
229 The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007

Distributed Network Management with Secured
Mobile Agent Support

Mohammed Ibrahim
Faculty of Engineering and Information Technology, Taiz University, Yemen

Abstract: Network computing is changing rapidly these days. The mobile agent technology invented to overcome the
complexity resulting due to the increasing size of network components that rises new network management schemes. Many
prototype applications providing mobile agent capability have been proposed for being used in network management. E-
commerce and information retrieval are some of them. The motive behind the agent mobility is that, it addresses some
limitations faced by traditional centralized client-server architecture, which are mainly, minimizing bandwidth consumption,
supporting network load balancing, enhancing scalability as well as flexibility, increase fault-tolerance and solve problems
caused by unreliable network connections. However, despite its benefits, mobile agent systems still pose security threats. In
this paper, we propose a mobile agent architecture that supports flexible and reliable interaction of autonomous components
in a distributive network environment. We present a management scheme in a hierarchical level that provides to a user with a
reliable and flexible global access to internet/network information services. We further describe a protection mechanism to
both agents and their hosting sites of execution called agent servers.

Keywords: Mobile agent, domain manager, manager of managers, agent server, agent transfer protocol.

Received December 9, 2005; accepted April 24, 2006

1. Introduction
Usefulness and viability of mobile agents have been
debated since early 90s [2, 3, 12, 20]. Mobile agent
technology went through a number of splashes of
interest in last 10-15 years. The interest to mobile
agents is again on the rise. This rise is motivated by
advances in enabling technologies, including wireless
networks, diverse.

Broadly speaking, an agent is any program that acts
on behalf of a (human) user. A mobile agent, then, is a
computer program that is capable of migrating
autonomously from node to node, across a
heterogeneous network, to perform some computation
on behalf of the user [9, 11, 15]. Applications can
inject mobile agents into a network, allowing them to
roam the network, either on the predetermined path or
one that the agents themselves determine based on
dynamically gathered information. Having
accomplished their goals, the agents can return to their
home site to report their results to the user. In
managing networks we can achieve more benefits from
the use of mobile agents due to the fact that, the
approach is based on a decentralized computation. The
comparison between mobile agent performance with
traditional centralized approach based on Simple
Network Management Protocol (SNMP) shows that
SMNP does not scale well when the size and
complexity of the network increase [4, 13, 14, 16]. In
addition, other researchers argue that, to be successful,
mobile agent platforms must coexist with, and be

presented to the application programmer side-by-side,
with traditional client-server platform.

In a mobile agent system, a user simply launches a
mobile agent consisting of code and data, and other
necessary parameters, to a fixed network, and then
disconnects. The agent then navigates autonomously
through the heterogeneous networks, interacting with
servers or other agents, as it processes the desired
information. The mobile agent moves from one server
to another while carrying intermediate results. This
eliminates the need for the client to maintain a network
connection while its agents access and process
information. The feature has been proved to be useful
for mobile devices, which have unreliable low
bandwidth network connections and are often switched
off to reduce power consumption. The repeated client-
server interactions are therefore reduced to two agents
transfer operations, sending a request and notifying the
final result. The scenario is illustrated in Figure 1.

In section 2, we present the agent characteristics.
Advantages and problems of mobile agents are also
discussed in this section. Section 3 tackles the theme of
the paper, i. e., proposes the mobile agent management
infrastructure and shows how the major functional
components are implemented. Fault-tolerance
techniques are discussed in section 4. Section 5
presents agent management, agent control and the most
critical issue in mobile agent, the security framework.
Conclusive remarks are given in section 6. Finally,
section 7 concludes the paper.

The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 230

Figure 1. Comparison between SNMP vs. mobile agent paradigms,
(a) SNMP paradigm, (b) fixed network, (c) mobile agent paradigm.

2. Agent Characteristics
Mobile agents may possess several or all of the
characteristics [1, 6] summarized below in Table 1.

Table 1. Agent characteristics.

Autonomy Exercise Control Over Its Own Actions
Temporary
Continuous It is a continually running process

Reactivity Respond in a timely fashion to changes in the
environment

Goal Oriented Does nor simply act in response to the
environment

Proactively Able to change event and make things happen

Social Ability Can communicate and collaborate

Mobility Able to transport itself from one machine to
another

Cognitive Able to learn and adapt environment

Flexibility Characterized by capability to adapt changing
environment

Every agent satisfies the first four properties (i. e.,
reactive, autonomous, goal oriented, and temporary
continuos). Other properties are defined on adding
hierarchical classification.

2.1. Advantages of Mobile Agents
The advantages of mobile agents are visualized in their
significance over the client-server model. Technically
there are many mobile agent advantages [10]. These
include:

1. Reducing client server bandwidth problems by
moving a query from client to the server, this
reduces repetitive request/response handshake, as
depicted in Figure 1.

2. Solving problems created by intermittent or
unreliable network connections. Agents can easily
work off-line and communicate their results when
the application is back on-line.

3. Supporting parallel execution (load balancing). A
large computation can be divided among server’s
dependent of resources.

4. Allowing decision about the location of code, to be
made at the end of the development circle, when

more is known about the application, thus reducing
the design risk.

5. Providing scalability and robust remote interactions.

All these advantages offer compelling reasons to adapt
agent architecture for network management tasks.

2.2. Problems with Mobile Agents
Several mobile agent systems have been proposed [8].
However, the technology is still not yet widely
accepted, due to the fact that there are still several
issues to be solved. Major problems associated with
mobile agent includes:

• Coordination: One of the fundamental activities in
mobile agent application is coordination between
agents and entities they encounter during execution.
The mobility of an agent rises problems. Multiple
agents are likely to visit the same site at the same
time. It is forbidden several agents attempting to
have access to the same resource at the same time,
as this might lead to deadlock. For the agent-based
application to be successful, coordination between
agent and network components is an issue that
needs to be well addressed.

• Resource Management: Since agents are
autonomous congestion during resource access is
inevitable. Resource allocation of agents must be
governed in order to avoid congestion or system
breakdown.

• Security: The introduction of mobile code in a
network rises several security issues. In open
network such as Internet, servers run the risks of
system penetration by malicious agents, as these can
cause undesirable consumption of resources. On the
other hand, parts of the agent states might be
sensitive and might need to be kept secret when they
travel on the network. Security bleach could result
in the modification of the agent’s code as it
traverses the network. Researches admit that
protecting the agent against hostile hosts and vice
versa are still a difficult issue. Karnik [8] further
points out that security is the major obstacle
preventing the wide spread acceptance of the mobile
agent paradigm. In Section 5.2, we propose a nobel
mechanisms for protecting the agent’s code and
their hosting sites of execution.

3. Proposed Mobile Agent Management
Architecture

In this section, we propose an infrastructure that
provides framework for network management
functionality and code mobility. The architecture
emphasizes autonomy and mobility of agents. The
entire network is viewed as being made up of small
and easily manageable groups of nodes called domains.
Based on this vision, the infrastructure is equipped

Server 1

Server 2

Server 3

Server n

Server 1

Server 2

Client

Server n

Server 3

Client

P

R

P

R

Agent dispatch
(C, D&Ct)

 Agent migration
 (C, D&Ct)

 b  c a

Agent migration
Final result

R
P

Fixed
Network

231 Distributed Network Management with Secured Mobile Agent Support

with two major entity categories namely, management
entities and managed entities. The management entities
include Domain Managers (DMs) and Manager of
Managers (MoMs), all performing the management
roles in a hierarchical level. The DMs have control
over the nodes within a domain, and MoMs directly
exercise power on their immediate subordinate DMs,
who in turn exercise the powers delegated to them, to
the managed entities.

The managed entities include agent servers,
directory servers, service/resource agents and mobile
supporting server, each performing specific function.
To ease the management, domains consist of servers
not more than a certain number. Likewise, the MoMs
is bound to serve not more than certain maximum
number of DMs. The grouping will largely depend on
the geographical layout of the networks and the
average load on the entire network. The registration of
a node in a group may be done at the time a node is
being installed, and a node can be shifted to another
domain later as the network administrator may prefer.
The mobile supporting server is used to enable the
participation of the mobile user in communicating with
the network components. The infrastructure is
illustrated in Figure 3.

3.1. System Implementation
In the proposed infrastructure illustrated in Figure 2,
the managing entities provide an interface to the user
to specify policies for mobile agent and dispatch the
mobile agent. They also have the capability to create
the mobile agent based on the information provided by
the user. The travel action plan and security of the
management information are specified at the DM
before launching the mobile agent. When the mobile
agent returns with the collected information, the DM
processes the information and presents it to the user in
a Graphical User Interface (GUI). In addition, a DM
keeps track of the mobile agent, and it is ready at any
time to service any special request from any of the
managing entities. The same agent code can also be
sent to a set agent servers to execute in parallel, thus
increasing system performance. Once the mobile agent
is launched, the DM is available for other actions such
as processing the received results, launching the new
agent, etc.

The user at the user interface defines the policies
before dispatching the mobile agent. We adopted, with
slight modifications, the travelling plan proposed by
Wen-Shyen [19]. The travelling plan consists of a list
of nodes to be visited, potentially in a specified order.
However, the order given at the launching entity is not
mandatory; the intelligence of a mobile agent still
enables it to make decisions based on the situations at
any agent server. Intelligence can also be used in
making decisions such as finding the next destination,
thus optimizing the travel plan. It can also be used to

detect abnormal situations as the agent travels around
the network. The security feature, discussed in section
5.2, provides the way to protect the agent, the
information collected at the entity, as well as from
other agent hosts or entities.

Figure 2. The mobile agent infrastructure.

The agent server is designed to receive and execute
mobile code. It thus provides execution environment
as shown in Figure 5, and it is responsible for receiving
a mobile agent, authenticating the mobile agent and
executing under local environment. It must also
provide mechanism by which the local resources can
be accessed. The agent server program specifies the
policies that govern the mobile agent interaction with
the local resources. At the same time, the agent server
has the authority to deny any service to the mobile
agent that violates contract.

The DM strictly specifies interaction between the
local environment of the agent server. In order to
effectively distribute processing load and control of
management station, the hierarchical management
approach has been adopted. To keep system
manageable, the infrastructure provides only two level
hierarchies as shown in Figure 3.

3.2. Implementing Agent Server
The agent server provides the resources, execution
environment, as well as communication support for
mobile agents. Every node in a mobile agent system
must, therefore, be equipped with the agent server. The
execution environment consists of Java interpreter
called Java Virtual Machine (JVM), which is a stand-
alone platform. When the mobile agent arrives in the
execution environment with the request to execute the
server first performs security operations upon the agent
to ensure its safety and regality; it is then instantiated
and starts execution. After execution, the server
provides storage support for the intermediate results.

MoM send Control
Messages, DM
report status

DM
Domain Manager

MoM
 Manager of
Managers Mobile Supporting

Server
Agent Servers

Domain

MoM

Domain

DM

Domain

DM

MoMDM

Domain

Fixed User

Mobile User

The Internet

The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 232

An agent server supports the transport mechanism
with the help of Aglet Transfer Protocol (ATP). Aglets
is a Java system developed by IBM, it enables the
agents to move from one server to another by invoking
special methods which execute automatically when the
agent finishes execution and serving the context in a
current host. In the proposed architecture, when the
mobile agent wants to move first, the agent server
packs it along with the context and encrypt the code for
transit protection. When this is done, the method goTo
executes automatically, and thus enables the agent’s
code to move to the next destination.

Figure 3. Two level hierarchy network management.

3.3. Mobile Agent Life Circle
In the proposed architecture, a user creates the agent
containing the request, mobile code, state information
and other parameters. Other attributes include
information about the mobile agent, such as the
launcher, movement history, resource requirement,
identification, authentication and encryption
information. After creation, the user consults the
manager for the agent launch. After arriving at the new
host, a mobile agent performs security and initializing
process to activate itself. Once activated, the mobile
agent collects the necessary information through
interaction with local resources and performs
execution. After the completion of all the specified
tasks for that particular entity, the results are served
into the container of the mobile agent. The agent will
continue visiting nodes one after the other until the
assigned task is completed. Figure 4 describes the
mobile agent journey in its lifetime.

Figure 4. Mobile agent life circle.

Figure 5. Mobile agent security environment.

4. Fault-Tolerance
A MoM is responsible for coordinating the DMs
requesting information and delegating tasks to them. In
order to provide fault-tolerance, DMs may perform
functions of a neighbor manager as it may be
instructed by MoMs. MoMs keeps watch on the DMs
and immediately delegates power in case of failure.
DMs may also communicate with each other to
perform some management tasks and analyze network
in a global manner. A mobile agent is sent from the
DM to the agent server to carry out the task locally,
dynamically delegating management functions. In case
of any execution problems or coordination problem
which cannot be attended by the by the DM, a message
is sent to the MoM to seek help. On the other hand, in
case of misbehavior in a mobile code, a message is
sent to the DM and dynamic code change can be

Network

Manager of
Managers

Domain Manager 1 Domain Manager n……

Security Technicalities

Initialization (Load State)

Perform Local Execution

Server Results & Current State

Last
Node?

Return to Mngt Server

Display Result

Manager Launches Mobile Agent

Yes

No

Agent Server

Domain nDomain 1

DM
User Interface

User

Mobile Agent

Messages

A/Controller: Access Controller Agent Server

Agent Receiver
(Authenticate)

Execution
Environment

Validate

A
cc

es
s

Create
Agent

Assign ID
Issue

Password
Encrypt

Code Attach
Proof Safety

Zip Code

A/Controller

Resource

233 Distributed Network Management with Secured Mobile Agent Support

performed, to send another mobile agent as a substitute
to the old one.

5. Agent Management
For the mobile agent to be useful, a management
scheme is necessary. Managing an agent involves
monitoring its events and actions. The mobile agent
events include agent creation, migration, arrival,
termination, and agent interaction with other agents.
The key issues in agent management are agent
monitoring and agent control, which in most cases rise
the security issue. In this section, we briefly discuss
control techniques and concentrate on security issues.
The management server needs to hold the status of the
mobile agent and provide control functions to the user.
For all these to be possible, the management server
needs to have a way to first locate the mobile agent.

5.1. Agent Control
The agent application might need to monitor the
agent’s status while executing. If exception or errors
occur during execution, the application needs to
terminate the agent, which involves tracking the
agent’s current position and requesting the host server
to kill it. Similarly, the agent launcher (or user) might
want to call it back to its home site and allow it to
continue execute there or terminate it for some reasons.

In the proposed system, the application or user
invoke the primitive retract to call the agent back. To
be able to have control over the agent, the first action
to take is to locate it. The proposed system adopted the
hierarchical agent location tracking mechanism
proposed by Jonathan Dale [17]. Every agent server
creates a path registration for each mobile agent as it
passes through the server. The path consists of the
pointer to the next hope where the agent was last
transferred and thus forming a unique path from the
root node of the tree down to agent running
environment. The messages being delivered to the
agent easily follow the same route as the agent until
they find it.

5.2. Security System Design
As mentioned in section 2.2, not all hosts through
which agent passes are trustful. Deliberate measures
for protecting mobile agent, sensitive data and mobile
hosts are therefore necessary. However, it must be
noted that the security threats in mobile agent systems
come not only from agent hosts, but also from
malicious agents. Malicious mobile agents may
compromise and/or modify sensitive data, which they
have no right to access; can also interfere with the
execution of other agents. On the other hand, malicious
hosts may cheat the agent migrating to them and
therefore interfere with the successive execution of the
mobile agents. Having this obvious assumption in

mind, we propose an agent security mechanism that
takes effort to protect both the hosts and the mobile
agent as illustrated in sections 5.2.1 and 5.2.2.

5.2.1. Agent Server Security Mechanism

Before the agent server can allow the mobile code to
execute in its environment, it verifies that the agent is
suitable for execution by enforcing authentication,
verification and authorization security techniques.

As soon as the mobile agent arrives at the agent
server, before it can perform any task, it is
authenticated. The agent server asks for the
authentication details. In fact, after creation at the
user’s terminal, the agent registers itself at the DM,
and it is assigned a password. Before the agent is
accepted at any host, it is required to supply a
password, its ID and the mobile agent launcher’s ID as
shown in Figure 5. A mobile agent that fails
authentication is rejected by the agent server.

Verification involves checking the mobile agent
code to ensure that it does not perform any prohibited
actions. To achieve verification process, a technique
called proof caring code [17, 18] was adopted. Each
code to be transferred; a safety proof is attached to it.
Once the mobile agent arrives at the new host, the
agent server validates the proof to each piece of code
and thus ensures that the code is safe to execute.

Authorization deals with agent access permission to
the agent server resources, such as PCU circles,
read/write access, etc. In our proposed system, only
trusted agents can read, write and do modifications. In
fact, less trusted agents have limited access to
resources. The access controller provides permission to
the mobile agent to access resources, and is able to
determine trusted and non-trusted agents, and provide
services accordingly.

5.2.2. Mobile Agent Security Framework

In Figure 5, we illustrate the mobile agent framework.
The areas for security checks are agent receiver,
security manager (or validate machine) and the access
controller. Hosts also need to be authenticated to check
their safety before mobile agents’ moves to them. In
protecting the software code of the mobile agent as
well as information at different agent servers,
cryptographic algorithm were adopted, Pretty Good
Privacy (PGP) encryption method based on RSA DEA
and IDEA.

The motive behind adopting PGP encryption
method was that, it provides not only mobile security
but also code compression. In addition, the complete
package, including all the source code, is distributed
free of charge via the Internet, and it is available on
MS-DOS/Windows and INIX platforms. After the
code is encrypted, it is then zipped using the ZIP
program developed by Ziv and Lampel [22], it is then

The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 234

launched. At any time, the DM keeps watch on the
mobile agent movements.

The mobile agent code together with its data is
encrypted before being launched. Code encryption
ensures that the agent will reach the next destination
safely. Only the agent execution environment specified
in the itinerary, and that holds the agent decryption
key, will be able to execute the agent [5]. The
execution environment consists of a JVM code, which
provides the platform for the agent execution. Any
entity from the outside environment cannot interfere
with the execution environment. If it is necessary to
interfere, it does so through a restricted interface that is
controlled by the validate module, which also
guarantees that the agent code will be executed
correctly.

6. Performance Assessments
We assess the effect of providing confidentiality and
integrity as an effort to protect a mobile agent-based
management system from malicious hosts attack. In
our approach, we develop a simple but reasonable
analytical model based on performance parameters
considered to be the three main parts of a mobile
agent-based management system; i. e., the agent code,
the agent transfer protocol APT, data and results
obtained at each visited host. While the agent code and
the APT are assumed to immutable, data and result are
expected to vary. The size of a mobile agent-based
management system is expected to increase as a mobile
agent-based management system collection on each
visited host.

In our model, we consider data to be the input
required by the agent to perform computation at a
particular hosting site; the agent owner usually
supplies data before the agent is launched, more data
may be added as needed from system resources such as
directory servers. We also consider results to be the
amount of information collected at any visited site. The
user sends a mobile agent-based management system
to the network/Internet. The mobile agent-based
management system then visits the hosts one after
another as specified in the itineraries and when
satisfied, returns to the user to submit results.

The mobile agent-based management system
preserves the agent integrity at the expense of
execution over head. The delay on a mobile agent-
based management system is mainly due to two
factors:

1. Time spent on results encapsulation and
cryptography computations at the intermediate sites.

2. Delay of the sender for verifying the agent integrity,
we define the total delay Dτ introduce d as a result
of implementing the mobile agent-based
management system as follows:

Dτ = NDε + NDυ (1)

Where Dε denoted the delay in performing
encapsulation and cryptographic computations at any
given host, Dυ denoted the delay introduced by the
sender for verifying the agent integrity and N is the
total number of hosts visited. As mentioned in the
earlier sections, the encapsulation scenario involves
cryptographic computation, performing the harsh on
the partial results and signing the entries. With this
consideration Dε becomes:

Dε = Dη + Dκ + Dδ + Dσ (1-1)

When Dη is the delay introduced in computing the
harsh, Dκ and Dδ are delays due to encrypting and
decrypting the agents and Dσ is the signature
processing delay.
The sender verification on the code integrity involves
creating a new harsh using the original code and
making a comparison, the sender also verifying the
signatures. With this notion, Dυ can be defined as:

Dυ = Dη + Dκ + Dυσ (1-2)

Where Dυσ is the delay introduced by the sender for
verifying signatures. With 1-1 and 1-2, we have:

Dτ = N (Dη + Dκ + Dδ + Dσ) + N (Dη + Dυσ)
(1-3)

Assuming that Dσ ≡ Dυσ we have:

Dτ = 2N (Dη + Dσ) + N (Dδ + Dk) (2)

For the overall system performance, the transmission
overhead is very significant and should not be
neglected. The parameters for transmission delay are
code transfer; data/result transfer and the atp transfer.
The transmission delay between two successive hosts
is then:

Dij = (Dφ + Dρ + Dγ) (3)

Where Dij denotes the transmission delay between two
successive hosts I and j, Dφ denotes the delay
introduced by code transmission, Dρ denotes the delay
introduced by the ATP and Dγ is the delay introduced
by the data/results transfer.

Transmission delay is the function of the size of the
mobile agent-based management system. Since the
code and the ATP are immutable, the varying
parameter in equation 3 is the third term Dγ. We expect
the size of the agent to grow as it gathers information
from the visited hosts. Assuming that the amount of
information collected by an agent on each visited site
is the same; the total delay due to mobile agent-based
management system transmission may be expressed as:

Dτ = NDij
 = (Dφ + Dρ) + ∑

N

0

∆ Dγ)

(Dφ + Dρ) + 2)1(+N ∆ Dγ (4)

235 Distributed Network Management with Secured Mobile Agent Support

Where ∆D is the size of information obtained at the
visited host.

7. Conclusion
In this paper, a mobile agent-based management
system has been discussed. The framework differs
from most other mobile agent frameworks in that, it
proposes a hierarchical level of management, which
provides, to network components, smooth coordination
and fault-tolerance mechanism. It also provides an
efficient way of locating the agent. This is achieved by
having the agent creating a registration path as it
passes though the servers. The approach enables the
message being sent to trace the agent, easily follow the
path and go directly to the agent.

Since mobile agents are autonomous, security
becomes an important issue. This work implements
security mechanisms that protect not only the agent but
also the agent hosts. A Pretty Good Privacy (PGP)
encryption method has been adopted to protect the
agent code from being altered as it traverses the
network components.

Agent-based network management are not yet
widely accepted due to the fact that, most of the
systems proposed so far still suffer security and
coordination problems. However, a lot has been done
by researches as mobile agent systems seams to solve
many problems existing in the traditional client-server
model. It is our hope that agent-based interaction will
become an important paradigm for the future network
management systems. In addition, the possibility of
combining mobile agent interaction with SNMP
interaction gives the possibility of coming up with a
most robust and efficient applications.

References
[1] Abeck S., Koppel A., and Seitiz J., “A

Management Architecture for Multi-Agent
Systems,” in IEEE Proceedings of the 3rd

International Workshop on System Management,
Boston, USA, pp.133-137, April 1998.

[2] Abowd G. D. and Mynatt E. D., “Charting Past,
Present, and Future Research in Ubiquitous
Computing,” ACM Transactions on Computer-
Human Interaction, vol. 7, no. 1, pp. 29-58,
March 2000,.

[3] Arcos J. and Plaza E., “Exploiting Context
Awareness in Information Agents,” in
Proceedings of the 5th International Conference
on Autonomous Agents, Montreal, Canada, pp.
116-117, 2001.

[4] Baldi M. and Picco G. P., “Evaluating The
Tradeoffs of Mobile Code Design Paradigms in
Network Management Applications,” in
Proceeding of the 20th International Conference

on Software Engineering (ICSE’98), Kyoto,
Japan, pp. 146-155, April 1998.

[5] Brewington B. and Gray R., Mobile Agents for
Distributed Information Retrieval: Intelligent
Information Agents, Springer-Verlag, 1999.

[6] Buchman W. J., Naylor M., and Scott A. V.,
“Enhancing Network Management Using Mobile
Agents,” IEEE Transactions on Knowledge and
Data Engineering, vol. 12, no. 5, pp. 818-826,
2000.

[7] Jonathan D., “A Mobile Agent Architecture for
Distributed Information Management,” PhD
Thesis, University of Southampton, September
1996.

[8] Karnik N. and Atripathi, “Agent Server
Architecture for Ajanta Mobile-Agent Systems,”
in Proceedings of the International Conference
Parallel and Distributed Processing Techniques
(PDPTA’98), Las Vegas, USA, pp. 63-73, 1998.

[9] Karnik N. M. and Tripath A. R, “Design Issue in
Mobile Agent Programming Systems,” in
Proceedings of the IEEE Concurrence, Boston,
USA, pp. 52-61, July-September 1998.

[10] Lange D. B. and Oshima M., “Seven Good
Reasons for Mobile Agents,” Communications of
the ACM, vol. 42, no. 3, pp. 355-395, 1999.

[11] Loke S. W. and Zaslavsky A., “Mobile Agent
Supported Cooperative Work: The ITAG
Scripting Language Approach,” in Ye Y. and
Churchill E. (Eds), Agent Supported
Collaborative Work, Kluwer Academic
publishers, 2002.

[12] Loke S. W., Padovitz A., and Zaslavsky A.,
Context-Based Addressing: The Concept and an
Implementation for Large-Scale Mobile Agent
Systems Using Publish-Subscribe Event
Notification, Lecture Notes in Computer Science,
vol. 2893/2003, Springer Berlin/Heidelberg,
France, November 2003.

[13] Marcelo G. R., Otto C. M., and Duarte B.,
“Evaluating the Performance of Mobile Agents in
Network management,” in Proceedings of the
IEEE Global Telecommunications Conference,
Rio de Janeiro, pp. 386-390, December 1999.

[14] Pangureck Y., Wang Y., and White T.,
“Integration of Mobile Agents with SNMP: Why
and How?,” in Proceedings of the IEEE
Symposium on Network Operations and
Management, Jeju Island, Korea, pp. 609-622,
September 2004.

[15] Papastavrou S., Samaras G., and Pitoura E.,
“Mobile Agents for World Wide Web Distributed
Database Access,” IEEE Transactions on
Knowledge and Data Engineering, vol. 12, no. 5,
pp. 802-820, 2000.

[16] Ravi J., Farooq An. and Amjad U., “A
Comparison of Mobile Agent and Client–Server
Paradigms for Information Retrieval Tasks in

The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 236

Virtual Enterprises,” in IEEE Proceedings, Jeju
Island, Korea, pp. 302-313, September 2002.

[17] The Official PGP User’s Guide, Cambridge, MA
MIT Press, 1995a.

[18] The Official PGP User’s Guide, Cambridge, MA
MIT Press 1995b.

[19] Wen-Shen E., Lin C.C.Y., and Lien Y. N., “A
Mobile Agent Infrastructure with Mobility and
Management Support,” in Proceedings of the
IEEE International Workshop on Parallel
Processing, Wakamatsu, Japan, pp. 508-513,
September 1999.

[20] Zaslavsky A., “Mobile Agents: Can They Assist
with Context Awareness,” in Proceedings of the
2004 IEEE International Conference on Mobile
Data Management (MDM’04), California, USA,
January 2004.

[21] Zaslavsky A., “Mobility in Enterprise
Applications,” in Proceedings of the 5th

International Conference on Business
Information Systems, Poland, April 2002.

[22] Ziv J. and Lampel Z., “A Universal Algorithm
for Sequential Data Compression,” IEEE
Transactions on Information Theory, vol. IT 23,
pp. 337-343, May 1977.

Mohammed Ibrahim received his
BSc degree in computer science
from Baghdad University, Iraq, in
1991, MSc in computer sciences &
engineering from Shanghai
University, China, 1996, and his
PhD degree in computer sciences

and engineering from Shanghai Jiaotong
communication University, China, 2003. His research
interests include grid computing and distributed
systems.

