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Abstract: In this paper, we propose a new algorithm for image registration which is a key stage in almost every computer 
vision system. The algorithm is inspired from both evolutionary algorithms and quantum computing fields and uses the mutual 
information as a measure of similarity. The proposed approach is based on some concepts and principles of quantum 
computing such as quantum bit and states superposition. So, the definitions of the basic genetic operations have been adapted 
to use the new concepts. The evaluation of each solution is performed by the computation of mutual information between the 
reference image and the resulting image. The process aims to maximize this mutual information in order to get the best affine 
transformation parameters which allow the alignment of the two images belonging to either similar or different modalities.
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1. Introduction
Image registration is a central task in most of vision 
systems. It is required in different applications such as 
objects recognition, 3D reconstructions and data 
fusion. Basically, image registration can be defined as 
the process which aims to find the best geometric 
transformation that allows the alignment of the 
common parts of two images. To solve this problem, 
which is a combinatorial optimization one, many 
approaches have been proposed. All of them intend to 
reduce the computing complexity and at the same time 
avoid local optimums. Among the proposed methods 
we can mention those based on artificial neural 
networks, simulated annealing, taboo search, genetic 
algorithms [4], ants colonies, and artificial immune 
systems.

Quantum computing is a new field in computer 
science which has induced intensive investigations and 
researches during the last decade. It takes its origins 
from the foundations of the quantum physics. The 
parallelism that the quantum computing provides 
reduces obviously the algorithmic complexity [1]. 
Such an ability of parallel processing can be used to 
solve combinatorial optimization problems which 
require the exploration of large solutions spaces. So, 
the quantum computing allows the design of more 
powerful algorithms that should change significantly 
our view about solving hard problems. However, the 
quantum machines that these algorithms require to be 
efficiently executed are not available yet. By the time 
when a powerful quantum machine would be 
constructed, some ideas such as simulating quantum 
algorithms on conventional computers or combining 

them to existing methods have been suggested to get 
benefit from this new science [2]. Within this 
perspective, we are interested in the combination of 
evolutionary algorithms and quantum computing for 
image registration with the use of the mutual 
information as a measure of similarity.

Consequently, the rest of the paper is organized as 
follows. Section 2 gives some concepts about genetic 
algorithms, mutual information and quantum 
computing. The proposed algorithm is described in 
section 3. Section 4 illustrates some experimental 
results and the main algorithm’s properties are 
discussed in section 5. Finally, a conclusion and some 
perspectives are given in section 6.

2. Basic Concepts
2.1. Genetic Algorithms
Genetic algorithms derive from the evolution theory. 
They were introduced in 1975 by John Holland and his 
team as a highly parallel search algorithm. Later, they 
have been mainly used as optimization device.

According to the evolution theory, within a 
population only the individuals well adapted to their 
environment can survive and transmit some of their 
characters to their descendants. In genetic algorithms, 
this principle is traduced into the problem of finding 
the best individuals represented by chromosomes. So, 
each chromosome encodes a possible solution for the 
given problem and, starting from a population of 
chromosomes, the evolution process performs a 
parallel search through the solutions' space. The fitness 
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is measured for each individual by a function related to 
the objective function of the problem to be solved.

Basically, a genetic algorithm consists of three 
major operations: Selection, crossover, and mutation. 
The selection evaluates each individual and keeps only 
the fittest ones in the population. In addition to those 
fittest individuals, some less fit ones could be selected 
according to a small probability. The others are 
removed from the current population. The crossover 
recombines two individuals to have new ones which 
might be better. The mutation operator induces 
changes in a small number of chromosomes units. Its 
purpose is to maintain the population diversified 
enough during the optimization process.

2.2. Entropy Based Measures and Mutual 
Information

The entropy is a statistical measure defined by 
Shannon in 1948. It summarizes the randomness of a 
given variable. The more random a variable is, the 
larger entropy it will have.

Given a random variable represented by a 
probability distribution X, i. e., a set of couples (xi, pi)
where pi is the probability to have the value xi. The 
entropy of X is given by:

H (X) = -∑ pi log2 pi (1)

Intuitively, entropy measures the average 
information provided by a given distribution.

When dealing with two random variables 
represented by two probability distributions X and Y, 
we are interested by answering the question: “How 
likely the two distributions are functionally 
dependant?” In total dependence case, a measurement 
of one distribution discards any randomness about the 
other. As a consequence, quantifying the independence 
is equivalent to quantifying the randomness. The joint 
entropy is given by:

H (X, Y) = -∑ ∑ p (x, y) log2 p (x, y)   (2)

In the case of total independence between X and Y, 
the joint distribution is the product of the marginal 
distributions.

P (X, Y) = P (X) . P (Y)                    (3)

In terms of entropy, this leads to:

H (X, Y) = (X) + H (Y)                       (4)

The mutual information is a measure of the 
reduction on the entropy of Y given X and is then given 
by:

MI (X, Y)=H (X) + H (Y) - H (X, Y)          (5)

The mutual information is maximized when the two 
variables are totally dependant.

2.3. Quantum Computing
In early 80, Richard Feynman's observed that some 
quantum mechanical effects cannot be simulated 
efficiently on a computer. His observation led to 
speculation that computation in general could be done 
more efficiently if it used this quantum effects. This 
speculation proved justified in 1994 when Peter Shor 
described a polynomial time quantum algorithm for 
factoring numbers [ 6]. 

In quantum systems, the computational space 
increases exponentially with the size of the system 
which enables exponential parallelism. This 
parallelism could lead to exponentially faster quantum 
algorithms than possible classically [5].

The quantum bit (qubit) is the elementary 
information unit. Unlike the classical bit, the qubit 
does not represent only the value 0 or 1 but a 
superposition of the two. Its state can be given by:

Ψ = α |0〉 + β|1〉                           (6)

Where |0〉 and |1〉 represent respectively the classical 
bit values 0 and 1; α and β are complex numbers such 
that:

|α|2 + |β|2 = 1 n (7)

If a superposition is measured with respect to the 
basis {|0〉, |1〉}, the probability that the measured value 
is |0〉 is |α|2 and the probability that the measured value 
is |1〉 is |β|2.

In classical computing, the possible states of a 
system of n bits form a vector space of n dimensions, i.
e., we have 2n possible states. However, in a quantum 
system of n qubits the resulting state space has 2n

dimensions. It is this exponential growth of the state 
space with the number of particles that suggests a 
possible exponential speed-up of computation on 
quantum computers over classical computers. Each 
quantum operation will deal with all the states present 
within the superposition in parallel. The basis of the 
state space of a quantum system of n qubits is: 

{|00...0〉, |00...1〉… |11...1〉}

The measurement of a single qubit projects the 
quantum state onto one of the basis states associated 
with the measuring device. The result of a 
measurement is probabilistic and the process of 
measurement changes the state to that measured. 
Multi-qubit measurement can be treated as a series of 
single-qubit measurements in the standard basis.

The dynamics of a quantum system are governed by 
Schrödinger's equation. The quantum gates that 
perform transformations must preserve orthogonality. 
For a complex vector space, linear transformations that 
preserve orthogonality are unitary transformations, 
defined as follows. Any linear transformation on a 
complex vector space can be described by a matrix. A 
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matrix M is unitary if M.M' = I. Any unitary 
transformation of a quantum state space is a legitimate 
quantum transformation and vice-versa. Rotations 
constitute one among the unitary transformations 
types.

One important consequence of the fact that quantum 
transformations are unitary is that they are reversible. 
Thus quantum gates, which can be represented by 
unitary matrices, must be reversible. It has been shown 
that all classical computations can be done reversibly.

3. The Proposed Algorithm
Having two images I1 and I2 obtained from either 
similar or different sensors, the proposed algorithm 
allows the estimating of the affine geometric 
transformation which overlays the two images. A 
similar work that concerns only rigid transformations 
class can be found in [7].

As in genetic algorithms, initial solutions are 
encoded in N chromosomes representing the initial 
population. The difference in our algorithm is that each 
chromosome is represented using quantum bits.

The geometric transformation that aligns the image 
I2 on the image I1 is affine. Affine transformations 
form the most commonly used type of spatial 
transformations for registration. A chromosome 
encodes the six parameters (dx, dy, a11, a12, a21, a22) of 
the affine transformation. Having such parameters, the 
position of each pixel in the resulting image (x', y') can 
be calculated from the original position in the second 
image (x2, y2) as follows:
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So, after applying the transformation on the second 
image, it must be aligned with the first one. This 
transformation does not have the properties associated 
with the orthogonal rotation matrix. Angles and lengths 
are no longer preserved, but parallel lines remain 
parallel. More general spatial distortions such as skew 
and changes in aspect ratio can be represented within 
this formulation.

Each parameter is encoded using a binary 
representation. A bit in a chromosome does not 
represent only the value 0 or 1 but a superposition of 
the two. In this way, all the possible solutions are 
represented in each chromosome and only one solution 
among them can be measured at each time according to 
the probabilities |αi|2 and |βi|2. A chromosome is then 
represented by:

α1   α2  …..   α48
β1   β2  .….   β48

Where each column represents a single qubit. In our 
algorithm αi and βi are real values only.

Initially we generate randomly 4 chromosomes. 
Each one is composed of N = 48 qubits, 8 qubits for 
each parameter, i. e., 28 possible value for each one. dx
and dy are the 2D translation parameters and belong to 
the interval [-127, + 127]. The other parameters 
belong to the interval [-2, + 2] (the interval is 
subdivided into 28 = 256 real value).

During the whole process we keep in memory the 
global best solution.

The algorithm consists on applying cyclically 4 
quantum genetic operations (Figure1):

Figure 1. The proposed algorithm.

The first operation is a quantum interference which 
allows a shift of each qubit in the direction of the 
corresponding bit value in the current best solution. 
That is performed by applying a unitary quantum 
operator which achieves a rotation whose angle is 
function of αi, βi and the value of the corresponding bit 
in the best solution (Figure 2).

δθ has been chosen experimentally equal to π/45 
(different values had been tested and this value was the 
one which gave the best solutions) and its direction is 

α

β ± δθ

Figure 2. Quantum interference.
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function of α, β and the bit's value in the best solution 
(Table 1).

Table 1. Lookup table of the rotation angle.
Α >0 >0 >0 >0 <0 <0 <0 <0 
Β >0 >0 <0 <0 >0 >0 <0 <0 

Reference bit 
value 1 0 1 0 1 0 1 0

Angle +δθ -δθ -δθ +δθ -δθ +δθ +δθ -δθ

The second operation is a crossover performed 
between each pair of chromosomes at a random 
position. Figure 3 shows an example of a crossover 
between two chromosomes.

At each iteration, we obtain from the 4 initial 
chromosomes 12 new ones. The population becomes 
composed of 16 chromosomes.

The third operation consists on a quantum mutation 
which will perform for some qubits, according to the 
mutation rate, a permutation between their values αi
and βi. That will invert the probabilities of having the 
values 0 and 1 when applying a measurement (Figure 
4).

A variable mutation rate has been chosen. Let i be 
the range of the chromosome (the 4 initial 
chromosomes are sorted according to their fitness after 
the previous iteration from the best to the worst one; 
the other 12 chromosomes are the result of the 
crossover between the 4 first ones). The mutation rate 
(MR) is set to the value:

MR = 0.003 * i2

This means that only few qubits will be affected 
within the best chromosomes, whereas more qubits 
will be subject to mutation within the weak 
chromosomes.

Finally, we perform a selection of 4 chromosomes 
among the 16. For this, we apply first a measurement 
on each chromosome to have from it one solution 
among all those present in superposition. But unlike
pure quantum systems, the measurement here does not 
destroy the states' superposition. Since our algorithm 

operates on a conventional computer and does not 
require the presence of a quantum machine, it is 
possible and in our interest to keep all the possible 
solutions in the superposition for the next iterations. 
For each measurement result, we extract the 
transformation parameters and use them to transform 
the second image (equation 8) and have a calculated 
image. To evaluate the quality (or the fitness) of an 
obtained solution, we compute the mutual information 
between the first image (reference image) and the 
calculated image. For calculating such mutual 
information we need first the calculation of the 
reference and result image histograms and also the 
joint histogram. Greater the mutual information is, 
better the solution will be considered [3]. Afterwards, 
we select the 3 chromosomes from which derive the 3 
best results and we select also randomly one 
chromosome from the others (in order to maintain a 
good diversity). So we have all in all 4 chromosomes 
which form the new population. The global best 
solution is then updated if a better one is found and the 
whole process is repeated until having satisfaction of a 
stopping criterion (maximum number of iterations in 
our experiments).

4. Experimental Results
We have applied the proposed algorithm on many pairs 
of images obtained from different sources. The present 
section illustrates some obtained results when applying 
the registration algorithm. 

Figure 5 shows at the left side two images belonging 
to the same modality (the second image is the result of 
the application of a geometric transformation on the 
first one) on which we have applied the proposed 
quantum genetic algorithm. The third image is 
calculated from the second one according the obtained 
transformation parameters values.

Figure 5. Test images and registration result.

Figure 6 illustrates the evolution of the best value of 
the mutual information through time. The obtained 
transformation parameters values are:
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The final mutual information is 1.1743.
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Figure 3. Quantum crossover.

0.7446    -0.6833     0.1338     0.3705 -0.0272     0.6831
-0.6675     0.7301     0.9910    -0.9288 -0.9996     0.7303

 0.7446    -0.6833     0.1338    -0.9288 -0.0272     0.6831
-0.6675     0.7301     0.9910     0.3705 -0.9996     0.7303

Figure 4. Quantum mutation.
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Figure 6. Best mutual information evolution.

The results below (Figure 7) concern two images 
obtained from different sensors. The first image is a 
Magnetic Resonance Image (MRI) and the second one 
is an X-ray Computed Tomography Image (CTI).

Figure 7. Test images and registration result.

Figure 8 illustrates the evolution of the best value of 
the mutual information through time. The obtained 
transformation parameters values are:
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The final mutual information is 1.0015.
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Figure 8. Best mutual information evolution.

The third sample given below (Figure 9) is about the 
registration of a MRI with a scintigraphical image.

Figure 9. Test images and registration result.

Figure 10 illustrates the evolution of the best value 
of the mutual information through time. The obtained 
transformation parameters values are:
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The final mutual information is 0.8634.
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Figure 10. Best mutual information evolution.

5. Discussion
We should notice that very good solutions are obtained 
after less than 500 iterations.

Classical genetic algorithms used to perform the 
same task [4] require an obviously greater number of 
chromosomes (usually more than 50), and dozens of
thousands of iterations are needed to have acceptable 
solutions.

There are two main reasons why our quantum-
inspired algorithm is better than its classical 
counterparts. The first reason is that the quantum 
encoding of potential solutions reduces considerably 
the required number of chromosomes that guarantees 
good search diversity. So, each single chromosome 
represents at the same time all the possible solutions. 
The second reason is that the use of the quantum 
interference offers a powerful tool to reinforce the 
search stability. And then, it allows the speeding-up of 
the convergence.

Obtaining good results is conditioned by an 
adequate choice of the different algorithm parameters 
values. The first important parameter is the number of 
chromosomes. It is possible theoretically to use only 
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one chromosome, but practically, this leads usually to 
the reinforcement of local optima. Thus, we need 
slightly more chromosomes to diversify enough the 
search. In spite of this, the needed number of 
chromosomes is very small compared to the classical 
genetic algorithms since 3 or 4 chromosomes are 
sufficient. The second parameter which plays an 
important role in the optimisation process is the 
interference angle. A small angle favours a slow 
convergence but may avoid local optimums whereas a 
large angle favours fast convergence but may reinforce 
false optimum. So, one should choose carefully the 
value of the interference angle to obtain an optimal 
solution in a reasonable number of iterations. The other 
parameter that should be chosen cautiously is the 
mutation rate. A small rate will limit the search 
diversity, whereas a big rate tends to make the search 
almost random.

6. Conclusion
Our algorithm, compared to genetic algorithms, 
provides the advantage of giving a greater diversity by 
using quantum coding of solutions, i. e., all the 
solutions exist within each chromosome and what 
change are the probabilities to have one of them as a 
result of a measurement. Therefore, the size of the 
population does not need to be great. So, we have 
chosen to have only 4 chromosomes at the origin of 
each generation. Another advantage is that the 
interference provides in some way a guide for the 
population individuals and reinforces therefore the 
algorithm convergence. The use of the mutual 
information has allowed the registration of images 
coming from different sensors. That will provide the 
possibility of data fusion.

The obtained results are usually good. In 
comparison to classical genetic algorithms, the 
proposed quantum genetic algorithm has the advantage 
of using a small population size and the number of 
necessary iterations to have acceptable solution is also 
obviously smaller.

As ongoing work, we have first to study more 
rigorously the role of each algorithm parameter and its 
influence on the algorithm behaviour in order to 
establish the optimal values of the population size, the 
mutation rate and the interference angle that guarantee 
an optimal alignment for every pair of images. We 
would also use similar algorithms to solve efficiently 
other optimization problems.
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