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1. Introduction

The  data  accuracy,  consistency,  and  integrity  in 
Object-Oriented  Databases  (OODBs)  are  extremely 
important for developers and users. The current OODB 
Management Systems (OODBMSs) lack the capability 
of an ad-hoc declarative specification of enforcing and 
maintaining Integrity Constraints (ICs) that appear as a 
result of composition and inheritance hierarchies. ICs 
are conditions that data within a database must satisfy. 
Integrity  maintenance  or  constraint  enforcement  is  a 
set of activities to keep OODBs in a consistent state, 
where all instances in the OODB satisfy ICs.

This  paper  presents  our  contribution  for  this 
research, in which it clarifies the Assertion Model of 
ICs  (AMIC).  This  paper  is  organized  as  follows. 
Section  2  presents  the  groundwork  of  our  research. 
Section 3 explores the AMIC features, which includes 
Compile-Time Model (CTM) for Structural ICs (SIC), 
Run-Time Model (RTM) for Logical ICs (LIC), Object 
Meta Data (OMD), and Detection Method (DM). The 
IC  enforcement  for  RTM  is  presented  in  section  4 
when inserting, deleting, and updating objects. Section 
5 presents the related and future work. Naturally,  we 
end this paper by a conclusion in section 6.

2. Background

The  increased  emphasis  on  process  integration  is  a 
driving  force  for  the  adoption  of  OODBSs  [2].  For 
example,  the CAD area is focusing heavily on using 
OODB  technology  as  the  process  integration 
framework.  Advanced office automation systems  use 
OODBMSs  to  handle  hypermedia  data.  Image 
processing  and  designing  systems  use  OODB 

technologies for ease of use. All of these applications 
are characterized by having to manage complex, highly 
interrelated information, which is strength of OODBs. 
Clearly,  relational  databases technology has failed to 
handle the needs of complex information systems [7].

ICs  in  OODBSs  are  maintained  either  by  rolling 
back transactions that produce an inconsistent state, or 
by  disallowing  operations  that  may  produce  an 
inconsistent  state  for  the  constraints  [2,  4].  Existing 
OODBMSs  lack  the  capability  for  an  ad-hoc 
declarative  specification  of  maintaining  the  ICs.  An 
alternative approach is to provide automatic detection 
of  inconsistent  states.  For  each  constraint,  a  rule  is 
used  to  detect  constraints  violation  and  to  initiate 
database operations to restore consistency.

Some ICs are represented naturally and maintained 
in OODBs, by capturing the violation using the type 
system and the class hierarchy [8]. Checking the ICs in 
OODBs is a fundamental dilemma in database design, 
because current OODBMSs lack the capability of an 
ad-hoc declarative specification of maintaining ICs that 
appear  as  a  result  of  composition,  association,  and 
inheritance  hierarchies.  The  constraints  must  be 
maintained in the backward direction along the class 
composition  hierarchy  as  well  as  in  the  forward 
direction.  The  AMIC  can  represent  ICs  and  their 
relationships  over  the  composition,  association,  and 
inheritance hierarchies [10].

3. The ATM Components

The AMIC architecture consists of four components, as 
shown in Figure 1,  namely:  CTM, RTM, OMD, and 
DM. The IC enforcement and maintenance are divided 
into  two  phases  (compile-time  and  run-time).  In 
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compile-time  the  CTM enforces  and  maintains  SICs 
while the RTM enforces LICs during run-time phase. 
The  CTM is  performed  only  once  for  each  OODB, 
while  the  RTM is  performed  whenever  an update  is 
submitted for processing. 

Figure 1. The AMIC architecture.

The separation of the system architecture into two 
phases reflects the fact that two different users may be 
involved. The user in the CTM, who interacts with the 
system  and  supplies  it  with  added  information,  is 
referred to as the constraint designer. The user in the 
RTM, who uses the real system, is referred to as the 
end-user.

3.1. Complie-Time Model

The CTM is responsible for enforcing and maintaining 
ICs  when  a  constraint  designer  submits  a  request 
during the compile-time. The CTM results a consistent 
constraints that are stored in the OMD. More details 
can be found in [9].

3.2. Detection Method

The DM is an overloaded method that can access and 
modify the OMD. The DM is designed for constraint 
validation  checking  purpose.  Therefore,  the  DM has 
two functions that are differentiated from each other by 
their arguments. The first DM function is illustrated in 
Figure  2,  which  it  has,  the  arguments:  CID,  AID, 
RCID, RAID, set of ACs, set of UDCs, and set of SCs. 
 

Figure 2. The DM heading.

The second DM method is  illustrated in Figure 3 
with the arguments: CID and AID.

Figure 3. The heading of the overloaded DM.

The CID and AID are the composite key to reach 
the information about any attribute in the OMD. This 
information includes constraints base, derivation path, 
domains, derived attributes, and superclasses. The CID 
is a unique ID over the OODB level, this means the 
CID cannot be repeated even if a class is deleted then 
declared. The AID represents the ID for an attribute in 
a  particular  class,  where  the  ID is  unique under  the 
class  level;  this  means  the  AID can  be  repeated  in 
different classes. The RCID represents the ID for the 
superclass if the attribute is derived from inheritance or 
composition hierarchies. The RAID represents the ID 
of  an  attribute  when  the  current  attribute  is  derived 
from other attribute.

3.3. The Object Meta Data

The OMD is the constraints map, it is responsible for 
building the specific knowledge base of the constraints 
of  OODBs  and  is  built  once  by  the  CTM  [9].  The 
OMD is a data structure containing a record for each 
constraint  and attribute.  The data  structure  allows  to 
find the record for each identifier quickly and to store 
or retrieve data from that record immediately too. Each 
attribute has a domain,  which is  the valid value that 
can be stored in a particular attribute. 

A domain attribute is the range of its data type or set 
of values that are controlled by constraints in different 
ways  like  constant  values,  attributes  or  aggregate 
functions.  An  essential  step  is  that,  simplifying  the 
constraints  in  domains,  this  means  determine  the 
attribute domain by its data type and constraint.  The 
attribute  domain  controls  the  attribute  values  in  the 
OMD.

3.4. Run-Time Model

The  RTM  is  responsible  for  enforcing  the  ICs, 
verifying transactions (inserting, updating, and deleting 
objects), checking constraint domains, and maintaining 
the unaccepted user request. The RTM communicates 
with  the  DM  to  get  the  constraints  and  attributes 
information. However, all transactions must remain the 
OODB in a consistent state. The RTM consists of the 
following components, as illustrated in Figure 4.

User Interface (UI) forms the interactive interface, 
which  handles  the  dialogue  between  RTM  and  its 
users. Users may delete or insert objects and the RTM 
handles their actions. Update Analyzer (UA) uses the 
knowledge about the constraints that are provided by 
the  DM and maps  each update  request  into a set  of 
domains then sends them to the Update Checker (UC) 
with the involved attributes and constraints.  The UC 
communicates with the DM to get the constraints and 
attributes  path.  Moreover,  the  UC checks  the  action 
knowledge and derives them to the  Update  Enforcer 
(UE). The UE is responsible for enforcing the ICs and 
verifying transactions by checking constraint domains.

OMD
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The Update  Maintenance  (UM) is  responsible  for 
maintaining  the  unaccepted  user  request.  The  UM 
sends the actions that cannot be maintained to the Error 
Handler  (EH) and the  maintained action to  the DM. 
The EH is responsible for handling errors then reports 
the  violation  knowledge.  Each  phase  can  encounter 
errors.  However,  after  detecting an error,  the present 
phase must somehow deal with that error.

Figure 4. The RTM architecture in AMIC.

The DM has several  functions that depend on the 
connection phase. Subsequently, the DM receives UA 
requests  and accesses  the  OMD to get  the  attributes 
and constraint knowledge that  is stored by the CTM 
during the compile-time [9] then sends them to the UA. 
Other  functions  are  that  receiving  (UC  and  UE) 
requests  and  sending  the  attributes  (knowledge  and 
domains).  If  a  user  request  does  not  violate  the 
database and can be enforced in the UE then the DM 
allows the user request to be performed. Moreover, the 
DM receives the actions from the UM if a user request 
needs  to  be  maintained  whereas  the  UM  does  the 
maintenance.  

Typically,  algorithm 1 presents the main functions 
of the RTM for enforcing ICs. The CTM and RTM are 
integrated and implemented in the AMIC. The RTM 
receives u_r through the UI, and then analyzes it in the 
UA  to  determine  the  action  type  (insert,  update,  or 
delete)  with  the  help  of  the  DM,  whereas  the  UA 
communicates  with  DM  by  sending  requests  and 
receiving knowledge about the involved attributes and 
constraints.  Subsequently,  The UA sends requests  of 
u_r to  the  DM  to  get  the  involved  attributes, 
constraints,  and  their  paths.  Moreover,  after  all 
required  u_r information  is  collected,  the  UA sends 
streams of u_r to UC for checking purpose.    

A. Input:  User request (u_r).
B. Output: 

1. The results of performing the u_r,
2.  Violation knowledge if the u_r is invalid. 

C. Steps:
Start
Repeat
UI  u_r,
UA  UI(u_r) 
UA  OMD ↔ DM(CID, AID, RCID, RAID,   

      {AC}, {UDC}, {SC})
UC  UA 
UE  DM ↔ UC
For i =1 to n Do  

If Verify(Val, O.Ai)  Then 
DM  UE 
  Else  
UM  UE
If UM (u_r) Then 

     goto Step 5
     Else
     EH  UM 
     goto Step 21

      End If
End If

Until u_r = ∅
End

Figure 5. Algorithm 1 RTM.

The UC communicates with the DM to get attribute 
domain then sends the u_r with the related (antecedent/ 
supplement)  attributes  and  constraints  to  the  UE. 
Subsequently,  the  u_r  is  enforced  in  the  UE  by 
verifying  the  new  values  with  the  attribute  domain. 
However, if the u_r is verified and remained true then 
the UE will send the  u_r  to the DM otherwise to the 
UM  for  maintenance  purpose.  If  the  u_r  can  be 
maintained  then  the  UM  will  send  it  to  the  DM 
otherwise to the EH to show the violation knowledge 
and abort the u_r.  

4. Integrity Enforcement in RTM

In this  section,  we discuss integrity enforcement  and 
maintenance  when  objects  are  inserted,  updated,  or 
deleted. Enforcing ICs in RTM occurs during the run-
time, so the maintenance of RTM is required whenever 
event  is  submitted.  Therefore,  there  are  two general 
steps to be performed. First, all constraints that would 
be violated must be found. Second, the AMIC should 
determine what action must be taken.  

• Definition 1: values validity, Let O be an object, C a 
constraint on O, D the domain of C, A an attribute in 
O where  Ai ∈ A,  Val  is  a  value  of  Ai,  and 
Verify(Val,  O.Ai) returns true if  Val is a value that 
accepted  in  Ai and  δ  (C) is  true  otherwise  false. 
Before inserting a new object, all the values in each 
attribute must  be verified to satisfy its constraints. 
Therefore,  if  an  invalid  value  is  assigned  to  an 
attribute then the AMIC will reject it.

• Definition  2:  database  consistency,  Let  D be  an 
OODB that has an object  O, a constraint  C on  O, 
and  attribute  A.  Also  Let  Val  be  a  value  to  be 
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inserted into A and D+ or D is the new D state after 
inserting, deleting, or updating  O. Subsequently, if 
Verify(Val,  O.A)  remains true then  D is consistent 
and is denoted by  D+ otherwise  D is inconsistent 
and denoted by D. Therefore,       

 
−+

=∩ DelseDThenTrueis)A.0,Val(VerifyIF n
1i  

(1)

Generally,  an object may have a set of attributes,  so 
when  inserting  a  new object,  the  AMIC verifies  all 
attributes and constraints. If a constraint is not satisfied 
then this will violate the database.  

• Definition 3: calling function, Let  D be an OODB 
and Calli ∈ Call be a function call for the DM(CID, 
AID),  i=1, 2, …,  n, and the OODB is  D+ if  Calli 
remains true otherwise D . Therefore,

       −+
=∩ DelasDThenTrueisCallIf 1

n
1i  

(2)

Figure  6  shows  a  composition,  association,  and 
inheritance hierarchies among Person, Child, and Meal 
classes. Child has composed and inherited Person and 
also is associated with Meal.

Figure 6. Classes and their constraints.

As mentioned earlier, the AMIC generates the OMD 
in the CTM. Therefore, the AMIC will call the DM to 
read the OMD and verify whether the new update will 
violate  the  database  or  not.  The  DM  will  call  each 
attribute in the following format:

      DM(CID, AID, RCID, RAID, AC, UDC, SC)       (3)

Then verifies whether the values are accepted in the 
intended attributes  or  not.  The  DM verifies  the  AC, 
UDC, and SC for each called attribute. The idea is to 
instantiate the relevant constraint with the object to be 
inserted,  updated,  or  deleted.  Then the processes are 
simplified  by  eliminating  unnecessary  comparisons. 
The  simplified  form  of  the  constraint  is  evaluated 
before an object is inserted to the database. 

The  process  before  enforcing  LICs  in  RTM is  to 
create the OMD that includes all the knowledge about 
classes and their members. Since we are dealing with 
UDCs, and regardless whether the classes are designed 
in a good or bad design, all constraints and domains 
are verified, optimized, and collected in the OMD, as 
shown in Figure 7.

Figure 7. The optimized domains in the OMD.

Also, the attributes and their relationships are stored 
in  the  OMD, as  shown in Figure  8.  The association 
between  Meal and  Child does  not  inherit  attributes 
from  class  to  another.  In  the  contrary  of  that  the 
inheritance  and  composition  between  Person and 
Child propagate constraints and attributes to  Child, as 
the RCID and RAID illustrate for Child.

All  processes  to  create  the  OMD are  categorized 
under the CTM. In the RTM, the AMIC enforces the 
data  integrity  whenever  a  request  for  inserting, 
deleting, or updating objects occurs.

4.1. Inserting Object

When inserting a new object, all constraints in OMD 
that are related to that object must be checked to verify 
the new data state.  By referring to Figure 6,  we can 
declare three different objects (OM, OP, and OC) from 
the  classes  (Meal,  Person,  and  Child respectively). 
Each object carries a class members and a reference to 
the  OMD.  A  reference  supervises  the  connection 
between the  object  and  its  related  constraints  in  the 
OMD. Let us consider the following cases of insertion:

{Age between 0 and 18}
{Relation in [father, mother]}
{Tax >= Age * 12.5}
{Type in Meal.Category}
{Parent.Age >= Age + 18}

Person

{Age >18}
{Gender in [‘M’, ‘F’]}

Child

get_age()

Meal

{Category in [A, B, C]}

1* Category: Char
Food: String

Age: Integer
Bdate: Date
Relation: String
Tax: Real
Type: Char
Parent: Person

ID: Variant
Name: String
Gender: Char
Age: Integer
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A. Case 1: Inserting a new data into OM

• OM(Category, Food)
• This  requires  to  enforce  the  DM(1,1)  and 

DM(1,2).  Subsequently,  the  AMIC will  call  the 
DM as follows:

• Call1: DM(1, 1, 0, 0, {}, {D1}, {DM(3,5)}) 
• Call2: DM(1, 2, 0, 0, {}, {}, {})

The  DM(1,1)  must  be  in  D1 domain  to  satisfy  its 
constraint as shown in  Call1,  otherwise the insertion 
request will be rejected and the violation path will be 
showed. Moreover, the DM is not called for the SC of 
DM(3,5) because the Meal is not propagated from any 
class. For the DM(1,2), there is no AC, UDC, or SC to 
be checked as shown in Call2, so the new data will be 
accepted  if  it  satisfies  Verify(Val,  DM(1,1)) and 
Verify(Val, DM(1,2)).

Figure 8. The OMD for child database.

B. Case 2: Inserting a new data into OP

• OP(ID, Name, Gender, Age)

• This  requires  to  enforce  the  DM(2,1),  DM(2,2), 
DM(2,3), and DM(2,4). Subsequently, the AMIC 
will call the DM as follows:

• Call3: DM(2, 1, 0, 0, {}, {}, {})
• Call4: DM(2, 2, 0, 0, {}, {}, {})
• Call5:  DM(2,  3,  0,  0,  {},  {D3},  {DM(3,8), 

DM(3,12)})
• Call6: DM(2, 4, 0, 0, {}, {D2}, {DM(3,9)})

In  Call3 and  Call4 there  are  no  UDCs  that  were 
defined so the AMIC accepts data for these attributes. 
In  Call5 there is a UDC which is  D3 and also SCs. 
Thus, the new data in OP for this attribute must satisfy 
D3 else  it  will  not  be  accepted.  Moreover,  in  Call6 
there  is  a  UDC  D2  that  enforces  DM(2,4)  data. 
Typically,  the AMIC will  not  check the SCs for the 
DM(3,8),  DM(3,12), and DM(3,9) because  Person is 
not propagated from any class.

C. Case 3: Inserting a new data into OC

• OC(Age,  Bdate,  Relation,  Tax,  Type,  Parent.ID, 
Parent.Name,  Parent.Gender,  Parent.Age,  ID, 
Name, Gender)

• This  requires  to  enforce  the  DM(3,1),  DM(3,2), 
DM(3,3), DM(3,4), DM(3,5), DM(3,6), DM(3,7), 
DM(3,8),  DM(3,9),  DM(3,10),  DM(3,11),  and 
DM(3,12). Then, the AMIC will call the DM as 
follows:

• Call7:  DM(3,  1,  0,  0,  {},  {D4},  {DM(3,4), 
DM(3,9)})

• Call8: DM(3, 2, 0, 0, {}, {}, {})
• Call9: DM(3, 3, 0, 0, {}, {D5}, {})
• Call10: DM(3, 4, 0, 0, {D4}, {D6}, {})
• Call11: DM(3, 5, 0, 0, {D1}, {D7}, {})
• Call12: DM(3, 6, 2, 1, {}, {}, {})
• Call13: DM(3, 7, 2, 2, {}, {}, {})
• Call14: DM(3, 8, 2, 3, {D3}, {}, {})
• Call15: DM(3, 9, 2, 4, {D2, D4}, {D8}, {})
• Call16: DM(3, 10, 2, 1, {}, {}, {})
• Call17: DM(3, 11, 2, 2, {}, {}, {})
• Call18: DM(3, 12, 2, 3, {D3}, {}, {})

The analysis is clarified in the following points: 

• With  no  constraints:  In  Call8,  Call12,  Call13, 
Call16, and  Call17 there are no ACs, no SCs, and 
no UDCs. We notice here from the RCID and RAID 
that  the  Call8 is  verifying  the  attribute  DM(3,2) 
which exists in the current class. On the other hand, 
the  Call12 and  Call13 are verifying  the attributes 
that are inherited from composition hierarchy. And 
also  Call16 and  Call17 are  inherited  from 
inheritance hierarchy. 
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• UDCs: In Call9 there is a UDC which is D5, so the 
AMIC will call and verify the DM(3,3) as it must be 
“father” or “mother” to be accepted.

• ACs: In  Call14,  and  Call18 there is an antecedent 
D3 that  is  derived  from  the  composed  class  for 
Call14 and  from  the  inherited  class  for  Call18. 
Subsequently, because D3 is the domain of DM(2,3) 
so  this  requires  calling  the  DM  for  Call5 as  the 
DM(3,8) and DM(3,12) must be “M” or “F” to be 
accepted. 

• ACs and UDCs: In Call10, Call11, and Call15 there 
are ACs and UDCs. We notice here Call10 requires 
verifying  the  D4 and  D6 that  are  declared in  the 
current class. And also Call11 requires verifying the 
domain D1 that is derived from the associated class. 
Furthermore,  Call15 requires verifying the  D2 that 
is derived from the composed class.  However, for 
Call10 the AMIC will verify the DM in  Call7, for 
Call11 the AMIC will verify the DM in Call1, and 
for  Call15 the AMIC will verify the DM in  Call6, 
and Call7.  

• SCs and UDCs: In  Call7 there is a UDC which is 
D4. AMIC will verify the attribute DM(3,1) whether 
it satisfies D4 or not. Consequently, the AMIC will 
verify the SCs DM(3,4) and DM(3,9) by Call10 and 
Call15.  

4.2. Deleting Object

Deleting object  from independent  classes  (intra-class 
constraints)  does  not  require  verifications  for  any 
constraint.  In  the  contrary,  deleting  object  from 
dependent  classes  (classes  with  composition, 
inheritance,  or  association  relationships)  requires 
verifying the SCs only in the deleted objects and also 
the ACs, UDCs, and SCs in the associated, inherited or 
composed objects. For instance:

• Deleting the OM required to verify the supplement 
DM(3,5) and this leads to verify Call11, 

• Deleting the OP required to verify the supplements 
DM(3,8), DM(3,9) and DM(3,12) and this leads to 
verify Call14, Call15 and Call18, 

• Deleting the OC required to verify the supplements 
DM(3,4)  and  DM(3,9)  and  this  leads  to  verify 
Call10 and Call15.

4.3. Updating Object

Updating objects requires keeping the current database 
state D until verifying the ICs in D+. Based on Figure 
5, let us consider the following cases that may occur 
during the RTM and may affect D.

A. Case 1,  Update  statement  that  modifies  OC.Name 
and  OC.Parent.Name with  the  values  Pname and 
Cname respectively  (Pname and  Cname are  two 
variables  with  new  values).  Then,  The  attribute 

OC.Parent.Name DM(3,  7,  2,  2,  {},  {},  {})  is 
derived from composition hierarchy and  OC.Name 
DM(3,  11,  2,  2,  {},  {},  {})  is  derived  from 
inheritance  hierarchy,  and  these  are  Call13 and 
Call17 respectively. Each DM has no UDCs, so it is 
impossible to have D- if and only if Verify(Pname,  
DM(3,7)) and  Verify(Cname,  DM(3,11)) remain 
true.

B. Case 2, Update statement that modifies OC.Relation 
value with  Newrelation (Newrelation is  a variable 
with a new value). Then, The OC.Relation DM(3,3) 
must satisfy D5 to enforce ICs as shown in Call9. If 
Verify(Newrelation, DM(3,3)) remains true then the 
AMIC results  D+ else aborts the user request and 
keeps the violation path.   

C. Case  3,  Update  statement  that  modifies 
OC.Parent.Age with  Newage value  (Newage  is  a 
variable with a new value). Then, The AMIC gets 
DM which is DM(3,9) for OC.Parent.Age attribute. 
To enforce the ICs of DM(3,9) the AMIC verifies 
Call15 which it requires to satisfy D2, D4 and D8 to 
remain D+. Since D2 is the domain of the constraint 
that has been declared on DM(2,4) then AMIC will 
verify  Call6.  So  if  Call6 remains  true  the  AMIC 
will  verify  the  next  domain  otherwise  abort  the 
current  user  request.  For  D4 the  AMIC  calls 
DM(3,1) and verifies  Call7.  Moreover,  the AMIC 
verifies Call10 because DM(3,1) has SCs. If each of 
Call15,  Call6,  Call7 and  Call10 remains  true  as 
follows: 

• D is 
n

1i=∧ Calli 

• D is Call15  ∧  Call6 ∧ Call7 ∧ Call10
• D is true 
• D is D+

This  produces  a  consistent  database.  By referring to 
definition  3  the  AMIC  results  D+  and  accepts  the 
updating statements.  But if any of the Call15, Call6, 
Call7, or Call10 returns false then: 

• D is 
n

1i=∧ Calli 

• D is Call15 ∧ Call6 ∧ Call7 ∧ Call10
• D is false
• D is D-

If  the  updating request  is  rejected then the  cause of 
violation and its path will be known. And this is a clear 
advantage  of  AMIC,  as  the  current  OODBMS  and 
object-oriented applications do not have the ability to 
support the violation path.

5. Related Work

The  proper  handling  of  ICs  is  essential  to  any data 
storage and management.  Handling ICs is an essential 
premise  to  managing  semantically  rich  data  [7].  In 
OODBs, checking the ICs is a fundamental problem in 
the database design [7]. The automated verification of 
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constraints and their enforcement provided by current 
OODBMSs  is  limited  [7,  6]  due  to  the  user 
participation is required.

OODBMSs do not have adequate support for certain 
types  of  constraints  especially the  ones  defined in  a 
class composition and inherence hierarchies [1,  7,  5, 
3].  The  ICs  must  be  maintained  in  the  backward 
direction along the class hierarchies as well as in the 
forward  direction.  It  seems  to  be  no  obstacles  in 
extending the proposed model to deal with constraints. 
OODBs. 

More work can be done when copying an object of a 
superclass  to  another  object  of  a  subclass  and  vise 
versa. For such problem downcasting and slicing must 
be  taken  in  account.  Moreover,  when  a  multiple 
inheritance occurs and the same attribute name existed 
in  more  than  one  superclass,  then  a  virtual  class  is 
needed.

6. Conclusion

This  paper  has  shown  the  RTM  properties, 
specifications, and architecture. The AMIC has made a 
big  challenge  in  the  OODM  environment  as  it  can 
represent constraints and complex relationships among 
attributes  and  classes  that  are  derived  from 
composition and inheritance hierarchies,  whereas  the 
current OODBs are deficient in such properties.

A  set  of  definitions  is  supported  for  checking 
attribute values validity, OODB consistency, and also a 
method for verifying attribute values when inserting, 
deleting, and updating objects. Thus, the AMIC is able 
for enforcing and maintaining ICs in SICs by the CTM 
and LICs by RTM. The CTM is designed for enforcing 
the constraint base during the compile-time while the 
RTM  is  designed  for  enforcing  the  data  integrity 
during the run-time.  

The OMD keeps track the  constraint  paths  in  the 
backward direction as well in the forward directions, 
keeps the constraint knowledge to ease accessing them, 
and  includes  knowledge  about  attributes  and  their 
relationships,  constraints,  and  domains.  Typically, 
RTM is an automated model that can enforce ICs the 
run-time.
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