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Generating Exact Approximations to Model Check 
Concurrent Systems
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Abstract: In this paper, we present a method to generate abstractions for model checking concurrent systems. A program 
using a defined syntax and semantics, first describes the concurrent system that can be infinite. This program is abstracted 
using the framework of abstract interpretation where an abstract function will be given. This abstract program is  
demonstrated to be an accurate approximation of the original program that may contain spurious behaviours. These spurious 
behaviours will be identified and removed using a new defined abstraction framework based on the restrictions. The new 
produced abstract program is an exact approximation of the original program. 
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1. Introduction

In the literature, there are many techniques proposed to 
analyse  the concurrent  systems  [1,  2,  3,  4,  5,  8,  22]. 
Model Checking [5] represents one of the most useful 
results  of  almost  twenty  years  of  research  in  formal 
methods  to  increase  the  quality  of  software  and 
hardware systems. A model checker works with a high 
level  description  of  a  system  (model),  and  it  can 
automatically inspect the reachable states of the system 
to  check  if  a  given  property  (expressed  with  some 
variant of temporal logic) is satisfied.

In  the  context  of  model  checking,  abstract 
interpretation [6] is used as way of dealing with the so-
called  state  explosion  problem,  which  occurs  when 
realistic systems are analysed. Abstract model checking 
involves two activities.  On the one hand,  in order to 
reduce the  state  space of  the  original  model  M ,  we 
apply  abstract  interpretation  to  construct  an  abstract 
model M

~ approximating M . On the other, we abstract 
the original temporal properties.

The final objective of the abstraction process is the 
"strong preservation", that is, the preservation of both 
the truth and the falsehood, of the temporal properties 
j  between M  and M

~ , in other words,

               ϕϕα =⇔= M)(M
~

     
(1)

where a is the property abstract function. However, the 
strong preservation of the temporal  properties is  only 
possible if  M  and  M

~  are bi-similar, which entails a 
considerable  constraint  when  the  objective  is  to 
decrease the state space.

We  propose  in  this  paper  a  method  to  construct 
accurate approximations of infinite concurrent systems 

described by programs written with a defined syntax. 
By accurate approximations, we mean abstract models 
having  only  the  states  and  transitions  that  can  be 
mapped  to  concrete  states  and  concrete  transitions 
respectively.  The  accurate  approximations  can  have 
spurious  behaviours  that  are  executions  with  no 
corresponding executions in the concrete system. It is 
sufficient to remove these spurious behaviours to get 
an  abstract  system strongly  preserving  the  temporal 
properties.

Our method is different from the other techniques 
[9, 19, 20, 21]. For removing the spurious behaviours 
in  the  abstract  model  of  the  concurrent  system,  the 
techniques proposed in the literature refine gradually 
the abstract model in many steps. These methods use 
the generated counter-examples to refine the abstract 
model.  Thus,  the  abstract  model  is  augmented  by a 
behaviour  depending  on  the  generated  counter-
example. The new abstract model will be checked and 
if  the  property  is  not  satisfied,  the  process  of 
refinement  will  continue  using  the  new  generated 
counter-example until  the property is satisfied or no 
refinement is possible.  Our method identifies all  the 
spurious behaviours, and as a result, it will refine this 
abstract model in a one step.

It is often expensive or impossible to construct M
~  

directly because we must have a representation of M  
to do the abstraction. We may not be able to obtain 
such a representation if  M  is infinite or simply too 
large  for  our  system to  handle.  To  circumvent  this 
problem, we use a method that is based on the fact that 
we usually have an implicit representation of M  as a 
program in a concurrent language. We will show how 
to compute an approximation to M  directly from the 
program text. This approximation is generally accurate 
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enough to allow us to verify interesting properties of 
the program.

A  program  in  a  concurrent  language  can  be 
transformed into relational expressions I and R that can 
be  evaluated  to  obtain  the  initial  states  I and  the 
transition  relation  R  of  the  concurrent  system  M  
represented  by  the  program.  These  relational 
expressions are simply formulas in first-order predicate 
logic that will built up from a set of primitive relations 
for the basic operators and constants in the concurrent 
language.  We  will  manipulate  I and  R to  obtain  the 
approximation to M . 

There  will  typically  be  types  associated  with  the 
variables  and  relation  arguments  in  the  relational 
expressions that we write. A concurrent system is now 
represented by formulas  I and  R. Similar formulas  I

~  
and R

~  can be obtained representing M
~ .

The rest of the paper is organized as follows. Section 
2 is devoted to the definition of the syntax and 
semantics of the language used to write concurrent 
systems. This language is based on the first-order 
predicate logic. An example is given at the end of this 
section to illustrate these definitions. In section 3, we 
present the abstraction algorithm, which is based on the 
abstract interpretation framework. Section 4 presents 
the abstract model checking. In section 5, we present 
the method of removing the spurious behaviours after 
their definition to generate exact approximations. At the 
end a conclusion is given.

2. Describing Concurrent Systems

A  concurrent  program  will  describe  a  concurrent 
system,  which  is  the  parallel  composition  of  many 
processes, which is an infinite state-transition program. 
In  this  program,  we  specify  the  composed  transition 
relation, the initial state and the invariant. It is possible 
to  derive  this  infinite  state-transition program from a 
high level language describing concurrent systems. 

This program is composed of a finite set of variables 
{ }1 2, , , nV v v v= L .  If  each  variable  iv  ranges  over  a 

(non-empty) set  iå  of possible values, then the set of 
all possible program states is 1 2 nå ´å ´ ´ åL , which we 
denote by å . We present the possible behaviours of the 
program with a set of transitions between states.
Syntax: An infinite state-transition program  P=(R,  I,) 
consists of
C R  is the predicate of the system transition relation. 

This  predicate  is  a  disjunctive formula  of  a  set  of 
conjunctive  sub-formulas.  Each  conjunctive  sub-
formula  representing a  transition in  the  concurrent 
system  which  is  of  the  form  Ay Ù ,  for  a  state 
predicate  y  (the guard of the transition) and a set 

{ }: vA v a= =  of simultaneous assignments such that 

for  all  variables  v VÎ ,  the  expression  va  is  any 
acceptable expression.

 I is the predicate of initial state.
 g,  is  the program invariant,  a state predicate.  We 

require  ,  to  verify the condition,  that  is,  for  all 
states s Î S , s X  , .

A guarded transition defines a partial function from S  
to S . Let  g Ay= Ù  be the guarded transition and let 
s Î S  be a state. The guarded transition g is enabled in 
the state  s  if  s y . Any guarded transition that is 
enabled in s may be executed in s . The execution of 
g ,  in  particular,  leads  to  the  state  [ ]As ,  where 

[ ] ( ) ( )vA v as s=  for all  variables  v VÎ .  The infinite 

state-transition  program  ( ), ,=P =R I ,  defines  the 

transition relation PR  such that ( ),s s ¢Î PR if

 For some guarded transition  g Ay= Ù Î R ,  s y  

and [ ]As s¢= ,

 s ,  and s ¢ , .

Execution of a concurrent program may be defined by 
means of a transition system  M . If  MP is the set of 
paths of the transition relation PR , the invariant ,  of 
an  infinite  state-transition  program  P  defines 
precisely the set S PR  of states that occur on some M -
path. It follows that a non-deadlock infinite transition 
program can be executed by starting with the initial 
state that satisfies the invariant and then, repeatedly, 
choose a guarded transition that is enabled and whose 
execution does not violate the invariant. The iteration 
of  the  next  relation  defined  by  a  deadlock  infinite 
transition program, on the other hand, may lead to a 
state from which execution cannot continue. 
Example  1:  consider  a  system  composed  of  two 
processes (the dining mathematicians, example taken 
from [7]), which use a parallel version of the  Colatz 
program  for  the  mutually  exclusive  access  to  the 
critical section where they may eat. The set of system 

states  å  is  { } 2
,think eat N´ ,  where  N is  the  set  of 

natural numbers. An element 0 1, ,m m n Î S  represents 
the  state  of  each mathematician,  thinking  or  eating, 
and the current value of variable n . 

The  initial  state  0s  is , ,50think think ,  and  the 
infinite  state-transition  program  (which  is  the 
composition of the two processes) is defined as shown 
in  Figure  1.  That  is,  the  parity  of  n decides  which 
mathematician  may  eat.  ( )next ss = means  that  the 
next value of state s  will be equal s . This expression 
represents  the  conjunctive  sub-formula  composed  of 
the assignments in that transition. The unique trace in 

MP is
21

3 4

, ,50 , ,50

    , , 25 , , 25

    , ,76

t think think think eat
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think think
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For example, the transition 1t  has the corresponding 
predicate expression (which is evaluated to be true, 
because it is taken).

1 0 1

0 1

( 50 (50)

        ( ) ( ) ( ) 50)

m think m think n even

next m think next m eat next n

t = = Ù = Ù = Ù Ù

= Ù = Ù =

( )
( )
( )
( )

1 1
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0 0

0 0

{

  {

     , , ( ) ( ) , ,
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     , , ( ) ( ) , ,

     , , ( ) , , / 2

  }

  , ,50

  

}
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=

=
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=
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P

R

I
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Figure 1. The example program.

3. Abstractions

The  model  checking  works  only  on  finite  models. 
However,  it  is  not always  possible to construct finite 
models from the specification programs. Thus, we need 
to do abstractions. Abstractions [10] will be formed by 
letting the program variables range over (non empty) 
sets  %

iS  of abstract values. We will  give mappings to 
specify the  correspondence between unabstracted and 
abstracted  values.  Formally,  we  let  1 2, , , nh h hK  be 

surjection, with %: ii ih S ® S  for each i . These mappings 

induce a surjection %:h S ® S  defined by

         1 1 1(( , , )) ( ( ), , ( ))n n nh h hs s s s=K K                      (2) 

Alternatively,  the  relation  between  unabstracted  and 
abstracted  values  can  be  specified  by  a  set  of 
equivalence  relations.  In  particular,  each  ih  
corresponds  to  the  equivalence  relation  i i iÍ S ´ S:  
defined by

                     ( ) ( )i i i i i i id d h d h d¢ ¢Û =:                    (3)

The  mapping  h  induces  an  equivalence  relation 
Í S´ S:  in the same manner

1 1 1 1 1( , ) ( , , )n n n n nd d d d d d d d¢ ¢ ¢ ¢Û Ù ÙL : L : L :       (4)

Definition 1: 
Let  M be a concurrent  system over  S  and  M

~  be a 
concurrent  system  over %S .  We  say  that  M

~  

approximates M  (denoted M
~

0̂M k ) when:

• )~(I))(I~)(h( σσσσσ ⇒∧=∃ .
•

)~,~(R
~

)),(R~)(h~)(h(

21

2122121

σσ
σσσσσσσσ ⇒∧=∧=∃∃

Then  M
~  approximates  M when  initial  states  and 

transitions in  M have corresponding initial states and 
transitions in  M

~ . For exact approximation, we must 
have a type of converse as well: if s% is an initial state 
of  M

~ , then all of the states  s  of  M  that map to  s% 
should be initial as well (and similarly for transitions).

Definition 2: 
Let  M

~  be a concurrent system over %S . We say that 

M
~  exactly  approximates  M  (denoted  )M

~
M( h≈  

when M
~

0̂M k and:

• ))(~)(()~(
~ σσσσσ IhI ⇒=∀⇒

•

)0,0(R

~)(h~)(h()~,~(R
~

00000000

σσ
σσσσσσσσ

⇒
=∧=∀∀⇒

. 

Thus,  the  concrete  and  abstract  models  exhibit 
identical  behaviour.  Exact  approximations  generally 
allow very little simplification, and hence they are not 
very  useful  for  reducing  the  complexity  of 
verification.

3.1. Generating Accurate Abstractions

An accurate abstract concurrent system has only initial 
states  and  transitions  verifying  the  definition  of  the 
approximation.  We  call  this  accurate  abstract 
concurrent system aM

~
.

Definition 3: 

aM
~

is the concurrent system over %S  given by:

• ))(I~)(h()~(I
~

a σσσσσ ∧=∃⇔  

•

),(R

~)(h~)(h()~,~(R
~

00

00000000a

σσ
σσσσσσσσ

∧

=∧=∃∃⇔

Obviously M
~

0̂M k .  Further,  for  any  other 

concurrent system M
~ over %S , we see that  M

~
0̂M k  

if and only if  aI
~

I
~ ⊇  and aR

~
R
~ ⊇ . Thus,  aM

~
is the 

most  accurate  approximation to  M that  is  consistent 
with h .

For simplicity, we assume that all of the variables 
{ }1, , nV v v= K ,  range  over  the  same  domain  S .  We 

also  use  a  set  }v~,...,v~{V
~

n1= ,  of  variables 

ranging  over  the  abstract  domain  %S ,  with  iv% 
representing  the  abstract  value  of  iv .  We  will  also 
assume that there is only one abstraction function  h  
mapping  elements  of  S  to  elements  of  %S .  Each 
transition ( )guard nextt s s= Ù Ù , where

        
1 1

( ) and next( ) ( ( ) )
n n

i i i i
i i

v d next v es s
= =

= = = =Ù Ù      (5)
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in  the  transition  relation,  which  is  specified  in  the 
concurrent  system  program,  will  be  accurately 
approximated as.

1

1

( )

      ( ( ( ) | ( )))

     ( ( ( ) ( )))

n

i i i
i

n

i i
i

AccurateApproximation

v h d guard h d

next v h e

t t

=

=

= =

= Þ Ù

=

Ù

Ù

%

               (6)

By the same way, we can compute R
~ and I

~ .
Theorem 1:  R

~ and  I
~  are accurate approximations of 

R and I respectively.
Proof: The  demonstration  of  this  theorem  is  trivial, 
because  by  construction  we  are  creating  R

~ and  I
~

consisting solely from transitions and initial states that 
are  only mapped to concrete  transitions and concrete 
initial states respectively.
Definition 4: The equivalence relation :  is congruence 
with respect to a relation R  over S  if

          . ( ) ( )x y x y x y" " Î S Þ Û: R R                         (7)

If  the  mapping  function  h  induces  a  congruence 
equivalence  relation  :  with  respect  to  the  transition 
relation,  then  the  generated  accurate  approximation 

aM
~

 is an exact approximation.
Example  2:  Consider  the  abstract  concurrent  system, 

where  % { } { }2
, ,think eat e oS = ´ ,  where  e  means  the 

number  n  is  even  and  o  means  n  is  odd.  If 
{ }0 1, ,m m think eatÎ  and  n NÎ ,  we  can  define  the 

mapping function as

        

0 1 1 0 1 1 2

1

2

( , , ) ( ), ( ), ( ) ,  where

( )  and

 if  is even
( )

 if  is odd

h m m n h m h m h n

h m m

e n
h n

o n

=

=

ì
=í

î

        (8)

The abstract initial  state  I
~ and the abstract  transition 

relation  R
~  generated  by  the  algorithm  accurate 

approximation are presented in Figure 2. 
The abstract action of  : 3 1n n= ´ +  is  ( )even nØ .  But 

the abstract action of  : / 2n n=  is indeterminate which 
produces  imprecise  values.  Observe  that  in  this 
example  the  imprecision  of  the  action  : / 2n n=  is 
solved  by  means  of  a  non-deterministic  selection 
between  the  last  four  transitions.  We  should  remark 
also that  there are no reachable  states  in  the  abstract 
model from the specified initial state. The abstract trace 
approximating Mt Î P  is

21

3 4

( ) , , , ,

              , , , ,

              , ,

t h t think think e think eat e

think think o eat think o

think think e

tt

t t

= = ¾¾® ¾¾®

¾¾® ¾¾®

%

L

Note  that  M
~  contains  spurious  traces  that  are 

caused by the presence of non-deterministic transitions.
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Figure 2. The abstract program.

4. Model Checking

After  the  description  of  the  abstraction  process  of 
concurrent systems, we will present the process of the 
abstraction of their properties and we will show how 
the  abstract  system  can  preserve  these  temporal 
properties.

4.1. Temporal Logic

CTL* (Computation Tree Logic, * stands for universal 
logic)  [11]  is  a  powerful  temporal  logic  that  can 
express  both  branching  time  and  linear  time 
properties. If iv VÎ  is a program variable and i id Î S , 
then i iv d=  and i iv d¹  are atomic state formulas. true

and  false are also atomic state formulas.  We denote 
the set of atomic formulas by A .

Syntax  and  Semantics  of  CTL*: The  grammar 
given  below  defines  two  entities,  state  formulas 
(denoted by sf ) and path formulas (denoted by pf ). 
The logic CTL* is formally defined as the set of state 
formulas obtained by the grammar:
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:: | | | |

:: | | | | | |

         | | | |

sf p A sf sf sf sf sf

pf p A pf pf pf Fsf Gsf Xsf

sf sf Fpf Gpf Xpf pf pf

= Î Ø Ù " $

= Î Ø Ù

U U
            (9)

This grammar is not given in its most succinct form and 
there  exist  equivalence  rules  to  express  the  same 
formula with different operators. In practice, by using 
this equivalence rules,  a formula can be written such 
that  the  negation appears  only at  the level  of  atomic 
propositions.  Such  a  form of  a  formula  is  known as 
Positive Normal Form (henceforth PNF form) [12].

When  specifying  abstract  concurrent  systems,  the 

atomic  state  formulas  will  take  the  form  ii d
~

v~ =  

instead  of  i iv d= .  CTL [11]  is  a  restricted subset  of 
CTL* in which the "  and $  path quantifiers may only 
precede  a  restricted  set  of  path  formulas.  CTL is  of 
interest  because  there  is  a  very  efficient  model-
checking algorithm for it [13].  *CTL"  and CTL"  [14] 
are restricted subsets of CTL* and CTL respectively in 
which the only path quantifier allowed is " . These two 
logics are sufficient to express many of the properties 
that  arise  when verifying  programs.  As  we  will  see, 
these  logics  will  also  be  used  when  the  conditions 
needed for exactness do not hold.

A  path  in  M  is  an  infinite  sequence  of  states 
0 1 2s s sp = L  such that for every i Î N ,  1( , )i iR s s + . The 

notation np  will denote the suffix of p  which begins at 

ns . If  0 1 2s s sp = L  is a sequence of states from S , we 
denote  the  sequence  0 1 2( ) ( ) ( )h s h s h s L  by  ( )h p . 
Satisfaction of a state formula  j  by a state  s  ( s j( ) 
and  of  a  path  formula  y  by  a  path  p  (p y )  is 
defined inductively as follows.

•  and s true s false 

' if 1( , , )ns e e= K , i i i is v d e d= Û =

• i i i is v d s v d¹ Û = 

 s s sj y j yÙ Û Ù    

 0s s sj p p j" Û " ' = Ù   

• 0s s sj p p j$ Û $ ' = Ù 

• 0sp j jÛ 

• p j y p j p yÙ Û Ù  

•
1Xp j p jÛ 

• |  and ,n in i np j y p y p jÛ $ Î " <U N  

The notation M j  indicates that every initial state of 
M  satisfies the formula j .

4.2. Abstract Model Checking

In the case of an abstract concurrent system M
~ ,  we 

define satisfaction in exactly the same way except the 

atomic formula ii d
~

v~ =  is true at state 1, , ne e% %K  if and 

only if ii d
~

e~ = .

We now define a translation  a  between formulas 
describing  M  and  formulas  describing  the  abstract 
concurrent system M

~ . Our goal is to be able to check 
a  formula  ( )a j  on  M

~  and  infer  that  the 
corresponding formula j  holds for M . 

• ( ) ,  ( )true true false falsea a= =

 )d(hd
~

)d
~

v~())dv((a iiiiiii ====  

• ( ) ( )i i i iv d v da a¹ =Ø =

 1 2 1 2( ) ( ) ( )sf sf sf sfa a aÙ = Ù  

• 1 2 1 2( ) ( ) ( )sf sf sf sfa a aÚ = Ú

• ( ) ( )pf pfa a" ="

• ( ) ( )pf pfa a$ =$

• 1 2 1 2( ) ( ) ( )pf pf pf pfa a aÙ = Ù

• 1 2 1 2( ) ( ) ( )pf pf pf pfa a aÚ = Ú

• ( ) ( )Xpf X pfa a=

• 1 2 1 2( ) ( ) ( )pf pf pf pfa a a=U U

Thus,  a  temporal  property  j  is  abstracted  by  this 
translation  a , which guarantees that every model of 
the  abstract  property corresponds to  a  model  of  the 
concrete one. This property approximation is exact.
Example  2:  the  following  property  expresses  the 
mutual exclusion (at any time only one mathematician 
is eating)

 

))eatm~eatm~((G)(~
))eatmeatm((G

1011

101

=∧=¬∀==
=∧=¬∀=

ϕαϕ
ϕ

 

(10)         

The  property  to  express  that  the  mathematician  0m  
eventually eats is

                   
)eatm~(F)(~

)eatm(F

000

00

=∀==
=∀=

ϕαϕ
ϕ

    

Lemma 1: Assume  M
~

0̂M k .  If  p  is a path in  M , 

then ( )h p  is a path in M
~ .

Proof: The relation M
~

0̂M k means M
~  simulates M

.  Thus,  each  execution  (path)  in  M  has  its 
corresponding abstract execution in M

~ .
Using  this  observation,  we  present  the  main 

preservation  theorem:  formulas  that  hold  at  the 
abstract level also hold for the concrete system.

Theorem 2: Assume M
~

0̂M k , and let j  be a *CTL"  

formula describing M
~ . Then ϕϕα =⇒= M)(M

~
.

Proof: The relation  )(M
~ ϕα=  means that there is 

not a path in M
~  which falsifies the property ( )a j  (

( )a j  is a  *CTL"  formula). By Lemma 1, as all the 

(11)



142                                                         The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008 

paths in M  have their corresponding in M
~ , then there 

is no path in M  falsifying j . Thus, M j _  .
Note that this result only talks about preserving the 

truth of  formulas.  These formulas  describe  behaviour 
that  should hold on all  paths  from a state.  Since the 
abstraction process adds extra behaviours to the model, 
properties describing the existence of a path may not be 
preserved  in  the  same  manner.  Thus,  verifying 
something like absence of deadlock at the abstract level 
requires proving a stronger progress property.

In the case where M
~  exactly approximates M , we 

also  have  the  converse  result:  satisfaction  at  the 
concrete level implies satisfaction at the abstract level. 
We  note  that  paths  at  the  abstract  level  and  at  the 
concrete level exactly coincide.
Lemma 2: Assume M

~
M h≈ , and let  p  be an infinite 

sequence of states  from  S  (the  set  of  states of  M ). 
Then p  is a path in M  if and only if ( )h p  is a path in 

M
~ . Then we have the analogue of Theorem 2, except 

now going both ways.
Proof:  By construction  M

~  simulates  M.  Thus,  it  is 
sufficient to prove now that M  simulates M

~ . To show 
this,  it  is  sufficient  to  prove  that  for  each  pair  of 
abstract states 1s% and 2s%, if 2s% is a successor of 1s% by 

t% in the abstract system, then, for every pair 1s  and 2s  
of states in the concretisation of  1s% and  2s%,  2s  is the 
successor  of  1s  by  t  in  the  original  system.  Every 
concrete state 1s  in the concretisation of 1s% satisfies the 
guard  of  t ,  and  every  successor  2s  of  1s  is  in  the 
concretisation of 2s%. Thus, M  simulates M

~ .

Theorem 3: Assume  M
~

M h≈ , and let  j  be a CTL* 

formula describing M
~ . Then  ϕϕα =⇒= M)(M

~
.

Proof:  The  proof  is  trivial  because  ±
hM M»  means 

M
~

0̂M h  and M0̂M
~

h .

The strong preservation result allows us to avoid 
false negative results (which can be produced by 
spurious behaviours) by mapping abstract error traces 
to concrete executions violating the property. However, 
the condition for strong preservation requires that aM

~
 

be deterministic. This is usually not the case. However, 
in the next section we will identify the spurious 
behaviours and we will show how to remove them. The 
result is a deterministic abstract system, which is an 
accurate approximation, and then it is exact.

5. Removing Spurious Behaviours

In  this  section,  we  will  propose  a  method  for 
abstracting  the  abstract  concurrent  system  M

~  to 
remove  the  spurious  behaviours.  The  new  abstract 
concurrent  system  ( M

~ )  should  contain  all  the 
behaviours that are in the original concurrent system. 
With this method,  we will  reduce the size of  M

~  by 

restricting its behaviour instead of its structure (states 
and transitions). 

5.1. Defining Spurious Behaviours

A  non-deterministic  transition can yield  an ordinary 
non-deterministic path (we call it Form A, Figure 3) or 
a non-deterministic loop (Form B, Figure 4) [15, 16, 
17]. 

The form A means that at its states, it is possible to 
have  non  deterministic  abstract  variables  and  the 
model-checking system can take the values (or states) 
to  produce  the  path  following  the  appropriate 
transitions (coloured states) to give a counterexample 
by which it demonstrates the non satisfaction of the 
property. This abstract error trace represents a possible 
behaviour  in  the  concrete  system,  which  is  an 
equivalent valid concrete error trace, because during 
construction it was not possible to give deterministic 
values to those abstract variables.           

Figure 3. Non deterministic path.

In contrast, the form B (Figure 3) means that there 
is a possible spurious loop from the state is  until the 
state  ks  then it  returns back to the state  is .  In the 
abstract system this loop is an infinite loop because of 
the non-deterministic aspect, but it can be a finite loop 
in the concrete system, which means that after a finite 
number  of  iterations  the  behaviour  of  the  concrete 
system will take a transition to one of the uncoloured 
states inside the loop if there is one.

Figure 4. Non-deterministic loop.

Theorem 4: Any infinite loop in the abstract system is 
a  spurious  infinite  loop  if  one  of  its  transitions 
contains a non-deterministic abstract variable.
Proof: We assume that the abstract system contains an 
infinite loop. An infinite loop contains a finite set of 
transitions  from the  abstract  system  to  be  executed 
forever. Then the transition from one state to another 
is deterministic to make this infinite loop. So, all the 
guards  of  transitions  are  deterministic  which  means 
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that there are not non-deterministic variables. This is a 
contradiction with what it was supposed.

5.2. Abstraction for Removing Spurious      
       Behaviours

After the identification of the spurious behaviours and 
their  causes that  are  non-deterministic transitions,  we 
present  the  method  of  removing  these  spurious 
behaviours.  This  method  adds  components  to  be 
synchronized  with  the  original  abstract  concurrent 
system. 

For  each  non-deterministic  transition  we  parallel 
compose  a  component  to  be  synchronized  with  the 
original abstract concurrent system.  With this parallel 
composition  we  will  restrict  the  abstract  concurrent 
system to not execute the spurious behaviours (spurious 
loops).

                              iP
~

1i

k
P
~

P
=

=


 

(12)

where, P
~ is the original abstract program with possibly 

spurious  behaviours,  k  is  the  number  of  non-

deterministic  transitions  in  P
~ and  iP

~
 is  the 

corresponding  component  to  the  non-deterministic 
transition to be parallel composed with P

~ .

}

true

)B~(I
~

}

)B)~(nextB~(

)B)~(nextB~(

{R
~

{P
~

i

ii

ii

i

=
==

=∧¬=
∨¬=∧=

=

=

σ

σσ
σσ

where iB  is a new Boolean variable used to remove the 
spurious loop.
Example  3:  The  abstract  program  in  Example  2 
contains  two  non-deterministic  transitions.  The 
abstraction of this program gives the following abstract 
program.

5.3. Experimental Results

Symbolic  Model  Verifier  (SMV)  [18]  is  a  model-
checking tool;  it  has an automaton-based language to 
specify  systems.  SMV  uses  an  automatic  decision 
procedure  to  verify  the  system  specification  against 
CTL properties.  The  equivalent  SMV  module  of  the 
abstract program that is mentioned in Example 2 is:
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MODULE main
VAR
  n : {e, o} ;
  m0, m1 : {think, eat} ;
ASSIGN
  init(n) := e ;
  init(m0) := think ;
  init(m1) := think ;
TRANS
  (m0 = think & n = o & next(m0) = eat & 
   next(n) = o & m1 = next(m1)) |
  (m0 = eat & n = o & next(m0) = think & 
   next(n) = e & m1 = next(m1)) |
  (m0 = eat & n = e & next(m0) = think & 
   next(n) = o & m1 = next(m1)) |
  (m1 = think & n = e & next(m1) = eat & 
   next(n) = e & m0 = next(m0)) |
  (m1 = eat & n = e & next(m1) = think & 
   next(n) = e & m0 = next(m0)) |
  (m1 = eat & n = e & next(m1) = think & 
   next(n) = o & m0 = next(m0)) |
  (m1 = eat & n = o & next(m1) = think & 
   next(n) = e & m0 = next(m0)) |
  (m1 = eat & n = o & next(m1) = think & 
   next(n) = o & m0 = next(m0))
INVAR
  1
SPEC
  AG(!(m0 = eat & m1 = eat))
SPEC
  AF(m0 = eat)

Figure 5. SMV program for example 2.
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The model checking results, of the constructed model 
from  this  abstract  program  using  the  SMV  model 
checker are:

• The first property of mutual exclusion (at any time 
only  one  mathematician  is  eating)  expressed  in 
equation 10 is checked to be satisfied. 

• But the property (the mathematician 0m  eventually 
eats) expressed in equation 11 is checked to not be 
verified.  The  generated  counter  example  is  as 
follows:

Figure 6. Spurious loop.

This  is  a  spurious  loop.  The  equivalent  SMV 
program  after  removing  the  spurious  behaviours,  as 
mentioned in Example 3 is shown in Figure 7.

After  removing  the  spurious  behaviours,  the  two 
properties  (equations  10  and  11)  were  checked 
satisfied.

MODULE main
VAR
  n : {e, o} ;
  m0, m1 : {think, eat} ;
  B1, B2 : boolean ;
ASSIGN
  init(n) := e ;
  init(m0) := think ;
  init(m1) := think ;
TRANS
  (m0 = think & n = o & next(m0) = eat & 
   next(n) = o & m1 = next(m1) & next(B1) 
   = B1 & next(B2) = B2) |
  (m0 = eat & n = o & next(m0) = think & 
   next(n) = e & m1 = next(m1) & next(B1) 
   = B1 & next(B2) = B2) |
  (m0 = eat & n = e & next(m0) = think & 
   next(n) = o & m1 = next(m1) & next(B1) 
   = B1 & next(B2) = B2) |
  (m1 = think & n = e & next(m1) = eat & 
   next(n) = e & m0 = next(m0) & next(B1) 
   = B1 & next(B2) = B2) |
  (m1 = eat & n = e & B1 & next(m1) = 
   think & next(n) = e & m0 = next(m0) & 
   next(B1) = !B1 & next(B2) = B2) |
  (m1 = eat & n = e & !B1 & next(m1) = 
   think & next(n) = o & m0 = next(m0) & 
   next(B1) = !B1 & next(B2) = B2) |
  (m1 = eat & n = o & B2 & next(m1) = 
   think & next(n) = e & m0 = next(m0) & 
   next(B1) = B1 & next(B2) = !B2) |
  (m1 = eat & n = o & !B2 & next(m1) = 
   think & next(n) = o & m0 = next(m0) & 
   next(B1) = B1 & next(B2) = !B2)
INVAR
  1
SPEC
  AG(!(m0 = eat & m1 = eat))
SPEC

  AF(m0 = eat)

Figure 7. SMV program for example 3.

6. Conclusion

We have presented a method to generate abstractions 
without  spurious  behaviours  of  concurrent  systems. 
The  abstraction  process  takes  as  input  a  program 
based  on  relational  expressions  of  the  transition 
relation  and  the  initial  states.  Then,  it  generates  an 
accurate  abstraction  using  the  abstract  interpretation 
framework.  The  abstract  system  is  then  abstracted 
using  the  method  of  restrictions  to  remove  the 
spurious behaviours. 

We have used the model checker [18] to verify our 
method  on  the  examples:  the  mathematician  dining 
(presented in this paper), the bakery protocol, and the 
greatest common divisor.

Our future work is to develop a tool implementing 
this approach and testing large concurrent systems. On 
the  other  hand  investigating  special  cases  for  the 
framework of abstract interpretation.
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