
The International Arab Journal of Information Technology, Vol. 4, No. 1, January 2007 67

Fault Detection in Dynamic Rule Bases Using
Spanning Trees and Disjoint Sets

Nabil Arman
Palestine Polytechnic University, Palestine

Abstract: Many fault detection techniques/algorithms for detecting faults in rule bases have appeared in the literature. These
techniques assume that the rule base is static. This paper presents a new approach/algorithm for detecting faults in dynamic
rule bases, where rules may be added/deleted in response to certain events happening in the system being controlled by the
rule base. This is performed by maintaining a set of structures, where new rules can be added to the dynamic rule base
without the need to rebuild the structures that represent the rule base. The approach makes use of spanning trees and disjoint
sets to check a dynamic rule base for different kinds of faults. The algorithm devises a tree/forest of the underlying directed
graph by treating the directed graph as an undirected graph, and then checks for various faults and properties. The algorithm
devises a new rule base (which is a subset of the current rule base) that is equivalent, in terms of its reasoning capabilities, to
the current rule base, with the properties that the new rule base is fault free. This is performed as rules are being added to the
dynamic rule base one at a time.

Keywords: Dynamic rule bases, rule base faults, spanning trees.

Received October 1, 2005; accepted March 15, 200 6

1. Introduction
Developing efficient algorithms to verify rule-based
systems against different kinds of faults within the
context of large rule–based systems have attracted a
large amount of research efforts due to the important
role of rule-based systems in various application
domains, including Expert Systems (ESs), active
database systems, and Information Distribution
Systems (IDSs) to name a few [1-11]. Verification is
important to ensure the high quality of rule-based
systems and to achieve an acceptable level of
performance of these systems. The effects of faults
may appear in the performance of rule-based systems.
Such faults may cause incorrect or undesired actions.
Sometimes, these effects may be harmless, such as
redundancy that may cause the system’s performance
to be inefficient. On the other hand, contradiction
faults may lead to incorrect conclusions. It is worth
mentioning that some redundancy faults may be
included intentionally to gain some performance,
instead of going into a long chain process to reach
some conclusion/goal. However, in such cases the
designer must be knowledgeable of the presence of
such faults and their consequences from the practical
point of view.
Many approaches and algorithms for fault detection

have been presented and proposed in the literature. The
Expert System Validation Associate (EVA) program
was developed at Lockheed [11]. EVA program was
used to check for rule redundancy, inconsistency and
contradiction. A decision-table-based processor for

checking completeness and consistency in rule-based
systems was presented in [3]. The COVER tool was
presented in [9]. The tool was designed to build upon
the best features of earlier systems. It is used to check
rules based on a subset of first-order logic. A Petri-Net
based approach for verifying rule bases was presented
in [1]. A Transition Directed Graph (TDG), which
represents rule sets, was presented in [5, 6, 11]. TDG
was used in the development of a set of algorithms to
detect inconsistency, contradiction, circularity,
unreachability, and redundancy in chained inference
rules. These programs employed different approaches
for detecting some faults. Based on these approaches
many automated tools have been developed and used
to inspect a rule-based system for known potential
faults.
The automated tools and approaches didn’t consider

the issue of dynamic rule bases, which are
characterized by the capability of being updated during
the operation of the system, i. e., some rules may be
added at a certain point in time and other rules may be
deleted at other points in time. Adding/deleting rules
affect the rule chains in rule bases. Such rule bases are
common in active database systems and information
distribution systems, where rules are added as new
events occur in the system. If a dynamic rule base is
fault free at a certain time, then deleting rules may
generate unreachability faults only, by making some
output vertices unreachable. Other types of faults,
namely, inconsistency, redundancy/subsumption,
circularity, and redundancy, can occur by adding new
rules to a dynamic rule base. Adding rules may affect

68 The International Arab Journal of Information Technology, Vol. 4, No. 1, January 2007

reachability if the rule being added involves an input
vertex. Generally, this doesn’t happen since we always
assume that the set of input and output vertices are
always known beforehand. Therefore, the focus here is
on adding new rules to the dynamic rule base.

2. Rule-Based Systems Faults
A set of well-known faults that may appear in a rule
base are presented in [7, 8, 9]:

• Redundancy/Subsumption: Two rules conclude the
same outcome from the same input data. A special
case of redundancy is subsumption, where, two
rules conclude the same outcome, but one has
additional constraints, which may or may not be
necessary.

• Contradiction/Conflict: Two rules conclude
different outcomes from the same input data.

• Inconsistency: An antecedent of one rule is mutually
exclusive to the consequent of such rule (or a chain
of rules).

• Circularity: The rule base contains a cycle inference
chain, which may cause a backward-chaining
inference engine to enter an endless loop.

• Unreachability: Unreachability occurs if there is no
path between any two given vertices.

3. Structures Used in the Algorithm
Many transformation techniques for rule bases have

been suggested in the literature. Petri Nets were
described in [1]. In this approach, a rule base is
modeled as a Petri Net where parameter-value pairs
corresponding to places and rules are analogous to
transitions. Then the transition/place relationship
modeled in a Petri-Net can be summarized in the form
of an incident matrix. Decision-table-based processors
were presented in [3]. In this approach, a decision table
is created from the rules in the rule base. A directed-
graph-based approach was presented in [6], where the
rule base is modeled as a directed graph and the
process of anomaly detection is reduced to reachability
among nodes. A transition-directed-graph-based
approach, which is similar to [6] is presented in [4, 5].
In this paper, we use the transformation technique

where the dynamic rule base is modeled as a directed
graph as new rules are being added to the dynamic rule
base. In this directed graph, nodes correspond to
propositions and rule identifiers (in case a rule
antecedent is a conjunction of propositions) and edges
correspond to the rules. Each rule has a rule identifier.
A spanning tree/forest will be devised using Kruskal’s
like algorithm. During the operation of the algorithm,
disjoint sets will be generated. These sets will be used
for detecting various kinds of faults while the dynamic
rule base is being updated.

4. Fault Detection Algorithm for Dynamic
Rule Bases

A spanning tree of an undirected graph G is a tree
formed from graph edges that connects all the vertices
of G. Formally, let G = (V, E) be an undirected
connected graph. A subgraph T = (V, E´) of G is a
spanning tree of G iff T is a tree. An interesting
property of a spanning tree is that it represents the
minimal subgraph G´ of G such that V (G´) = V (G).
By minimal, we mean the one with the fewest number
of edges.
Representing a dynamic rule base as a directed

graph, a spanning tree/forest of such a graph will be
devised. Although spanning trees are generally
obtained for undirected graphs, they still make sense
for directed graphs. In our case, despite the fact that the
underlying graph is directed, we treat that as an
undirected graph with some kind of interpretation of
the edges that create cycles. A variation of Kruskal’s
algorithm is used, which is a greedy algorithm that
builds a spanning tree by maintaining a forest (a
collection of trees) as new rules are being added to the
dynamic rule base. Initially, there are |V| single-node
trees. Adding an edge merges two trees into one. It
turns out to be simple to decide whether edge (u, v)
should be accepted or rejected. The appropriate data
structure or approach is the union/find algorithm. This
approach, as presented in DRB_Fault_Detection
algorithm in Figure 1 is of great importance to devise
an equivalent rule base RB´, of m rules where m ≤ n, to
the current dynamic rule base RB, which has n rules,
such that RB´ has the same reasoning capabilities as
RB. Due to the fact that spanning trees are not unique,
such a devised rule base may not be unique.
The pseudocode of the algorithms uses a set of

conventions. Block structures are indicated using
statement indentation. An “end if” matches every “if”,
an “end while” matches every “while”, and an “end
for” matches every “for”. The looping and conditional
constructs have the same interpretation as in C. The
algorithms can be translated to working C or Java
programs in a straightforward manner.

DRB_Fault_Detection algorithm checks the current
rule base when a new rule is added to the dynamic rule
base as follows:

1. It calls Check_for_Redundancy_ and_Circularity (r,
RB´, C, R, S) procedure to check if it causes a
redundancy or circularity fault pattern. In this call, r
is the new rule, RB’ is the current fault-free dynamic
rule base, C is the set of circularity fault patterns, R
is the set of redundancy fault pattern, and S is the
disjoint sets.

2. It checks if the new rule r contains exclusive
vertices. If r contains exclusive vertices, it calls
Check_for_Inconsistency_and_Contradiction (r, S)
procedure to perform this check.

Fault Detection in Dynamic Rule Bases Using Spanning Trees and Disjoint Sets 69

3. The algorithm calls Check_for_Unreachability (r, S)
procedure to check for potential unreachability
faults.

The set_union (S, r1, r2) procedure implemented by
(S[r2] = r1) maintains the direction of the edges in the
original directed graph, by using the straightforward
implementation of the algorithm. The find procedure,
as presented in Figure 2, determines the root of the set
to which a vertex (e. g., x) belongs. To determine
whether an edge <x, y> creates a cycle in the directed
graph or undirected graph, the procedure find_path, as
presented in Figure 3, can be used to check if two
nodes x and y are on the same path in a certain disjoint
set S. If x is reachable from y, then x and y are on the
same path and adding an edge <x, y> does not create a
cycle. However, it indicates that there is another path
that connects x to y. Thus there is a redundancy fault
pattern. On the other hand, if x is not reachable from y,
then x and y are not on the same path and adding an
edge <x, y> creates a real cycle. Thus, this is a
circularity fault pattern.

(a) DRB_Fault_Detection algorithm.

(b) Check_for_Redundancy_and_Circularity procedure.

Check_for_Inconsistency_and_Contradtion(r, S)
 /* RB’ is not affected by this procedure. */
For each vertex v in r do

 If v is an exclusive vertex then
 root_of_v = Find (v, S)
 /* vp is the exclusive vertex of v */
 root_of_vp = find (vp, S)
 If (root_of_v == root_of_vp) then
 While (S[root_of_v]!=0 && S[root_of_v]!=root_of_vp)
 root_of_v = S[root_of_v]
 End While

 End If
 If (S[root_of_v] == root_of_vp) then

Display “r causes Inconsistency Fault Pattern”
 Else

Display “r causes Contradiction Fault Pattern”
 End if
 End if
 End for
End Check_for_Inconsistency_and_Contradiction

(c) Check_for_Incosistency_and_Contradiction procedure.

(d) Check_for_Unreachability procedure.

Figure 1. Fault detection algorithm for dynamic rule bases.

Figure 2. Find procedure.

Figure 3. Find_path Procedure.

The process of detecting various kinds of faults by
formulating faults as reachability problems in the
graph-based representation should be
augmented/followed by a check of the in-degree of the
rule identifier vertices that comprise a certain path in
the fault patterns. Although the formulation gives a
necessary condition for the existence of various kinds
of faults in a rule base, the condition is not sufficient as
long as rules with multiple antecedents are considered.
To deal with this additional issue, we can compute the
in-degree of the rule identifier vertices in the path(s) of
the fault pattern to determine whether a certain fault
satisfies the necessary or the sufficient conditions of

DRB_Fault_Detection (r, RB´, C, R, S)
Check_for_Redundancy_and_Circularity(r, RB´, C, R, S)
If r contains exclusive vertices then
Check_for_Inconsistency_and_Contradiction(r, S)

End If
Check_for_Unreachability(r, S)

End DRB_Fault_Detection

Check_for_Redundancy_and_Circularity (r, RB’, C, R, S)
 For all edges comprising rule r do

Choose the next edge <u, v>
Delete <u, v> from r

 u_set = find (u, S)
 v_set = find (v, S)
 If <u,v> does not create a cycle in RB’ then
 /* (i. e., u_set <> v_set)*/

Add <u, v> to RB’
 set_union(S, u, v)
 Else

If find_path(u, v, S) == ’C’ then
 /*<u, v> creates a cycle in the directed graph*/

Add r to C
 Else /*<u, v> creates a cycle in the undirected graph*/

Add r to R
 End If
 End If
 End For
End Check_for_Redundancy_and_Circularity

Check_for_Unreachability(r, S)
 /* RB’ is not affected by this procedure. */
 For each pair of vertices (x, y) in r do
 root_of_x = find (x, S)
 root_of_y = find (y, S)

If (root_of_x == root_of_y) then
 While (S[root_of_x]!= 0 && S[root_of_x]!=root_of_y)
 root_of_x = S [root_of_x]

End While
If (S [root_of_x] == root_of_y) then
Display “r causes Unreachability Fault Pattern”
End If

End If
End For

End Check_for_Unreachability

find (x, S)
 If (S[x] <= 0) then

Return x
 Else

Return (find(S[x], S))
 End If
End find

find_path(x,y,S)
 While (S[x] != 0 & S[x] !=y)
 x = S[x]
 End While
If (S[x] == y) then

Return ‘R’ /* A redundancy fault pattern */
Else

Return ‘C’ /* A circularity fault pattern */
End If

End find_path

70 The International Arab Journal of Information Technology, Vol. 4, No. 1, January 2007

representing a real fault. This information can be
collected during the generation of the spanning
tree/forest and thus does not represent an expensive
computational step. In addition, in real-world rule
bases, the number of redundant and circularity fault
patterns is relatively small and is assumed to be a
constant number. In generating the new rule base, the
assumption is that linear-edge-rule-relationship holds
for the graph representing the rule base. This property
says that if the graph has m edges and the rule base has
n rules, then O(m) = O(n).
 When a change happens to the dynamic rule base, the
new approach, as presented, checks for potential
redundancy faults. It also checks for potential
circularity faults in the current dynamic rule base.
Once these sets of faults have been considered, it
would be relatively simple to check for the rest of the
well-known faults in a straightforward manner. An
inconsistency fault occurs when an antecedent of one
rule is mutually exclusive to the consequent of such a
rule (or a chain of rules). This means that starting from
a vertex (e. g., A), we can reach to its exclusive vertex
¬A. To check for this kind of anomaly, we first
determine the set of exclusive vertices, and then we
need only to check whether the exclusive vertices are
in the same disjoint set and there is a path between
them (using the procedure find_path). A
contradiction/conflict fault pattern occurs when two
rules conclude different outcomes from the same input
data. This means that starting from one
vertex/proposition (e. g. A) we can reach to two
exclusive vertices (e. g., C and ¬C). To check for this
kind of fault, we first determine the set of exclusive
vertices, and then we only need to check whether the
exclusive vertices are in the same disjoint set and none
of them is the root of the set. If they are in the same set
and none of them is a root, then there is a contradiction
anomaly, otherwise there is no contradiction anomaly.
Unreachability faults occur if there is no path between
any two given vertices. To check for that, we first
determine whether the two vertices are in the same
disjoint set or not. If they are in the same set, we
determine whether there is a path between them, and in
this case there is no unreachability anomaly, otherwise
there is an unreachability anomaly. On the other hand,
if two vertices are not in the same disjoint set, then we
conclude that there is an unreachability anomaly. The
benefit of our approach is its ability to detect faults as
the dynamic rule base is being updated. If a rule r is
added to the dynamic rule base, then the new dynamic
rule base can be verified against various faults without
having to rebuild any structures from scratch.

Example: Assume we started with an empty dynamic
rule base. The following actions happen during the
operation of a system controlled by a dynamic rule
base. A, B, C, …etc. are propositions:

A

B

 A C

 B

 A C

 B

A C

B D

 A C ¬A

 B D

 A C ¬A

 B D

(a) Rule A→B is added

A digraph representing
the rule base after
accepting A→ B.

(b) Rule B→ C is added

A digraph representing the
rule base after accepting
A→ B and B→ C.

(c) Rule C→¬A is added

A digraph representing the
rule base after accepting
A→ B and B→ C. C→¬A is
rejected since it creates an
inconsistency fault pattern,
i. e., a path from A to ¬A.

(d) Rule B→D is added

A digraph representing
the rule base after
accepting A→ B, B→ C,
and B→D.

(e) Rule ¬A→C is added

A digraph representing
the rule base after
accepting A→B, B→C,
B→D, and ¬A→C.

(f) Rule A→C is added

A digraph representing
the rule base after
accepting A→ B, B→ C,
B→ D, and ¬A → C.
A→C is rejected since it
creates a redundancy
fault, i. e., there exists a
path from A to C through
B.

Fault Detection in Dynamic Rule Bases Using Spanning Trees and Disjoint Sets 71

 A C ¬A

 B D

5. DRB_Fault_Detection Algorithm
Computational Complexity

DRB_Fault_Detection algorithm is a variation of
Kruskal’s spanning tree algorithm, with no need to sort
preprocessing step. Therefore, it has a worst-case
complexity of O(nlogn), where n is the number of rules
being considered for addition to the dynamic rule base.
DRB_Fault_Detection algorithm calls
Check_for_Inconsistency_and_Contradtion procedure
n times (once for each rule added to the dynamic rule
base). The for loop for the edge components of each
rule is assumed to be constant with a complexity of
O(1). The complexity of find is O(logn), using smart
union algorithms (union-by-size approach). Thus, the
worst-case complexity of checking for all redundancy
and circularity faults is O(nlogn).
DRB_Fault_Detection algorithm calls
Check_for_Inconsistency_and_Contradtion procedure
to check for inconsistency and contradiction fault
patterns. Once the spanning tree and the data structures
are obtained, the worst-case complexity of checking
for inconsistency faults is O(logn), since this can be
determined by using the find_path procedure, which
has a complexity of O(logn) using smart union
algorithms. The worst-case complexity of checking for
contradiction faults is O(1), since a path compression
technique can be used to obtain the disjoint sets.
Finally, the worst-case complexity of checking for
unreachability faults is O(n), which is dominated by
the find_path procedure. Our approach represents a
major improvement over Petri-Nets approach, which
has a complexity of)(2nO for detecting inconsistency
and redundancy [1].

6. Experimental Results of the Fault
Detection Algorithms

Generally, an empirical study is an integral part of the
analysis of algorithms. To study the experimental
complexity of our algorithms, the fault detection
algorithms were implemented in C and executed on
different kinds of dynamic rule sets represented by the
graph representation. A number of added rules
generate a set of faults, and the algorithms detected all
these faults. A performance profile, which represents

the amount of time the algorithms consume, was also
generated. This has been compared with the Petri Nets
algorithm profile. The performance measurements
have shown that our approach outperforms the Petri
Nets approach. A set of four test cases, consisting of
100, 200, 300, and 400 rules were considered. Each
test case uses a randomly-generated set of rules with a
number of faults resulting from the random generation
of the rule sets. The result of each case is plotted for
our approach and the Petri Nets approach as shown in
Figure 4. The performance measurement confirms the
earlier theoretical analysis of the various algorithms.
Using the timing data, the shapes of the curves are
determined.

7. Conclusion
A new approach, based on spanning trees and disjoint
sets, for verifying dynamic rule bases is presented. The
approach uses an algorithm that checks for various
fault patterns in a dynamic rule base and generates a
new rule base, from the rules considered so far, that is
fault free and has the same reasoning capabilities as the
original rule base. Once the spanning tree(s) and the
associated disjoint sets are built, checking for different
faults as new rules are being added to the dynamic rule
base can be performed in a straightforward manner. In
addition, an empirical study, which confirms the
theoretical analysis, is also presented.

References
[1] Agarwal, R., “A Petri-Net Based Approach for

Verifying the Integrity of Production Systems,”
International Journal of Man-Machine Studies,
vol. 36, pp. 447-468, 1992.

[2] Arman N, Richards D., and Rine D., “Structural
and Syntactic Fault Correction Algorithms in
Rule-Based Systems,” International Journal of
Computing and Information Sciences (IJCIS),
vol. 2, no. 1, pp. 1-12, 2004.

[3] Hwang Y., “Detecting Faults In Chained-
Inference Rules in Information Distribution
Systems,” PhD Dissertation, School of
Information Technology and Engineering,
George Mason University, Virginia, USA, 1997.

[4] Hwang Y. and Rine D., “Algorithms to Detect
Chained-Inference Faults in Information

Our Approach vs. Petri Nets Approach

0

20

40

60

100 200 300 400
Number of Rules

Ti
m
e
 (m
s) Our Approach

Petri Nets
Approach

Figure 4. Experimental results of fault detection algorithms.

(g) Rule C→A is added

A digraph representing
the rule base after
accepting A→ B, B→
C, B → D, and ¬A→
C. C → A is rejected
since it creates a
circularity fault pattern,
i. e., a cycle A → B →
C→ A would occur.

72 The International Arab Journal of Information Technology, Vol. 4, No. 1, January 2007

Distribution Systems,” in Proceedings of the
2001 ACM Symposium on Applied Computing,
Las Vegas, Nevada, United States, pp. 679-
685, 2001.

[5] Gragun B. and Steudel H., “A Decision-Table-
Based Processor for Checking Completeness and
Consistency in Rule-Based Expert Systems,”
International Journal of Man-Machine Studies,
vol. 26, pp. 633-648, 1987.

[6] Nazareth D. and Kennedy M., “Verification of
Rule-Based Knowledge Using Directed Graphs,”
Knowledge Acquisition, vol. 3, pp. 339-360,
1991.

[7] Preece A. and Shinghal R., “Practical Approach
to Knowledge Base Verification,” SPIE, vol.
1468, Applications of Artificial Intelligence IX,
1991.

[8] Preece A., Shinghal R., and Batarekh A.,
“Principles and Practice in Verifying Rule-Based
Systems,” The Knowledge Engineering Review,
vol. 7, no. 2, pp. 115-141, 1992.

[9] Preece A., Shinghal R., and Batarekh A.,
“Verifying Expert Systems: A Logical
Framework and a Practical Tool,” Expert Systems
with Applications, vol. 5, pp. 421-436, 1992.

[10] Preece D., Talbot S., and Vignollet L.,
“Evaluation of Verification Tools for
Knowledge-Based Systems,” International
Journal of Human-Computer Studies, vol. 47, pp.
629-658, 1997.

[11] Stachowitz R., Combs J. and Chang C.,
“Validation of Knowledge-Based Systems,” in
Proceedings of the 2nd AIAA/NASA/USAF
Symposium on Automation, Robotics, and
Advanced Computing for the National Space
Program, Arlington, VA, 1987.

Nabil Arman received his BS in
computer science with high honours
from Yarmouk University, Jordan in
1990, his MS in computer science
from The American University of
Washington DC, USA in 1997, and
his PhD from the School of
Information Technology and

Engineering, George Mason University, Virginia, USA
in 2000. Currently, he is an associate professor at
Palestine Polytechnic University, Hebron, Palestine.
His research interests include database and knowledge-
base systems, and algorithms.

