
The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 272

Equi-Join Table Optimization Technique for
Temporal Data

Mohd Shafry Mohd Rahim, Norazrin binti Kurmin, Mohd Taib Wahid, and Daut Daman
Faculty of Computer Science and Information Systems, University Technology Malaysia, Malaysia

Abstract: Temporal data management is significant to applications such as environmental management systems. It is to
ensure that the process of data storing, retrieving and manipulation can be conducted in an efficient manner. The main focus
of this research is on the retrieval of temporal data. Evidently, in the area of temporal data retrieval, the issue that is given
most attention by researchers is how to speed up data retrieval time. In our research, we attempt to tackle this issue in an
information system which stores hydrological data using a database that utilizes the cube method. As an end result, we
managed to establish a technique called the equi-join table optimization technique that was implemented to an existing
database system. This technique will also analyze a query statement with several possible query executions to determine the
most possible optimum implementation. The outcome indicated that there is indeed an improvement concerning the data
retrieval response time.

Keywords: Database, information retrieval, optimization, temporal data management, hydrological data.

Received December 30, 2005; accepted August 16, 2006

1. Introduction
Presently, an effective method in information retrieval
is becoming more and more important due to
expansion of resources and information technology
usage. In regards to this rapid expansion, the need to
obtain immediate feedback in any data transaction has
become the utmost priority to users. It has encouraged
researchers to improve existing methods to
significantly reduce the amount of time required to
process data retrieval in databases hence the main
focus of our research. This paper is organized as
follows. Next two sections describe the problem
background and research background. Section 4
reviews the optimization techniques. Section 5
establishes the methodology of this paper. Section 6
includes the testing and implementation aspects.
Section 7 discusses the results. Finally, section 8
discusses the future works.

2. Problem Background
For temporal data applications, there is a higher need
for an effective management of data. As these data are
affected by time element, the stored data are not just
only current but also include past data. Every change
needs to be recorded and stored in the database.
Hydrological data is one example of such data, which
is also our main concern in this research. In an
example situation of managing hydrological data, a
total of rain dispersion data will be recorded for every
hour of every day and so forth. As a result, the data
stored in the database can reach up to many years
worth of data. It is simply because the data are

recorded continuously and in turn will increase the
number of records in the database, thus making it more
complex to manage. The most common problem in
handling temporal data is the difficulty in handling
complex data [3, 7, 9, 12, 13]. In addition to this, the
processing speed in temporal data retrieval is also
known to be a main issue among researchers [4, 8, 10,
18, 19]

3. Research Background
Database refers to an assembly or a collection of
related data which are logically linked in order to
fulfill the needs of an organization. Database
Management System (DBMS) is a system that enables
user to define, build and maintain a database.
Additionally, DBMS also provides control towards the
database [5]. Managing and analyzing data in a
database which is constantly changing has become a
critical issue for larger applications where a faster
speed of data retrieval process is much needed. One of
the techniques that is able to resolve this is the Table
Optimization Technique.

However, by using this technique, certain problems
still arise concerning data handling in the database.
Paper [4] suggested an optimization technique based
on the histogram. The equi-join association method is
utilized to link two relations with the same attribute
and subsequently implements the histogram-based
algorithms which are the Averaged Rectangular
Attribute Cardinality (R-ACM) and Trapezoidal
Attribute Cardinality (T-ACM) in order to improve the
run time of the querying process.

273 Equi-Join Table Optimization Technique for Temporal Data

A group of researchers from the Institute of
Software Technology, Faculty of Computer Science
and Information System [16, 17, 18] then introduced
the Cube System approach to create database model.
Based on the Cube System, each hydrological data
combine three main grounds which are non-space data,
space data and time. This concept stated that the
hydrological data that is being accessed must possess 3
significant properties which are Where?, What?, and
When?. A retrieval process must refer to these three
properties. It helps in assisting a retrieval process by
only stressing on those three important elements
compared to many relations that exist in a database.
However, the Cube System still does not resolve
problems concerning retrieval processes that involve
large number of records. Storing a time-based data
such as hydrological data has become a bigger issue
since the records are being kept on for many years [16].

In this research, an existing system called the
Malaysian Hydrological Information System (MHIS)
has been used as a case study. MHIS is an information
system for storing hydrological data concerning rain,
water level, evaporation and water quality. It was
developed by the Institute of Software Technology,
University Technology Malaysia [17, 18]. The data
stored will be used for water resource evaluation study
and hydrological information. Apart from that, it will
also be used for the purpose of development and
management. In order to assist the party involved in
these tasks, the data stored will be analyzed and
displayed in the form of a report based on the
requirements intended.

4. Review of Optimization Techniques
The key objective in problems related to temporal data
management is to reduce the amount of time required
to process data retrieval in databases. According to
[21], the run time duration for a query statement can be
reduced using several join methods. These methods
suggest joining relationships in the database in order to
speed up query processes. Some of these methods
proposed include the semi-join [2], equi-join [10, 20],
project join [11] and the two way semi-join method
[6]. Lubna [10] used a semi-join method as a
relationship reducer in the database which prevents the
need to create a large size relationship. Outer-join
method is commonly used whenever there is a
neglected value in a joint attribute in a relationship that
has been linked. However, not all DBMS support this
type of relationship directly [15]. The equi-join method
is also known to be capable of reducing the size of
relationship and at the same time eases the retrieval
process. In spite of these proposed methods, there are
still weaknesses in handling query statements that
involve accessing data with numerous records.

Several techniques and algorithms have been
introduced for query optimization and among these

was the AHY algorithm, which uses the semi-join
method [2]. This algorithm was introduced to achieve
the following objectives:

1. To minimize response time.
2. To minimize the time required for transferring data.

However, the disadvantage of the AHY algorithm is
that it is static, meaning that whenever a query
statement is executed, it could not be altered. This is
because it is formed according to a designated pattern.

Timos [20] proposed the interleaved IE and HA. IE
generates all possible implementation methods for each
statement, which were created by reducing the original
relationship size using the equi-join method. HA
algorithm, on the other hand is employed to decrease
the number of selection of implementation method in
order to obtain the best possible implementation
method. Lubna [10] then proposed an optimization
technique known as JAL Dynamic Algorithm. This
technique was introduced to overcome the
disadvantage of the AHY technique, and enable the
querying process to be dynamic. Apart from that, it
eliminates redundancy in order to reduce query
response time. Haraty and Fany [6] implemented the
Partially Encoded Record Filters (PERF) using the
AHY algorithm, which consequently produces the
AHYPERF algorithm. PERF join is a two way semi-
join, which uses byte vector as the backward phase.

Chen [4] proposed an optimization technique using
a histogram-based approach. He uses the equi-join
method to link two relations that possess the same
attributes. The histogram-based algorithm is then
implemented, which is Averaged R-ACM and T-ACM
to enhance the query implementation process. Mc
Mahan [11] soon after introduced an approach based
on project-join method. This approach uses structure
properties for each query to minimize the size of the
temporary results of a query during the query
evaluation process. It also shows how structured
techniques such as projection join, pushing join and
reassemble join could improve the query run time.
Table 1 summarizes the comparison between all of the
optimization techniques mentioned.

In this research, we propose the usage of the equi-
join method to handle the problems discussed
previously. The equi-join operation can be
implemented using the nested loop join algorithm, sort
merge loop join algorithm and hash join algorithm [14,
15]. For each technique developed, the nested loop join
algorithm will implement the join operation selected.
This is due to the fact that this method is the easiest
and most simplified method to apply.

5. Methodology
Figure 1 illustrates the implementation flow of the
produced system architecture. The following is the
implementation sequence:

The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 274

1. For each report generated, a query statement is
created to retrieve the data intended from the
database.

2. The query statement is created using either one of
the following methods:

a. Based on the original database relations’
structure without employing any optimization
technique.

b. Based on the table optimization technique
created.

3. Next, the query analyzing process will generate
several query statement implementation methods
and determine which of these methods is the most
optimal in terms of cost in generating a report.

Table 1. Comparison of Optimization Techniques.
Technique/
Author

Join
Method Join Implementation

AHY
Algorithm
[2]

Semi-join

Three implementation phases:

1. Local processing to filter unnecessary
data.

2. Semi-join diminishes data transportation
from one section to another.

3. Assembles data to destination.

Interleaved
Execution
Algorithm
[20]

 Equi-join

There are two types of implementation:

1. IE Algorithm: Generates all possible
implementation method using equi-join
technique.

2. HA Algorithm: Reduces number of
selection for implementation method.

AHYPERF
Join [6]

Two-ways
semi join

Stages in PERF join:

1. Focus on the attributes that will be joined
in R1 and set to PR1.

2. Transfer PR1 into R2 (Forward phase).
3. R2 relation can be reduced by

implementing semi-join on PR1.
4. Byte vector (PERF), which contains a

byte for each tuple will be send back to
R1 in the same sequence. If the data is
suitable, tuple is then set to 1. Otherwise
it will be set to 0.

JAL
Dynamic
Algorithm
[10]

Semi-join Eliminates redundancy to reduce query
response time.

Histogram-
based
Algorithms
[4]

Equi-join

1. Uses equi-join to join relations that has
the same attributes.

2. The implementation uses histogram-
based algorithm, which is Averaged R-
ACM and T-ACM to improve query
response time.

Structured
Techniques
[11]

Project-
join

Uses structured techniques:
1. Projection.
2. Pushing.
3. Reassembling joins.

5.1. Table Optimization Technique
Our produced technique, known as the Equi-join Table
Optimization Technique is an enhancement to the join
technique established by [15]. The enhancement done
on the equi-join method refers to the entity
classification step. For instance in Figure 2-a, a single
entity is classified into several entities based on group

of suitable attribute which are the same characteristic
and same behavior. The purpose of this step is to
identify and collect the repeating attributes into a new
attribute. In addition, it also decreases the number of
tuples to be referred to during the data retrieval
process.

Figure 1. System Architecture.

Under the equi-join concept, two entities are joined
to form a new entity. An example shown in Figure 2-b,
entities R and S are joined to form a new entity, T.
Tuple t in the entity T is formed from tuples r and s, in
which r is a subset to entity R and s is a subset to entity
S. In tuple t, the attribute value is a result of joining the
attribute value of tuple r which is equivalent to the
value in tuple s. By joining two entities to form one,
the number of entities and relations in the database can
be decreased. Hence, the data retrieval process could
be performed in a much more efficient manner. Figure
2 illustrates the design of the technique developed.

5.2. Rules of Equi-Join Table Optimization
A few rules are applied in order to produce this
optimization technique:

1. Eliminate attributes’ redundancy: Based on this rule,
attributes that are equivalent in two entities will be
joined by eliminating one of the attributes from
either one entity. Other attributes will be combined
to form a new entity. The attribute value for each
tuple will be verified. If the attributes’ values for
both entities are equivalent, the value will be joined
and stored in a new entity. With reference to the
operation perform on the set [1], this rule can be
represented as follows:

{t = r ∪ s | r ∈ R, s ∈ S , t∈T} (1)

2. Joining two entities to form single entity: In this
rule, certain entities will be joined to form a new
entity. Each attribute that is used to define the
condition for joining must be compared using
relational operators. For the technique developed,
the equality operator (=) will be used. Based on the

Query Statement

Data

Original Query
Statement

Report
 Generation

Table
Optimizing

Query
 Analyzing

Query
Optimizing

Database

Data

275 Equi-Join Table Optimization Technique for Temporal Data

fundamental definition of join [15], the rules can be
defined as follows:

T = R r (a) = s (b) S (2)

3. Dividing a single entity into several entities based
on group of suitable attribute which are of the same
characteristics and same behavior.

Similar to rule 1 and 2, the goal of rule 3 is to ease the
data retrieval process. Entities will be classified into
other attributes based on group of suitable attribute
which are the same characteristics and same behavior.
There are two steps involved in implementing this
process which are clustering and classification.

Clustering is performed by collecting the same
attributes into a temporary entity. In clustering, the
attribute value that will be used as the condition for
classification will be verified. If the attribute value in
the first tuple is equivalent to value in the following
tuple, these values will be joined and stored in a
temporary entity. This process will be repeated until it
reaches the last tuple of that entity.

Figure 2-a. Enhancement on the Equi-join.

Figure 2-b. Equi-join method.

Generally, the rules can be described using the
following equations:

r’ = ∑
=

m

i 1
∑
=

n

j 1

 ((rj = ri, rj + 1 = ri, …….. , rn = ri),

(rj = ri + 1, rj + 1 = ri + 1, …….. , rn = ri + 1), ……..,

(rj = rm, rj+1 = rm, …….. , rn = rm) | r ∈R) (3)

where:
r’ = Entity to be classified.
r = Entity to be classified.
n = Number of tuples for classified entities.
m = Number of tuples for classified entities.

Figure 3. Table optimization algorithm.

6. Testing and Implementation
The main goal of the testing phase is to see the
effectiveness of the technique developed compared to
the existing table optimization technique used in our
case study system, MHIS. Several sets of query
statements based on Structured Query Language are
created to test the effectiveness of this technique.
These statements will be used to retrieve data from the
database. A Relational Database Management System
(RDBMS), MS Access 2003 were used in this testing
phase. Active Server Pages (ASP) was used for
generating reports of the query implementation. We
also used Oracle 9i to determine and select the most
optimum query statement. Table 2 shows the entities
and number of tuples for each entity to be used in the
testing stage.

The execution of our technique involved three
entities which are dt_char, dt_real and dt_name. These
entities store data concerning station name, value of
rainfall, evaporation, water suspending sediment and

Entity_n

Att_1
Att_2
.
.
Att_n

Att_1i

Att_1i+1

Att_1i+2

Att_1n

Att_1i

Att_1
Att_2
:
Att_n

Att_1n

Att_1
Att_2
:
Att_n

.

.

T = R r=sS

Equi-join

r = s

Entity_T

Att_1
Att_2

.

.
Att_n

Entity_R

Att_1
Att_2

.

.
Att_n

Entity_S

Att_1
Att_2

.

.
Att_n

//********* Joining Entity*********
1. For each entity, R1 and R2 to be joined,

 the following will be done
1.1 For each tuple R1, do
 a. For each tuple R2, check

 If attribute R1 (a) = R2 (b)
 then join R1 and R2

b. Save the newly formed relation, R’

//*********Classifying Entity*******
2. Initialize number_of_entities = 0
3. For each entity to be classified, R3, do

3.1 Set the value for the first tuple , t1,
 to a variable,

 Tuple_entitynumber_of_entities = t1
3.2 For each tuple, tn, in R3, check

a. If R (tn) attribute value =
tuple_entitynumber_of_entities then
eliminate tn

b. Save tn in newly formed relation, Rt1
4. number_of_entities = number_of_entities + 1
5. Repeat step 3 and 4

while number of tuple <> 0

The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 276

water quality. The numbers of tuples used initially
amount to 871788 but after running the Table
Optimization Algorithm, it is reduced to 862038
tuples. The algorithm managed to eliminate about 9750
tuples that stores the same information thus reduces
redundancy. This is achieved when the algorithm
classifies the data into differences of entities based on
type of event. Thus the data in the three original
entities will be grouped into new entities which are
dt_station, dt_rainfall, dt_evaporation, dt_water_level
and dt_sus_sediment. Originally, the database structure
in our study case system MHIS, stores all information
by type of entity, not by type of event. Therefore to
increase the speed of query processing time, entities
must be classified using the technique proposed.

Table 2. MHIS relation before and after optimization (Total data
capacity is 100 MB).

Without
Optimization

With
OptimizationEntity

Number of
Tuples

Number of
Tuples

dt_char 36900 -
dt_name 3500 -
dt_real 831388 -
dt_station - 3650
dt_rainfall - 183145
dt_evaporation - 42229
dt_water_level - 258307
dt_sus_sediment - 347707

6.1. Comparison Criteria
The criteria considered in comparing our developed
technique to the existing technique are the query run
time. Each query will be executed at least 10 times.
The run time is the average obtained from every
execution.

Run Time = (Execution 1 + Execution 2 + ……. +
Execution 10) / 10

In order to obtain the run time for each execution,
the query statement is executed using Oracle SQL
Analyzer.

6.2. Comparison Before and After
Optimization

In this section, although we have run the test for all
data classified, we will only discuss query that was
executed by using rainfall data (temporal data). This
section will explain how various possible query
executions are selected using the ORACLE query
optimization. This implementation only uses the
ORACLE query optimization and does not alter any
basic rules in selecting the most optimal execution. For
each query statement, there are several possible
executions. Appendix 1 illustrates eight possible
executions for each query statement listed in Table 3
and Table 5.

6.2.1.Total of Rain Dispersion
Table 3 defines the run time average for query
statements of total rain dispersion P1, P2, P3, and P4
before optimization process. The initial statement for
each statement is included in Appendix 1.

Table 3. P1, P2, P3, and P4 run time.
Second P1 P2 P3 P4

1 0.85 1.00 1.60 1.76
2 0.79 0.99 1.42 2.07
3 0.77 0.97 1.44 1.77
4 0.78 0.96 1.51 1.68
5 0.79 0.93 1.38 1.71
6 0.75 0.96 1.32 1.71
7 0.80 0.94 1.36 1.72
8 0.75 0.93 1.38 1.77
9 0.77 0.94 1.35 1.72
10 0.77 0.93 1.39 1.77

Average 0.782 0.955 1.415 1.768

Table 4 defines the difference between the run time
before and after optimization. The run time obtained
before optimization is from the time average in Table 3
whereas the run time obtained after optimization is
based on the best possible executions selected as
discussed earlier. Each possible execution selected for
statement P1, P2, P3 and P4 will be compared with the
run time before optimization.

Table 4. Comparison between run time for P1, P2, P3, and P4.
P1 P2 P3 P4

Before
Optimization

0.782 0.955 1.415 1.768

After Optimization 0.052 0.117 0.156 0.225
Percentage
Increased (%)

93.4 87.7 89.0 87.3

For P1, the run time after optimization is much
faster than before optimization by 0.052 seconds. P2,
P3, P4 also have faster run time compared to before
(refer to Table 3). The comparison results obtained are
shown in Figure 5. According to the graph, the speed
percentage is increased by approximately 89%.
Judging from the result, it is clear that the technique
developed is much more effective in handling the
problems discussed earlier.

Figure 5. Comparison Graph P1, P2, P3, and P4.

6.2.2. Average of Rain Dispersion
Next comparison is for P5, P6, P7 and P8 which are
query statements for accessing information regarding
the rain dispersion average. Based on the test

P1 P2 P4
Type of Query

0.782
0.955

1.415

1.768

0.052 0.117 0.156 0.225

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

 P3

Before Optimization

After Optimization

Ti
m
e
(t)

277 Equi-Join Table Optimization Technique for Temporal Data

conducted, the execution that produces the most
optimal time will be selected. The chosen execution
will be compared with the original query statement
process. This is done to test the effectiveness of the
optimization technique developed. Table 5 defines the
run time average for each query statement P5, P6, P7,
P8. Table 6 shows the difference between each query
statement’s run time execution before and after
optimization.

Table 5. Run time for statement P5, P6, P7, and P8.
Second P5 P6 P7 P8

1 0.73 0.94 1.43 1.89
2 0.75 0.94 1.82 1.97
3 0.75 0.94 1.36 1.68
4 0.77 0.95 1.32 1.71
5 0.77 0.93 1.50 1.79
6 0.80 0.97 1.40 1.77
7 0.76 0.99 1.34 1.74
8 0.72 0.99 1.36 1.77
9 0.75 0.97 1.37 1.86
10 0.74 0.99 1.35 1.74

Average 0.754 0.961 1.425 1.792

Table 6. Run time difference between P5, P6, P7, and P8.
P5 P6 P7 P8

Before Optimization 0.754 0.955 1.415 1.768
After Optimization 0.091 0.117 0.156 0.225
Percentage Increased (%) 87.9 87.7 89.0 87.3

This result also indicated that the run time for the
execution of query statement after optimization is
much faster compared to before optimization. Figure 6
illustrates the percentage increased for each query
statement executed. The average for the increased
percentage of run time is approximately 87.3% as
shown in Table 6.

Figure 6. Comparison graph P5, P6, P7, and P8.

7. Discussions
From the results, we could conclude that the technique
developed is able to overcome the problems mentioned
earlier which are slow speed processing in data
retrieval from the database. There are several
advantages in using the optimization technique
developed. It can prevent data redundancy by table
optimization algorithm. Entity is classified into several
entities based on the group of features identification.

Figure 7. Illustration of table optimization process.

Figures 7-a, 7-b, and 7-c, illustrate how Table
Optimization Algorithm works. Figure 7-a shows an
example of hydrological data stored in the DT_REAL
entity. Referring to the table, there are a few repeating
tuples meaning that each of these tuples has the same
value. The value of each attribute will be confirmed
according to the classification values obtained from
Figure 7-b. Next, if the attribute value confirmed is
equivalent, it will be stored in new entities which are
DT_RAINFALL, DT_EVAPORATION, DT_SUSP
ENDED_SEDIMENT, DT_WATER_LEVEL as
shown in Figure 7-c.

Furthermore, the implementation of this technique is
able to assist in data retrieval from the database. Using
the same Figure 7 as example, the entity DT_REAL
can be classified into other entities based on one
attribute which is FID. For each new entity, the

DT_EVAPORATION
DID TID R_VAL
916 22/1 100

DT_RAINFALL
DID TID R_VAL
916 18/1 0
916 19/1 10
916 20/1 0
916 21/1 20
916 22/1 50
972 24/1 0
972 25/1 20

DT_SUSPENDED_SEDIMENT
DID TID R_VAL
916 22/1 14
972 24/1 12.5

DT_WATER_LEVEL
DID TID R_VAL
972 22/1 20
972 23/1 30
972 24/1 40

RAINFALL

EVAPORATION

SUSPENDEED_
SEDIMENT

WATER_LEVEL

50

55

16

57

(b)

(c)

0.754
0.961

1.425

1.792

0.091 0.126 0.195 0.214

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

P5 P6 P7 P8
Type of Query

Ti
m
e
(t) Before Optimization

After Optimization

R_VAL DID TID FID
0 916 18/1 50
10 916 19/1 50
0 916 20/1 50
20 916 21/1 50
50 916 22/1 50
100 916 22/1 57
14 916 22/1 55
20 916 22/1 16
30 916 23/1 16
40 916 23/1 16
12.5 916 24/1 55
0 972 24/1 50
20 972 25/1 50

DT_REAL

(a)

The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 278

attribute value for each tuple is equivalent to the FID
attribute value. This would assist in the retrieval data
process where it only needs to refer to a certain entity
compared to before, where it has to refer to an entity
with many repeated data. Consider the information
requested is the data with the FID value of 50. The
entity referred to before classification is the DT_REAL
as shown in Figure 7-a where there is number of tuples
that need to be processed is 13 lines. However, after
classifying the entity, it only needs to refer to a single
entity which is DT_RAINFALL. The number of tuples
that need to be referred to is 7 lines lesser than the
number of tuples referred without entity classification.
This will significantly reduce the time needed to
process a query which was proven in the testing
implementation explained in section 6.

However, there are still some weaknesses in this
new technique proposed. For each query executed,
possible executions could be rather alike to one
another. As described earlier, each query statement has
four possible similar executions. This is due to the fact
that each query statement produced is based on the
table optimization technique uses the same set
rules.

8. Future Works
To increase the effectiveness of data retrieval, several
suggestions for improvement have been studied and
implemented. Among these suggestions is producing
an algorithm that is able to analyze queries in
determining and selecting the query with the most
optimum implementation period.

This paper focuses on the implementation period for
data retrieval from the database where the usage of
space factor is not taken in account. Therefore, it is
proposed that this factor should be taken into account
for future research to enhance the effectiveness of the
technique produced.

References
[1] Abdullah M. Z., Discrete Mathematics,

Introduction of Mathematic, First Edition, Open
University Malaysia, Malaysia 2004

[2] Alan R. H., Wu O. Q., and Yao S. B., “Query
Optimization on Local Area Networks,” ACM
Transaction on Office Information, vol. 3, no. 1,
pp. 35-62, 1985.

[3] Chen D., “Real-time Online Hydrological
Information and Modeling System Using Object-
Oriented Approach and Relational Database for
Flood Defense,” in Proceedings of the Flood
Defence'02, New York, Science Press, 2002.

[4] Chen J. B., “On Utilizing New Histogram-Based
Methods for Query Optimization,” Master
Thesis, Carleton University, Canada, 2003.

[5] Connoly T. and Begg C., Database Systems: A
Practical Approach to Design, Implementations,
and Management, Addison Wesley, UK, 1998.

[6] Haraty R. and Fany R., “Distributed Query
Optimization Using PERF Join,” in Proceedings
of the 2000 ACM Symposium on Applied
Computing, Como, Italy, pp. 284-288, 2000.

[7] Kafer W. and Schoning H., “Realizing a
Temporal Complex-Object Data Model,” in
Proceedings of the SIGMOD'1992, San Diego,
New York, USA, ACM Press, pp. 266-275, 1992.

[8] Kouramajin V., “Temporal Database: Access
Structures, Search Methods, Migration Strategies
and Declustering Techniques,” PhD Dissertation,
The University of Texas at Arlington, 1994.

[9] Lorentzos N. A., “DBMS Support for Nonmetric
Measurement Systems,” Knowledge and Data
Engineering, IEEE Transactions, vol. 6, no. 6,
pp. 945-953, December 1994.

[10] Lubna S., “Dynamic Technique in Distributed
Query Optimization,” Master Thesis, University
of Windsor, 2002.

[11] McMahan B. J., “Structral Heuristics for Query
Optimization,” Master Thesis, Rice University.
Houstan, Texas, 2004.

[12] Mesru K., Cicekli N. K., and Yazici A., “Spatio-
Temporal Querying in Video Databases,”
Information Sciences-Informatic and Computer
Science: An International Journal, vol. 160, no.
1-4, pp. 131-152, March 2004.

[13] Min J. S., Kim D. H., and Ryu K. H., “A
Spatiotemporal Data and Indexing,” in
Proceedings of IEEE Region 10th International
Conference, vol. 1, pp. 110-113, August 2001.

[14] Navin K., “Query Optimization for Object
Relational Database System,” PhD Thesis,
University of Wiconsin, Madison, 1999.

[15] Priti M. and Margaret H. E., “Join Processing in
Relational Databases,” ACM Computing Surveys,
vol. 24, no. 1, pp. 63-113, 1992.

[16] Rahim M. S. M., Daman D., and Selamat H.,
“Design and Implementation of Double Cube
Data Model for Geographical Information
Systems,” The International Arab Journal of
Information Technology, vol. 1, no. 2, pp. 215-
220. July 2004.

[17] Rahim M. S. M., Daman D., and Selamat H.,
“Spatial and Non Spatial Enhancement Database
for Hydrological Information System (HIS),”
Technical Report, Research Monograph,
University Technology Malaysia, Malaysia,
2002.

[18] Syed H. B. M., Daman D., and Selamat H.,
“Establishment of Hydrological Information
System for Water Resources Pelanning,
Development and Management, Jabatan
Pengairan Dan Saliran Malaysia, Kuala
Lumpur,” Technical Report, Department of

279 Equi-Join Table Optimization Technique for Temporal Data

Irrigation Malaysia, Ministry of Agriculture
Malaysia, vol. 1- 4, 1999.

[19] Tao Y. “Indexing and Query Processing of
Spatio-Temporal Data,” PhD Dissertation, The
Hong Kong University of Science and
Technology, Hong Kong China, 2002.

[20] Timos K. S., “Multiple Query Optimization,”
ACM Transaction on Database Systems, vol. 13,
no. 1, pp. 23-52, 1988.

Mohd Shafry Mohd Rahim
received his Diploma in computer
science 1997, BSc computer science
1999 form University Technology
Malaysia, and his MSc in research
GIS and visualization from
University Technology Malaysia, in

2002. Currently, he is a lecturer in the Department of
Computer Graphic and Multimedia, Faculty of
Computer Science and Information Systems at
University Technology Malaysia (UTM). He has over
seven years of experience in the field of computer
graphics & visualization and GIS data management.
He has also been actively involved in many research
projects related to GIS & visualization and GIS data
management, and has published more than 45
publications. Currently , his research is on development
of spatial, temporal, and spatiotemporal data
management applications.

Norazrin binti Kurmin received
first degree from University
Technology of Malaysia (UTM)
with Bachelor in computer science
in software engineering in 2003 and
Master in computer science in
information systems in 2006. She

holds the position of IT officer in Research
Management Center, University Technology of
Malaysia. She has strong research background in the
fields of query optimization for database, temporal data
in a database, and web programming.

Mohd Taib Wahid received first
degree in computer science in
information systems from University
Technology of Malaysia in 1996 and
Master in computer science in real
time software engineering in 1998
from University Technology of

Malaysia and Thomson Campus, France. Currently, he
is holding the position of lecturer in the Department of
Information Systems, University Technology of
Malaysia. He is also being actively involved in many
research projects related data model and software
development project as a project leader with various
public and private sectors. His research interest
includes database design and data modelling, data

retrieval, query optimization, and enterprise resource
planning.

Daut Daman received his BSc from
Universiti Sains Malaysia and MSc
from University of Cranfield, United
Kingdom. Currently, He is an
associate professor in the Faculty of
Computer Science and Information
Systems at University Technology

Malaysia (UTM). He has over 26 years of experience
in the field of computer graphics & visualization. He
taught subjects in the area of computer graphics,
scientific visualization, and software technologies. He
has also been actively involved in many research
projects related to computer graphics & visualization
and has published more than 100 publications.

The International Arab Journal of Information Technology, Vol. 4, No. 3, July 2007 280

Appendix 1: Queries Processing Used for
Testing

Query Query Statement
P1 – Query
statement for the
total of rain
dispersion in one
year

Select dt_name.did, dt_name.fid,
 dt_name.cval, dt_real.fid,
 dt_real.did, dt_real.tid,
 SUM(dt_real.rval) as total
From dt_name, dt_real
Where (((dt_name.fid) = 916) and
 ((dt_real.fid) = 916) and
 ((dt_real.did) = 50) and
 ((dt_real.tid) >=# 1/1/1990 8:50:0#

and
 (dt_real.tid) <=# 12/31/1990 12:0:0#))
Group by dt_real.tid;

P2 - Query
statement for the
total of rain
dispersion in 5
years

Select dt_name.did, dt_name.fid,
 dt_name.cval, dt_real.fid,
 dt_real.did, dt_real.tid,

 SUM(dt_real.rval) AS total
From dt_name, dt_real
Where (((dt_name.fid) = 916) and
 ((dt_real.fid) = 916) and
 ((dt_real.did) = 50) and
 ((dt_real.tid) >= #1/1/1990 8:50:0#

and
 (dt_real.tid)<=#12/31/1994 12:0:0#))
Group by dt_real.tid;

P3 - Query
statement for the
total of rain
dispersion in 10
years

Select dt_name.did, dt_name.fid,
 dt_name.cval, dt_real.fid,
 dt_real.did, dt_real.tid,
 SUM(dt_real.rval) as total
From dt_name, dt_real
Where (((dt_name.fid) = 916) and
 ((dt_real.fid) = 916) and
 ((dt_real.did) = 50) and
 ((dt_real.tid) >= #1/1/1990 8:50:0#

and
 (dt_real.tid) <= #12/31/1999 12:0:0#))
Group by dt_name.did, dt_name.fid,
dt_name.cval, dt_real.fid, dt_real.did, dt_real.tid;

P4 - Query
statement for the
total of rain
dispersion in 15
years

Select dt_name.did, dt_name.fid,
 dt_name.cval, dt_real.fid,
 dt_real.did, dt_real.tid,
 SUM(dt_real.rval) as total
From dt_name, dt_real
Where (((dt_name.fid) = 916) and
 ((dt_real.fid) = 916) and

 ((dt_real.did) = 50) and
 ((dt_real.tid) >= #1/1/1987 8:50:0# and
 (dt_real.tid) <= #12/31/2001 12:0:0#))
Group by dt_name.did, dt_name.fid, dt_name.cval,
dt_real.fid, dt_real.did, dt_real.tid;

P5 - Query
statement for the
average of rain
dispersion in one
year

Select dt_name.did, dt_name.fid,
 dt_name.cval, dt_real.fid,
 dt_real.did, dt_real.tid,
 AVG (dt_real.rval) as average
From dt_name, dt_real
Where (((dt_name.fid) = 916) and
 ((dt_real.fid) = 916) and
 ((dt_real.did) = 50) and
 ((dt_real.tid) >=# 1/1/1990 8:50:0#

and
 (dt_real.tid)<=#12/31/1990 12:0:0#))
Group by dt_name.did, dt_name.fid,
dt_name.cval, dt_real.fid, dt_real.did,
dt_real.tid;

P6 - Query
statement for the
average of rain
dispersion in 5
years

Select dt_name.did, dt_name.fid,
 dt_name.cval, dt_real.fid,
 dt_real.did, dt_real.tid,
 AVG (dt_real.rval) as average
From dt_name, dt_real
Where (((dt_name.fid) = 916) and
 ((dt_real.fid) = 916) and
 ((dt_real.did) = 50) and
 ((dt_real.tid) >= #1/1/1990 8:50:0#

and
 (dt_real.tid) <= #12/31/1994 12:0:0#))
Group by dt_name.did, dt_name.fid,
dt_name.cval, dt_real.fid, dt_real.did,
dt_real.tid;

P7 - Query
statement for the
average of rain
dispersion in 10
years

Select dt_name.did, dt_name.fid,
 dt_name.cval, dt_real.fid,
 dt_real.did, dt_real.tid,
 AVG (dt_real.rval) as average
From dt_name, dt_real
Where (((dt_name.fid) = 916) and
 ((dt_real.fid) = 916) and
 ((dt_real.did) = 50) and
 ((dt_real.tid) >= #1/1/1990 8:50:0#

and
 (dt_real.tid) <= #12/31/1999 12:0:0#))
Group by dt_name.did, dt_name.fid,
dt_name.cval, dt_real.fid, dt_real.did,
dt_real.tid;

P8 - Query
statement for the
average of rain
dispersion in 15
years

Select dt_name.did, dt_name.fid,
 dt_name.cval, dt_real.fid,
 dt_real.did, dt_real.tid,
 AVG (dt_real.rval) as average
From dt_name, dt_real
Where (((dt_name.fid) = 916) and
 ((dt_real.fid) = 916) and
 ((dt_real.did) = 50) and
 ((dt_real.tid) >= #1/1/1987 8:50:0#

and
 (dt_real.tid) <= #12/31/2001 12:0:0#))
Group by dt_name.did, dt_name.fid,
dt_name.cval, dt_real.fid, dt_real.did,
dt_real.tid;

