is an agent that knows how to translate

requests from an agent system-other agents-to the non-
agent system’s interface and vice versa. In system
integration, the term ‘wrapper’ we mean either the
transducer or the wrapper approach. Finally, one could
also rewrite the non-agent system according to an
agent paradigm. That amounts to a lot of programming
work but one could potentially enhance the system’s
efficiency and capabilities. FIPA defined an agent
software integration specification which is concerned
with how agents can connect to and make use of
external software an system, that is systems that are
external to and independent of an agents execution
model-the transducer approach to wrapping. In agent
terminology, wrappers are usually called Resource
Agents (RAs).

Figure 4. Three approaches to agentification.

4.3. Adding Data Sources
In accordance with FIPA specifications all (nonagent)
software systems (data sources) should be described by
software descriptions to list the properties of the
software system. FIPA supports another agent role: an
agent that brokers a set of software descriptions to
interested agents. New data sources can be added
dynamically to the system just by providing a software
description for the resource to the request broker.

4.4. Bioinformatics Integration and Agents
Agent technology is appropriate for the complex
integration systems, particularly in bioinformatics. In
summary:

• The layered approach of an ACL provides a flexible
common medium to represent knowledge among
agents.

• The ACL and the ontologies deal with the technical
and semantic heterogeneities, respectively.

• RAs can wrap data sources. In addition using the
FIPA ‘agent software integration’ specification new
data sources can be added dynamically to the
system.

• The adoption of agent (FIPA) standards help in
making the first steps towards solving the
sociological problem.

• The most popular multi-agent planning technique,
task sharing, is almost identical to integration using
mediation, and thus they could easily be combined.

• Adjustable Autonomy provides a potential solution
to the problem of the confidence of the results in
bioinformatics integration.

• Bioinformatics integration systems are complex
distributed systems, which makes use of agent
technology a good choice [8].

4.5. Agents, Web Services, and the Grid
Making web services autonomous and able to reason to
accomplish their goals makes web services more like
agents and rendering the latter widely available to the
public, via the internet, makes agents more like web
services. Similarly, grid technology has a lot to gain
from the high-level abstractions that the agent
paradigm has to offer; use of agent protocols,
negotiation, etc. All three technologies provide service-
oriented functionality, which implies similarities, but
each one can contribute its more unique attributes:

• Grid technology offers a large-scale distributed
infrastructure,

• Web technology provides formatting standards to
represent data and knowledge,

• Agent technology offers autonomy and advanced
communication between peers, bridging the three
technologies.

Currently only agent technology is self-sufficient
enough to provide the advanced integration facilities.
Agents are situated in a flexible and scalable
distributed environment (Agent Platform [5]). Agents
provide a common communication layer necessary for
system integration. Also, they are good at addressing
changes dynamically, which is an important asset for
integration system applied in changing biology
domain. The mutli-agent system demonstrating the
above features is RETSINA, discussed above.

5. Conclusions
Biology is a knowledge-intensive science and a large
number of data sources are publicly available. Data

Non-Agent
System

Non-Agent
System

Agent
System

Transducer

Wrapper

Rewrite

Non-Agent
System

264 The International Arab Journal of Information Technology, Vol. 5, No. 3, July 2008

sources are integrated to enable higher-level questions
to be answered by combining their data. Integration is
a complex task aiming to provide a unified view of the
underlying resources, while eliminating potential
technical and semantic heterogeneity. The mediation
approach to integration is widely used and most
bioinformatics integration systems make use-in
different degree-of it. Agent technology is a multi-
disciplinary research field combining work from
distributed systems, AI, social and economic sciences.
Ever since its conception, its goal has been to develop
techniques, methodologies, and software tools for
knowledge sharing and reuse. Knowledge sharing is
fundamental to integrating heterogeneous data sources,
and as such, agent technology has much to offer to
system integration. This becomes clearer after a
detailed examination of agent properties and their
usefulness for coping with bioinformatics integration
challenges.

References
[1] Achard F., Vaysseix G., and Barillot E., “XML,

Bioinformatics and Data Integration,”
Bioinformatics, vol. 17, no. 2, pp. 115-125, 2001.

[2] Davidson S., Overton C., and Buneman P.,
“Challenges in Integrating and Biological Data
Sources,” Journal of Computational Biology, vol.
2, no. 4, pp. 557-572, 1995.

[3] Durfee E., “Distributed Problem Solving and
Planning,” in Weiss G. (eds.), Multiagent
Systems: A Modern Approach to Distributed
Artificial Intelligence, Cambridge, MIT Press,
pp. 121-164, USA, 2000.

[4] Finin T., Weber J., Wiederhold G., Genesereth
M., Fritzson R., and McGuire J. “Speci.cation of
the KQML Agent Communication Language,”
Technical Report, DARPA Knowledge Sharing
Initiative, External Interfaces Working Group,
1993.

[5] “FIPA Agent Management Speci.cation,”
available at: www.pa.org/specs, 2002.

[6] Foster I., Kesselman C., and Tuecke S., “The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” International Journal of
Supercomputing Applications, vol. 15, no. 3, pp.
200-222, 2001.

[7] Genesereth M. and Ketchpel S., “Software
Agents,” Communications of the ACM, vol. 37,
no. 7, pp. 48-53, 1994.

[8] Jennings N., “An Agent-Based Approach for
Building Complex Software Systems,”
Communication of the ACM, vol. 44, no. 4, pp.
35-41, 2001.

[9] Karp P., Paley S., and Zhu J., “Database
Verification Studies of SWISSPROT,” Journal of
Biomedical Informatics, vol. 37, no. 3, pp. 205-
219, 2004.

[10] Sheth A. and Larson J., “Federated Database
Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases,”
ACM Computing Survey, vol. 22, no. 3, pp. 183-
236, 1990.

[11] IEEE web site for Agents, www.fipa.org.
[12] The Intelligent Software Agents Lab Carnegie,

Mellon University, www.intelligent-agents.com.

Kulathuran Shunmuganathan is a
Phd student, completed MS from
BITS Pilani, and has passed ME
with distinction.. He is currently
working as assistant professor in
Noorul Islam College of

Engineering.

 Kumar Deepika is a prefinal year
BE (CSE) student of Noorul Islam
College of Engineering. Her topics
of interest are artificial intelligence,
DBMS, and image processing.

Kumaradhas Deeba is a prefinal
year BE (CSE) student of Noorul
Islam College of Engineering. Her
topics of interest are artificial
intelligence, DBMS, and image
processing.

