
The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008 85

Enforcing User-Defined Constraints During the
Run-Time in OODB

Belal Zaqaibeh1, Hamidah Ibrahim2, Ali Mamat2, and Nasir bin Sulaiman1

1Faculty of Science and Information Technology, Zarqa Private University, Jordan
2Universiti Putra Malaysia, Malaysia

Abstract: In this paper a run-time model is proposed. The run-time model enforces integrity constraints for attributes that are
derived from composition and inheritance hierarchies. The run-time model is designed for enforcing the logical integrity
constraints in object-oriented databases during the run-time. A new technique called detection method is designed to check the
object meta data to detect and catch the object-oriented databases violation before it occurs. Furthermore, we have
implemented the RTM and supported set of definitions that are for checking attribute values validity, object-oriented databases
consistency, and also a method for verifying attribute values when inserting, deleting, and updating objects.

Keywords: Object-oriented databases, integrity constraints, constraints violation.

Received December 12, 2006; accepted May 13, 2007

1. Introduction

The data accuracy, consistency, and integrity in
Object-Oriented Databases (OODBs) are extremely
important for developers and users. The current OODB
Management Systems (OODBMSs) lack the capability
of an ad-hoc declarative specification of enforcing and
maintaining Integrity Constraints (ICs) that appear as a
result of composition and inheritance hierarchies. ICs
are conditions that data within a database must satisfy.
Integrity maintenance or constraint enforcement is a
set of activities to keep OODBs in a consistent state,
where all instances in the OODB satisfy ICs.

This paper presents our contribution for this
research, in which it clarifies the Assertion Model of
ICs (AMIC). This paper is organized as follows.
Section 2 presents the groundwork of our research.
Section 3 explores the AMIC features, which includes
Compile-Time Model (CTM) for Structural ICs (SIC),
Run-Time Model (RTM) for Logical ICs (LIC), Object
Meta Data (OMD), and Detection Method (DM). The
IC enforcement for RTM is presented in section 4
when inserting, deleting, and updating objects. Section
5 presents the related and future work. Naturally, we
end this paper by a conclusion in section 6.

2. Background

The increased emphasis on process integration is a
driving force for the adoption of OODBSs [2]. For
example, the CAD area is focusing heavily on using
OODB technology as the process integration
framework. Advanced office automation systems use
OODBMSs to handle hypermedia data. Image
processing and designing systems use OODB

technologies for ease of use. All of these applications
are characterized by having to manage complex, highly
interrelated information, which is strength of OODBs.
Clearly, relational databases technology has failed to
handle the needs of complex information systems [7].

ICs in OODBSs are maintained either by rolling
back transactions that produce an inconsistent state, or
by disallowing operations that may produce an
inconsistent state for the constraints [2, 4]. Existing
OODBMSs lack the capability for an ad-hoc
declarative specification of maintaining the ICs. An
alternative approach is to provide automatic detection
of inconsistent states. For each constraint, a rule is
used to detect constraints violation and to initiate
database operations to restore consistency.

Some ICs are represented naturally and maintained
in OODBs, by capturing the violation using the type
system and the class hierarchy [8]. Checking the ICs in
OODBs is a fundamental dilemma in database design,
because current OODBMSs lack the capability of an
ad-hoc declarative specification of maintaining ICs that
appear as a result of composition, association, and
inheritance hierarchies. The constraints must be
maintained in the backward direction along the class
composition hierarchy as well as in the forward
direction. The AMIC can represent ICs and their
relationships over the composition, association, and
inheritance hierarchies [10].

3. The ATM Components

The AMIC architecture consists of four components, as
shown in Figure 1, namely: CTM, RTM, OMD, and
DM. The IC enforcement and maintenance are divided
into two phases (compile-time and run-time). In

86 The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008

compile-time the CTM enforces and maintains SICs
while the RTM enforces LICs during run-time phase.
The CTM is performed only once for each OODB,
while the RTM is performed whenever an update is
submitted for processing.

Figure 1. The AMIC architecture.

The separation of the system architecture into two
phases reflects the fact that two different users may be
involved. The user in the CTM, who interacts with the
system and supplies it with added information, is
referred to as the constraint designer. The user in the
RTM, who uses the real system, is referred to as the
end-user.

3.1. Complie-Time Model

The CTM is responsible for enforcing and maintaining
ICs when a constraint designer submits a request
during the compile-time. The CTM results a consistent
constraints that are stored in the OMD. More details
can be found in [9].

3.2. Detection Method

The DM is an overloaded method that can access and
modify the OMD. The DM is designed for constraint
validation checking purpose. Therefore, the DM has
two functions that are differentiated from each other by
their arguments. The first DM function is illustrated in
Figure 2, which it has, the arguments: CID, AID,
RCID, RAID, set of ACs, set of UDCs, and set of SCs.

Figure 2. The DM heading.

The second DM method is illustrated in Figure 3
with the arguments: CID and AID.

Figure 3. The heading of the overloaded DM.

The CID and AID are the composite key to reach
the information about any attribute in the OMD. This
information includes constraints base, derivation path,
domains, derived attributes, and superclasses. The CID
is a unique ID over the OODB level, this means the
CID cannot be repeated even if a class is deleted then
declared. The AID represents the ID for an attribute in
a particular class, where the ID is unique under the
class level; this means the AID can be repeated in
different classes. The RCID represents the ID for the
superclass if the attribute is derived from inheritance or
composition hierarchies. The RAID represents the ID
of an attribute when the current attribute is derived
from other attribute.

3.3. The Object Meta Data

The OMD is the constraints map, it is responsible for
building the specific knowledge base of the constraints
of OODBs and is built once by the CTM [9]. The
OMD is a data structure containing a record for each
constraint and attribute. The data structure allows to
find the record for each identifier quickly and to store
or retrieve data from that record immediately too. Each
attribute has a domain, which is the valid value that
can be stored in a particular attribute.

A domain attribute is the range of its data type or set
of values that are controlled by constraints in different
ways like constant values, attributes or aggregate
functions. An essential step is that, simplifying the
constraints in domains, this means determine the
attribute domain by its data type and constraint. The
attribute domain controls the attribute values in the
OMD.

3.4. Run-Time Model

The RTM is responsible for enforcing the ICs,
verifying transactions (inserting, updating, and deleting
objects), checking constraint domains, and maintaining
the unaccepted user request. The RTM communicates
with the DM to get the constraints and attributes
information. However, all transactions must remain the
OODB in a consistent state. The RTM consists of the
following components, as illustrated in Figure 4.

User Interface (UI) forms the interactive interface,
which handles the dialogue between RTM and its
users. Users may delete or insert objects and the RTM
handles their actions. Update Analyzer (UA) uses the
knowledge about the constraints that are provided by
the DM and maps each update request into a set of
domains then sends them to the Update Checker (UC)
with the involved attributes and constraints. The UC
communicates with the DM to get the constraints and
attributes path. Moreover, the UC checks the action
knowledge and derives them to the Update Enforcer
(UE). The UE is responsible for enforcing the ICs and
verifying transactions by checking constraint domains.

OMD

DM RTMCTM

DM (CID, AID, RCID, RAID, {AC}, {UDC}, {SC})

Attribute ID
Related
Attribute ID

Antecedent
Constraints

Related
Class ID

User Defined
Constraints

Supplement
Constraints

Class ID

DM (CID, AID)

Attribute IDClass ID

Enforcing User-Defined Constraints During the Run-Time in OODB 87

The Update Maintenance (UM) is responsible for
maintaining the unaccepted user request. The UM
sends the actions that cannot be maintained to the Error
Handler (EH) and the maintained action to the DM.
The EH is responsible for handling errors then reports
the violation knowledge. Each phase can encounter
errors. However, after detecting an error, the present
phase must somehow deal with that error.

Figure 4. The RTM architecture in AMIC.

The DM has several functions that depend on the
connection phase. Subsequently, the DM receives UA
requests and accesses the OMD to get the attributes
and constraint knowledge that is stored by the CTM
during the compile-time [9] then sends them to the UA.
Other functions are that receiving (UC and UE)
requests and sending the attributes (knowledge and
domains). If a user request does not violate the
database and can be enforced in the UE then the DM
allows the user request to be performed. Moreover, the
DM receives the actions from the UM if a user request
needs to be maintained whereas the UM does the
maintenance.

Typically, algorithm 1 presents the main functions
of the RTM for enforcing ICs. The CTM and RTM are
integrated and implemented in the AMIC. The RTM
receives u_r through the UI, and then analyzes it in the
UA to determine the action type (insert, update, or
delete) with the help of the DM, whereas the UA
communicates with DM by sending requests and
receiving knowledge about the involved attributes and
constraints. Subsequently, The UA sends requests of
u_r to the DM to get the involved attributes,
constraints, and their paths. Moreover, after all
required u_r information is collected, the UA sends
streams of u_r to UC for checking purpose.

A. Input: User request (u_r).
B. Output:

1. The results of performing the u_r,
2. Violation knowledge if the u_r is invalid.

C. Steps:
Start
Repeat
UI  u_r,
UA  UI(u_r)
UA  OMD ↔ DM(CID, AID, RCID, RAID,

 {AC}, {UDC}, {SC})
UC  UA
UE  DM ↔ UC
For i =1 to n Do

If Verify(Val, O.Ai) Then
DM  UE
 Else
UM  UE
If UM (u_r) Then

 goto Step 5
 Else
 EH  UM
 goto Step 21

 End If
End If

Until u_r = ∅
End

Figure 5. Algorithm 1 RTM.

The UC communicates with the DM to get attribute
domain then sends the u_r with the related (antecedent/
supplement) attributes and constraints to the UE.
Subsequently, the u_r is enforced in the UE by
verifying the new values with the attribute domain.
However, if the u_r is verified and remained true then
the UE will send the u_r to the DM otherwise to the
UM for maintenance purpose. If the u_r can be
maintained then the UM will send it to the DM
otherwise to the EH to show the violation knowledge
and abort the u_r.

4. Integrity Enforcement in RTM

In this section, we discuss integrity enforcement and
maintenance when objects are inserted, updated, or
deleted. Enforcing ICs in RTM occurs during the run-
time, so the maintenance of RTM is required whenever
event is submitted. Therefore, there are two general
steps to be performed. First, all constraints that would
be violated must be found. Second, the AMIC should
determine what action must be taken.

• Definition 1: values validity, Let O be an object, C a
constraint on O, D the domain of C, A an attribute in
O where Ai ∈ A, Val is a value of Ai, and
Verify(Val, O.Ai) returns true if Val is a value that
accepted in Ai and δ (C) is true otherwise false.
Before inserting a new object, all the values in each
attribute must be verified to satisfy its constraints.
Therefore, if an invalid value is assigned to an
attribute then the AMIC will reject it.

• Definition 2: database consistency, Let D be an
OODB that has an object O, a constraint C on O,
and attribute A. Also Let Val be a value to be

Request

Action

Request

Constraint
Knowledge

Maintain

Attribute
Knowled
ge

unaccepted
update

Erro
r

Error
Handler

Violation Knowledge

Attributes
and

Request

Request

Attribute
Domain

Attribute
Domains

Request
/Action

Update
Stream

User
Interface
(UI)

Update
Enforcer
(UE)

Update
Analyzer
(UA)

OODB

Update
Checker
(UC)

Update
Maintenance
(UM)

Error
Handler
(EH)

OMD

The RTM DM

88 The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008

inserted into A and D+ or D is the new D state after
inserting, deleting, or updating O. Subsequently, if
Verify(Val, O.A) remains true then D is consistent
and is denoted by D+ otherwise D is inconsistent
and denoted by D. Therefore,

−+

=∩ DelseDThenTrueis)A.0,Val(VerifyIF n
1i

(1)

Generally, an object may have a set of attributes, so
when inserting a new object, the AMIC verifies all
attributes and constraints. If a constraint is not satisfied
then this will violate the database.

• Definition 3: calling function, Let D be an OODB
and Calli ∈ Call be a function call for the DM(CID,
AID), i=1, 2, …, n, and the OODB is D+ if Calli
remains true otherwise D . Therefore,

 −+
=∩ DelasDThenTrueisCallIf 1

n
1i

(2)

Figure 6 shows a composition, association, and
inheritance hierarchies among Person, Child, and Meal
classes. Child has composed and inherited Person and
also is associated with Meal.

Figure 6. Classes and their constraints.

As mentioned earlier, the AMIC generates the OMD
in the CTM. Therefore, the AMIC will call the DM to
read the OMD and verify whether the new update will
violate the database or not. The DM will call each
attribute in the following format:

 DM(CID, AID, RCID, RAID, AC, UDC, SC) (3)

Then verifies whether the values are accepted in the
intended attributes or not. The DM verifies the AC,
UDC, and SC for each called attribute. The idea is to
instantiate the relevant constraint with the object to be
inserted, updated, or deleted. Then the processes are
simplified by eliminating unnecessary comparisons.
The simplified form of the constraint is evaluated
before an object is inserted to the database.

The process before enforcing LICs in RTM is to
create the OMD that includes all the knowledge about
classes and their members. Since we are dealing with
UDCs, and regardless whether the classes are designed
in a good or bad design, all constraints and domains
are verified, optimized, and collected in the OMD, as
shown in Figure 7.

Figure 7. The optimized domains in the OMD.

Also, the attributes and their relationships are stored
in the OMD, as shown in Figure 8. The association
between Meal and Child does not inherit attributes
from class to another. In the contrary of that the
inheritance and composition between Person and
Child propagate constraints and attributes to Child, as
the RCID and RAID illustrate for Child.

All processes to create the OMD are categorized
under the CTM. In the RTM, the AMIC enforces the
data integrity whenever a request for inserting,
deleting, or updating objects occurs.

4.1. Inserting Object

When inserting a new object, all constraints in OMD
that are related to that object must be checked to verify
the new data state. By referring to Figure 6, we can
declare three different objects (OM, OP, and OC) from
the classes (Meal, Person, and Child respectively).
Each object carries a class members and a reference to
the OMD. A reference supervises the connection
between the object and its related constraints in the
OMD. Let us consider the following cases of insertion:

{Age between 0 and 18}
{Relation in [father, mother]}
{Tax >= Age * 12.5}
{Type in Meal.Category}
{Parent.Age >= Age + 18}

Person

{Age >18}
{Gender in [‘M’, ‘F’]}

Child

get_age()

Meal

{Category in [A, B, C]}

1* Category: Char
Food: String

Age: Integer
Bdate: Date
Relation: String
Tax: Real
Type: Char
Parent: Person

ID: Variant
Name: String
Gender: Char
Age: Integer

Enforcing User-Defined Constraints During the Run-Time in OODB 89

A. Case 1: Inserting a new data into OM

• OM(Category, Food)
• This requires to enforce the DM(1,1) and

DM(1,2). Subsequently, the AMIC will call the
DM as follows:

• Call1: DM(1, 1, 0, 0, {}, {D1}, {DM(3,5)})
• Call2: DM(1, 2, 0, 0, {}, {}, {})

The DM(1,1) must be in D1 domain to satisfy its
constraint as shown in Call1, otherwise the insertion
request will be rejected and the violation path will be
showed. Moreover, the DM is not called for the SC of
DM(3,5) because the Meal is not propagated from any
class. For the DM(1,2), there is no AC, UDC, or SC to
be checked as shown in Call2, so the new data will be
accepted if it satisfies Verify(Val, DM(1,1)) and
Verify(Val, DM(1,2)).

Figure 8. The OMD for child database.

B. Case 2: Inserting a new data into OP

• OP(ID, Name, Gender, Age)

• This requires to enforce the DM(2,1), DM(2,2),
DM(2,3), and DM(2,4). Subsequently, the AMIC
will call the DM as follows:

• Call3: DM(2, 1, 0, 0, {}, {}, {})
• Call4: DM(2, 2, 0, 0, {}, {}, {})
• Call5: DM(2, 3, 0, 0, {}, {D3}, {DM(3,8),

DM(3,12)})
• Call6: DM(2, 4, 0, 0, {}, {D2}, {DM(3,9)})

In Call3 and Call4 there are no UDCs that were
defined so the AMIC accepts data for these attributes.
In Call5 there is a UDC which is D3 and also SCs.
Thus, the new data in OP for this attribute must satisfy
D3 else it will not be accepted. Moreover, in Call6
there is a UDC D2 that enforces DM(2,4) data.
Typically, the AMIC will not check the SCs for the
DM(3,8), DM(3,12), and DM(3,9) because Person is
not propagated from any class.

C. Case 3: Inserting a new data into OC

• OC(Age, Bdate, Relation, Tax, Type, Parent.ID,
Parent.Name, Parent.Gender, Parent.Age, ID,
Name, Gender)

• This requires to enforce the DM(3,1), DM(3,2),
DM(3,3), DM(3,4), DM(3,5), DM(3,6), DM(3,7),
DM(3,8), DM(3,9), DM(3,10), DM(3,11), and
DM(3,12). Then, the AMIC will call the DM as
follows:

• Call7: DM(3, 1, 0, 0, {}, {D4}, {DM(3,4),
DM(3,9)})

• Call8: DM(3, 2, 0, 0, {}, {}, {})
• Call9: DM(3, 3, 0, 0, {}, {D5}, {})
• Call10: DM(3, 4, 0, 0, {D4}, {D6}, {})
• Call11: DM(3, 5, 0, 0, {D1}, {D7}, {})
• Call12: DM(3, 6, 2, 1, {}, {}, {})
• Call13: DM(3, 7, 2, 2, {}, {}, {})
• Call14: DM(3, 8, 2, 3, {D3}, {}, {})
• Call15: DM(3, 9, 2, 4, {D2, D4}, {D8}, {})
• Call16: DM(3, 10, 2, 1, {}, {}, {})
• Call17: DM(3, 11, 2, 2, {}, {}, {})
• Call18: DM(3, 12, 2, 3, {D3}, {}, {})

The analysis is clarified in the following points:

• With no constraints: In Call8, Call12, Call13,
Call16, and Call17 there are no ACs, no SCs, and
no UDCs. We notice here from the RCID and RAID
that the Call8 is verifying the attribute DM(3,2)
which exists in the current class. On the other hand,
the Call12 and Call13 are verifying the attributes
that are inherited from composition hierarchy. And
also Call16 and Call17 are inherited from
inheritance hierarchy.

90 The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008

• UDCs: In Call9 there is a UDC which is D5, so the
AMIC will call and verify the DM(3,3) as it must be
“father” or “mother” to be accepted.

• ACs: In Call14, and Call18 there is an antecedent
D3 that is derived from the composed class for
Call14 and from the inherited class for Call18.
Subsequently, because D3 is the domain of DM(2,3)
so this requires calling the DM for Call5 as the
DM(3,8) and DM(3,12) must be “M” or “F” to be
accepted.

• ACs and UDCs: In Call10, Call11, and Call15 there
are ACs and UDCs. We notice here Call10 requires
verifying the D4 and D6 that are declared in the
current class. And also Call11 requires verifying the
domain D1 that is derived from the associated class.
Furthermore, Call15 requires verifying the D2 that
is derived from the composed class. However, for
Call10 the AMIC will verify the DM in Call7, for
Call11 the AMIC will verify the DM in Call1, and
for Call15 the AMIC will verify the DM in Call6,
and Call7.

• SCs and UDCs: In Call7 there is a UDC which is
D4. AMIC will verify the attribute DM(3,1) whether
it satisfies D4 or not. Consequently, the AMIC will
verify the SCs DM(3,4) and DM(3,9) by Call10 and
Call15.

4.2. Deleting Object

Deleting object from independent classes (intra-class
constraints) does not require verifications for any
constraint. In the contrary, deleting object from
dependent classes (classes with composition,
inheritance, or association relationships) requires
verifying the SCs only in the deleted objects and also
the ACs, UDCs, and SCs in the associated, inherited or
composed objects. For instance:

• Deleting the OM required to verify the supplement
DM(3,5) and this leads to verify Call11,

• Deleting the OP required to verify the supplements
DM(3,8), DM(3,9) and DM(3,12) and this leads to
verify Call14, Call15 and Call18,

• Deleting the OC required to verify the supplements
DM(3,4) and DM(3,9) and this leads to verify
Call10 and Call15.

4.3. Updating Object

Updating objects requires keeping the current database
state D until verifying the ICs in D+. Based on Figure
5, let us consider the following cases that may occur
during the RTM and may affect D.

A. Case 1, Update statement that modifies OC.Name
and OC.Parent.Name with the values Pname and
Cname respectively (Pname and Cname are two
variables with new values). Then, The attribute

OC.Parent.Name DM(3, 7, 2, 2, {}, {}, {}) is
derived from composition hierarchy and OC.Name
DM(3, 11, 2, 2, {}, {}, {}) is derived from
inheritance hierarchy, and these are Call13 and
Call17 respectively. Each DM has no UDCs, so it is
impossible to have D- if and only if Verify(Pname,
DM(3,7)) and Verify(Cname, DM(3,11)) remain
true.

B. Case 2, Update statement that modifies OC.Relation
value with Newrelation (Newrelation is a variable
with a new value). Then, The OC.Relation DM(3,3)
must satisfy D5 to enforce ICs as shown in Call9. If
Verify(Newrelation, DM(3,3)) remains true then the
AMIC results D+ else aborts the user request and
keeps the violation path.

C. Case 3, Update statement that modifies
OC.Parent.Age with Newage value (Newage is a
variable with a new value). Then, The AMIC gets
DM which is DM(3,9) for OC.Parent.Age attribute.
To enforce the ICs of DM(3,9) the AMIC verifies
Call15 which it requires to satisfy D2, D4 and D8 to
remain D+. Since D2 is the domain of the constraint
that has been declared on DM(2,4) then AMIC will
verify Call6. So if Call6 remains true the AMIC
will verify the next domain otherwise abort the
current user request. For D4 the AMIC calls
DM(3,1) and verifies Call7. Moreover, the AMIC
verifies Call10 because DM(3,1) has SCs. If each of
Call15, Call6, Call7 and Call10 remains true as
follows:

• D is
n

1i=∧ Calli

• D is Call15 ∧ Call6 ∧ Call7 ∧ Call10
• D is true
• D is D+

This produces a consistent database. By referring to
definition 3 the AMIC results D+ and accepts the
updating statements. But if any of the Call15, Call6,
Call7, or Call10 returns false then:

• D is
n

1i=∧ Calli

• D is Call15 ∧ Call6 ∧ Call7 ∧ Call10
• D is false
• D is D-

If the updating request is rejected then the cause of
violation and its path will be known. And this is a clear
advantage of AMIC, as the current OODBMS and
object-oriented applications do not have the ability to
support the violation path.

5. Related Work

The proper handling of ICs is essential to any data
storage and management. Handling ICs is an essential
premise to managing semantically rich data [7]. In
OODBs, checking the ICs is a fundamental problem in
the database design [7]. The automated verification of

Enforcing User-Defined Constraints During the Run-Time in OODB 91

constraints and their enforcement provided by current
OODBMSs is limited [7, 6] due to the user
participation is required.

OODBMSs do not have adequate support for certain
types of constraints especially the ones defined in a
class composition and inherence hierarchies [1, 7, 5,
3]. The ICs must be maintained in the backward
direction along the class hierarchies as well as in the
forward direction. It seems to be no obstacles in
extending the proposed model to deal with constraints.
OODBs.

More work can be done when copying an object of a
superclass to another object of a subclass and vise
versa. For such problem downcasting and slicing must
be taken in account. Moreover, when a multiple
inheritance occurs and the same attribute name existed
in more than one superclass, then a virtual class is
needed.

6. Conclusion

This paper has shown the RTM properties,
specifications, and architecture. The AMIC has made a
big challenge in the OODM environment as it can
represent constraints and complex relationships among
attributes and classes that are derived from
composition and inheritance hierarchies, whereas the
current OODBs are deficient in such properties.

A set of definitions is supported for checking
attribute values validity, OODB consistency, and also a
method for verifying attribute values when inserting,
deleting, and updating objects. Thus, the AMIC is able
for enforcing and maintaining ICs in SICs by the CTM
and LICs by RTM. The CTM is designed for enforcing
the constraint base during the compile-time while the
RTM is designed for enforcing the data integrity
during the run-time.

The OMD keeps track the constraint paths in the
backward direction as well in the forward directions,
keeps the constraint knowledge to ease accessing them,
and includes knowledge about attributes and their
relationships, constraints, and domains. Typically,
RTM is an automated model that can enforce ICs the
run-time.

References

[1] Bagui S., “Achievements and Weaknesses of
Object-Oriented Databases,” Journal of Object
Technology, vol. 2, no. 4, pp. 29-41, 2003.

[2] Brown P., Object-Relational Database
Development, Addison-Wesley, 2001.

[3] Choi I., Bae S., Do N., and Yun M., “Backward
Propagation of Engineering Constraints in Active
Object-Oriented Databases,” in Proceedings of
the 22nd International Conference on Computers
and Industrial Engineering, Cairo, pp. 20-23,
1997.

[4] David W., Object Database Development
Concepts and Principles, Addison-Wesley,
1998.

[5] Do N., Choi I., and Jang M., “A Structure-
Oriented Data Representation of Engineering
Changes for Supporting Integrity Constraints,”
The International Journal of Advanced
Manufacturing Technology, vol. 20, no. 8, pp.
564-570, 2002.

[6] Eick C. and Werstein P., “Rule-Based
Consistency Enforcement for Knowledge-Based
Systems,” The IEEE Transactions of Knowledge
and Data Engineering, vol. 5, no. 1, pp. 52-64,
1993.

[7] Formica A., “Finite Satisfiability of Integrity
Constraints in Object-Oriented Database
Schemas,” The IEEE Transactions on
Knowledge and Data Engineering, vol. 14, no. 1,
pp. 123-139, 2002.

[8] Urban S. and Wang A., “The Design of a
Constraint/ Rule Language for an Object-
Oriented Data Model,” Elsevier Science System
Software, vol. 28, no. 3, pp. 203-224, 1995.

[9] Zaqaibeh B., Ibrahim H., Mamat A., and
Sulaiman M., “An Assertion Model for
Controlling Integrity Constraints in an OODB,”
in Proceedings of the International Conference
on Informatics and RWICT, pp. 413-421, 2004.

[10] Zaqaibeh B., Ibrahim H., Mamat A., and
Sulaiman M., “Enforcing and Maintaining
Constraints Base During the Compile-Time,”
Journal of WSEAS Transactions on Computers,
99-357, 2006.

Belal Zaqaibeh received his BSc
degree with the first honor degree in
computer science from Irbid
National University, Jordan, in 1998.
In 1999, he was the manager of
Makkah Center for Computer. In
2000, he continued to graduate
school at Universiti Putra Malaysia

(UPM) and received his MSc in distributed computing
in 2001 and his PhD in object-oriented databases in
2006. In 2006, he joined Zarqa Private University,
Jordan, where he is currently working as an assistant
professor of computer science. His research interests
include object-oriented databases, mobile databases,
integrity constraints, and object-oriented software
engineering.

92 The International Arab Journal of Information Technology, Vol. 5, No. 4, October 2008

Hamidah Ibrahim is currently an associate professor
at the Faculty of Computer Science and Information
Technology, Universiti Putra Malaysia. She obtained
her PhD in computer science from the University of
Wales Cardiff, UK in 1998. Her current research
interests include databases, transaction processing, and
knowledge-based systems.

Ali Mamat is an associate professor
at Computer Science Department,
Universiti Putra Malaysia. He
obtained a PhD in computer science
from University of Bradford, UK in
1992. His research interests include
databases, XML, and semantic web.

Nasir bin Sulaiman is a lecturer in
Computer Science in Faculty of
Computer Science and Information
Technology, UPM. He has been
appointed as an associate professor
in 2002. He obtained PhD in neural
networks simulation from
Loughborough University, UK in

1994. His research interest includes neural networks
theory and applications, intelligent software agents,
and data mining.

Enforcing User-Defined Constraints During the Run-Time in OODB 93

